🎉 first commit
This commit is contained in:
commit
65a09d121f
|
@ -0,0 +1,12 @@
|
|||
/.bundle/
|
||||
/.yardoc
|
||||
/Gemfile.lock
|
||||
/_yardoc/
|
||||
/coverage/
|
||||
/doc/
|
||||
/pkg/
|
||||
/spec/reports/
|
||||
/tmp/
|
||||
|
||||
# rspec failure tracking
|
||||
.rspec_status
|
|
@ -0,0 +1,17 @@
|
|||
#AllCops:
|
||||
# TargetRubyVersion: 2.3
|
||||
|
||||
Documentation:
|
||||
Enabled: false
|
||||
|
||||
Metrics/LineLength:
|
||||
Max: 120
|
||||
|
||||
Metrics/ModuleLength:
|
||||
Max: 200
|
||||
|
||||
Metrics/ClassLength:
|
||||
Max: 200
|
||||
|
||||
Security/MarshalLoad:
|
||||
Enabled: false
|
|
@ -0,0 +1,5 @@
|
|||
sudo: false
|
||||
language: ruby
|
||||
rvm:
|
||||
- 2.4.2
|
||||
before_install: gem install bundler -v 1.15.4
|
|
@ -0,0 +1,74 @@
|
|||
# Contributor Covenant Code of Conduct
|
||||
|
||||
## Our Pledge
|
||||
|
||||
In the interest of fostering an open and welcoming environment, we as
|
||||
contributors and maintainers pledge to making participation in our project and
|
||||
our community a harassment-free experience for everyone, regardless of age, body
|
||||
size, disability, ethnicity, gender identity and expression, level of experience,
|
||||
nationality, personal appearance, race, religion, or sexual identity and
|
||||
orientation.
|
||||
|
||||
## Our Standards
|
||||
|
||||
Examples of behavior that contributes to creating a positive environment
|
||||
include:
|
||||
|
||||
* Using welcoming and inclusive language
|
||||
* Being respectful of differing viewpoints and experiences
|
||||
* Gracefully accepting constructive criticism
|
||||
* Focusing on what is best for the community
|
||||
* Showing empathy towards other community members
|
||||
|
||||
Examples of unacceptable behavior by participants include:
|
||||
|
||||
* The use of sexualized language or imagery and unwelcome sexual attention or
|
||||
advances
|
||||
* Trolling, insulting/derogatory comments, and personal or political attacks
|
||||
* Public or private harassment
|
||||
* Publishing others' private information, such as a physical or electronic
|
||||
address, without explicit permission
|
||||
* Other conduct which could reasonably be considered inappropriate in a
|
||||
professional setting
|
||||
|
||||
## Our Responsibilities
|
||||
|
||||
Project maintainers are responsible for clarifying the standards of acceptable
|
||||
behavior and are expected to take appropriate and fair corrective action in
|
||||
response to any instances of unacceptable behavior.
|
||||
|
||||
Project maintainers have the right and responsibility to remove, edit, or
|
||||
reject comments, commits, code, wiki edits, issues, and other contributions
|
||||
that are not aligned to this Code of Conduct, or to ban temporarily or
|
||||
permanently any contributor for other behaviors that they deem inappropriate,
|
||||
threatening, offensive, or harmful.
|
||||
|
||||
## Scope
|
||||
|
||||
This Code of Conduct applies both within project spaces and in public spaces
|
||||
when an individual is representing the project or its community. Examples of
|
||||
representing a project or community include using an official project e-mail
|
||||
address, posting via an official social media account, or acting as an appointed
|
||||
representative at an online or offline event. Representation of a project may be
|
||||
further defined and clarified by project maintainers.
|
||||
|
||||
## Enforcement
|
||||
|
||||
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
||||
reported by contacting the project team at yoshoku@outlook.com. All
|
||||
complaints will be reviewed and investigated and will result in a response that
|
||||
is deemed necessary and appropriate to the circumstances. The project team is
|
||||
obligated to maintain confidentiality with regard to the reporter of an incident.
|
||||
Further details of specific enforcement policies may be posted separately.
|
||||
|
||||
Project maintainers who do not follow or enforce the Code of Conduct in good
|
||||
faith may face temporary or permanent repercussions as determined by other
|
||||
members of the project's leadership.
|
||||
|
||||
## Attribution
|
||||
|
||||
This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
|
||||
available at [http://contributor-covenant.org/version/1/4][version]
|
||||
|
||||
[homepage]: http://contributor-covenant.org
|
||||
[version]: http://contributor-covenant.org/version/1/4/
|
|
@ -0,0 +1,6 @@
|
|||
source "https://rubygems.org"
|
||||
|
||||
git_source(:github) {|repo_name| "https://github.com/#{repo_name}" }
|
||||
|
||||
# Specify your gem's dependencies in svmkit.gemspec
|
||||
gemspec
|
|
@ -0,0 +1,8 @@
|
|||
# 0.1.0
|
||||
- Added basic classes.
|
||||
- Added an utility module.
|
||||
- Added class for RBF kernel approximation.
|
||||
- Added class for Support Vector Machine with Pegasos alogrithm.
|
||||
- Added class that performs mutlclass classification with one-vs.-rest strategy.
|
||||
- Added classes for preprocessing such as min-max scaling, standardization, and L2 normalization.
|
||||
|
|
@ -0,0 +1,23 @@
|
|||
Copyright (c) 2017 yoshoku
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright notice, this
|
||||
list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above copyright notice,
|
||||
this list of conditions and the following disclaimer in the documentation
|
||||
and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
@ -0,0 +1,84 @@
|
|||
# SVMKit
|
||||
|
||||
SVMKit is a library for machine learninig in Ruby.
|
||||
SVMKit implements machine learning algorithms with an interface similar to Scikit-Learn in Python.
|
||||
However, since SVMKit is an experimental library, there are few machine learning algorithms implemented.
|
||||
|
||||
## Installation
|
||||
|
||||
Add this line to your application's Gemfile:
|
||||
|
||||
```ruby
|
||||
gem 'svmkit'
|
||||
```
|
||||
|
||||
And then execute:
|
||||
|
||||
$ bundle
|
||||
|
||||
Or install it yourself as:
|
||||
|
||||
$ gem install svmkit
|
||||
|
||||
## Usage
|
||||
|
||||
Training phase:
|
||||
```ruby
|
||||
require 'svmkit'
|
||||
require 'libsvmloader'
|
||||
|
||||
samples, labels = LibSVMLoader.load_libsvm_file('pendigits', stype: :dense)
|
||||
|
||||
normalizer = SVMKit::Preprocessing::MinMaxScaler.new
|
||||
normalized = normalizer.fit_transform(samples)
|
||||
|
||||
transformer = SVMKit::KernelApproximation::RBF.new(gamma: 2.0, n_components: 1024, random_seed: 1)
|
||||
transformed = transformer.fit_transform(normalized)
|
||||
|
||||
base_classifier =
|
||||
SVMKit::LinearModel::PegasosSVC.new(penalty: 1.0, max_iter: 50, batch_size: 20, random_seed: 1)
|
||||
classifier = SVMKit::Multiclass::OneVsRestClassifier.new(estimator: base_classifier)
|
||||
classifier.fit(transformed, labels)
|
||||
|
||||
File.open('trained_normalizer.dat', 'wb') { |f| f.write(Marshal.dump(normalizer)) }
|
||||
File.open('trained_transformer.dat', 'wb') { |f| f.write(Marshal.dump(transformer)) }
|
||||
File.open('trained_classifier.dat', 'wb') { |f| f.write(Marshal.dump(classifier)) }
|
||||
```
|
||||
|
||||
Testing phase:
|
||||
```ruby
|
||||
require 'svmkit'
|
||||
require 'libsvmloader'
|
||||
|
||||
samples, labels = LibSVMLoader.load_libsvm_file('pendigits.t', stype: :dense)
|
||||
|
||||
normalizer = Marshal.load(File.binread('trained_normalizer.dat'))
|
||||
transformer = Marshal.load(File.binread('trained_transformer.dat'))
|
||||
classifier = Marshal.load(File.binread('trained_classifier.dat'))
|
||||
|
||||
normalized = normalizer.transform(samples)
|
||||
transformed = transformer.transform(normalized)
|
||||
|
||||
puts(sprintf("Accuracy: %.1f%%", 100.0 * classifier.score(transformed, labels)))
|
||||
```
|
||||
|
||||
## Development
|
||||
|
||||
After checking out the repo, run `bin/setup` to install dependencies. Then, run `rake spec` to run the tests. You can also run `bin/console` for an interactive prompt that will allow you to experiment.
|
||||
|
||||
To install this gem onto your local machine, run `bundle exec rake install`. To release a new version, update the version number in `version.rb`, and then run `bundle exec rake release`, which will create a git tag for the version, push git commits and tags, and push the `.gem` file to [rubygems.org](https://rubygems.org).
|
||||
|
||||
## Contributing
|
||||
|
||||
Bug reports and pull requests are welcome on GitHub at https://github.com/yoshoku/svmkit.
|
||||
This project is intended to be a safe, welcoming space for collaboration,
|
||||
and contributors are expected to adhere to the [Contributor Covenant](http://contributor-covenant.org) code of conduct.
|
||||
|
||||
## License
|
||||
|
||||
The gem is available as open source under the terms of the [BSD 2-clause License](https://opensource.org/licenses/BSD-2-Clause).
|
||||
|
||||
## Code of Conduct
|
||||
|
||||
Everyone interacting in the SVMKit project’s codebases, issue trackers,
|
||||
chat rooms and mailing lists is expected to follow the [code of conduct](https://github.com/yoshoku/svmkit/blob/master/CODE_OF_CONDUCT.md).
|
|
@ -0,0 +1,6 @@
|
|||
require "bundler/gem_tasks"
|
||||
require "rspec/core/rake_task"
|
||||
|
||||
RSpec::Core::RakeTask.new(:spec)
|
||||
|
||||
task :default => :spec
|
|
@ -0,0 +1,14 @@
|
|||
#!/usr/bin/env ruby
|
||||
|
||||
require "bundler/setup"
|
||||
require "svmkit"
|
||||
|
||||
# You can add fixtures and/or initialization code here to make experimenting
|
||||
# with your gem easier. You can also use a different console, if you like.
|
||||
|
||||
# (If you use this, don't forget to add pry to your Gemfile!)
|
||||
# require "pry"
|
||||
# Pry.start
|
||||
|
||||
require "irb"
|
||||
IRB.start(__FILE__)
|
|
@ -0,0 +1,8 @@
|
|||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
IFS=$'\n\t'
|
||||
set -vx
|
||||
|
||||
bundle install
|
||||
|
||||
# Do any other automated setup that you need to do here
|
|
@ -0,0 +1,16 @@
|
|||
begin
|
||||
require 'nmatrix/nmatrix'
|
||||
rescue LoadError
|
||||
end
|
||||
|
||||
require 'svmkit/version'
|
||||
require 'svmkit/utils'
|
||||
require 'svmkit/base/base_estimator'
|
||||
require 'svmkit/base/classifier'
|
||||
require 'svmkit/base/transformer'
|
||||
require 'svmkit/kernel_approximation/rbf'
|
||||
require 'svmkit/linear_model/pegasos_svc'
|
||||
require 'svmkit/multiclass/one_vs_rest_classifier'
|
||||
require 'svmkit/preprocessing/l2_normalizer'
|
||||
require 'svmkit/preprocessing/min_max_scaler'
|
||||
require 'svmkit/preprocessing/standard_scaler'
|
|
@ -0,0 +1,11 @@
|
|||
|
||||
module SVMKit
|
||||
# This module consists of basic mix-in classes.
|
||||
module Base
|
||||
# Base module for all estimators in SVMKit.
|
||||
module BaseEstimator
|
||||
# Parameters for this estimator.
|
||||
attr_accessor :params
|
||||
end
|
||||
end
|
||||
end
|
|
@ -0,0 +1,22 @@
|
|||
|
||||
module SVMKit
|
||||
module Base
|
||||
# Module for all classifiers in SVMKit.
|
||||
module Classifier
|
||||
# An abstract method for fitting a model.
|
||||
def fit
|
||||
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
||||
end
|
||||
|
||||
# An abstract method for predicting labels.
|
||||
def predict
|
||||
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
||||
end
|
||||
|
||||
# An abstract method for calculating classification accuracy.
|
||||
def score
|
||||
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
|
@ -0,0 +1,17 @@
|
|||
|
||||
module SVMKit
|
||||
module Base
|
||||
# Module for all transfomers in SVMKit.
|
||||
module Transformer
|
||||
# An abstract method for fitting a model.
|
||||
def fit
|
||||
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
||||
end
|
||||
|
||||
# An abstract method for fitting a model and transforming given data.
|
||||
def fit_transform
|
||||
raise NotImplementedError, "#{__method__} has to be implemented in #{self.class}."
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
|
@ -0,0 +1,133 @@
|
|||
require 'svmkit/base/base_estimator'
|
||||
require 'svmkit/base/transformer'
|
||||
|
||||
module SVMKit
|
||||
# Module for kernel approximation algorithms.
|
||||
module KernelApproximation
|
||||
# Class for RBF kernel feature mapping.
|
||||
#
|
||||
# transformer = SVMKit::KernelApproximation::RBF.new(gamma: 1.0, n_coponents: 128, random_seed: 1)
|
||||
# new_training_samples = transformer.fit_transform(training_samples)
|
||||
# new_testing_samples = transformer.transform(testing_samples)
|
||||
#
|
||||
# * *Refernce*:
|
||||
# - A. Rahimi and B. Recht, "Random Features for Large-Scale Kernel Machines," Proc. NIPS'07, pp.1177--1184, 2007.
|
||||
class RBF
|
||||
include Base::BaseEstimator
|
||||
include Base::Transformer
|
||||
|
||||
DEFAULT_PARAMS = { # :nodoc:
|
||||
gamma: 1.0,
|
||||
n_components: 128,
|
||||
random_seed: nil
|
||||
}.freeze
|
||||
|
||||
# The random matrix for transformation.
|
||||
attr_reader :random_mat # :nodoc:
|
||||
|
||||
# The random vector for transformation.
|
||||
attr_reader :random_vec # :nodoc:
|
||||
|
||||
# The random generator for transformation.
|
||||
attr_reader :rng # :nodoc:
|
||||
|
||||
# Creates a new transformer for mapping to RBF kernel feature space.
|
||||
#
|
||||
# call-seq:
|
||||
# new(gamma: 1.0, n_components: 128, random_seed: 1) -> RBF
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +:gamma+ (Float) (defaults to: 1.0) -- The parameter of RBF kernel: exp(-gamma * x^2)
|
||||
# - +:n_components+ (Integer) (defaults to: 128) -- The number of dimensions of the RBF kernel feature space.
|
||||
# - +:random_seed+ (Integer) (defaults to: nil) -- The seed value using to initialize the random generator.
|
||||
def initialize(params = {})
|
||||
self.params = DEFAULT_PARAMS.merge(Hash[params.map { |k, v| [k.to_sym, v] }])
|
||||
self.params[:random_seed] ||= srand
|
||||
@rng = Random.new(self.params[:random_seed])
|
||||
@random_mat = nil
|
||||
@random_vec = nil
|
||||
end
|
||||
|
||||
# Fit the model with given training data.
|
||||
#
|
||||
# call-seq:
|
||||
# fit(x) -> RBF
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- The training data to be used for fitting the model. This method uses only the number of features of the data.
|
||||
# * *Returns* :
|
||||
# - The learned transformer itself.
|
||||
def fit(x, _y = nil)
|
||||
n_features = x.shape[1]
|
||||
params[:n_components] = 2 * n_features if params[:n_components] <= 0
|
||||
@random_mat = rand_normal([n_features, params[:n_components]]) * (2.0 * params[:gamma])**0.5
|
||||
n_half_components = params[:n_components] / 2
|
||||
@random_vec = NMatrix.zeros([1, params[:n_components] - n_half_components]).hconcat(
|
||||
NMatrix.ones([1, n_half_components]) * (0.5 * Math::PI)
|
||||
)
|
||||
#@random_vec = rand_uniform([1, self.params[:n_components]]) * (2.0 * Math::PI)
|
||||
self
|
||||
end
|
||||
|
||||
# Fit the model with training data, and then transform them with the learned model.
|
||||
#
|
||||
# call-seq:
|
||||
# fit_transform(x) -> NMatrix
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- The training data to be used for fitting the model.
|
||||
# * *Returns* :
|
||||
# - The transformed data (NMatrix, shape: [n_samples, n_components]).
|
||||
def fit_transform(x, _y = nil)
|
||||
fit(x).transform(x)
|
||||
end
|
||||
|
||||
# Transform the given data with the learned model.
|
||||
#
|
||||
# call-seq:
|
||||
# transform(x) -> NMatrix
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- The data to be transformed with the learned model.
|
||||
# * *Returns* :
|
||||
# - The transformed data (NMatrix, shape: [n_samples, n_components]).
|
||||
def transform(x)
|
||||
n_samples, = x.shape
|
||||
projection = x.dot(@random_mat) + @random_vec.repeat(n_samples, 0)
|
||||
projection.sin * ((2.0 / params[:n_components])**0.5)
|
||||
end
|
||||
|
||||
# Serializes object through Marshal#dump.
|
||||
def marshal_dump # :nodoc:
|
||||
{ params: params,
|
||||
random_mat: Utils.dump_nmatrix(@random_mat),
|
||||
random_vec: Utils.dump_nmatrix(@random_vec),
|
||||
rng: @rng }
|
||||
end
|
||||
|
||||
# Deserialize object through Marshal#load.
|
||||
def marshal_load(obj) # :nodoc:
|
||||
self.params = obj[:params]
|
||||
@random_mat = Utils.restore_nmatrix(obj[:random_mat])
|
||||
@random_vec = Utils.restore_nmatrix(obj[:random_vec])
|
||||
@rng = obj[:rng]
|
||||
nil
|
||||
end
|
||||
|
||||
protected
|
||||
|
||||
# Generate the uniform random matrix with the given shape.
|
||||
def rand_uniform(shape) # :nodoc:
|
||||
rnd_vals = Array.new(NMatrix.size(shape)) { @rng.rand }
|
||||
NMatrix.new(shape, rnd_vals, dtype: :float64, stype: :dense)
|
||||
end
|
||||
|
||||
# Generate the normal random matrix with the given shape, mean, and standard deviation.
|
||||
def rand_normal(shape, mu = 0.0, sigma = 1.0) # :nodoc:
|
||||
a = rand_uniform(shape)
|
||||
b = rand_uniform(shape)
|
||||
((a.log * -2.0).sqrt * (b * 2.0 * Math::PI).sin) * sigma + mu
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
|
@ -0,0 +1,148 @@
|
|||
require 'svmkit/base/base_estimator'
|
||||
require 'svmkit/base/classifier'
|
||||
|
||||
module SVMKit
|
||||
# This module consists of the classes that implement generalized linear models.
|
||||
module LinearModel
|
||||
# PegasosSVC is a class that implements Support Vector Classifier with the Pegasos algorithm.
|
||||
#
|
||||
# estimator =
|
||||
# SVMKit::LinearModel::PegasosSVC.new(reg_param: 1.0, max_iter: 100, batch_size: 20, random_seed: 1)
|
||||
# estimator.fit(training_samples, traininig_labels)
|
||||
# results = estimator.predict(testing_samples)
|
||||
#
|
||||
# * *Reference*:
|
||||
# - S. Shalev-Shwartz and Y. Singer, "Pegasos: Primal Estimated sub-GrAdient SOlver for SVM," Proc. ICML'07, pp. 807--814, 2007.
|
||||
#
|
||||
class PegasosSVC
|
||||
include Base::BaseEstimator
|
||||
include Base::Classifier
|
||||
|
||||
DEFAULT_PARAMS = { # :nodoc:
|
||||
reg_param: 1.0,
|
||||
max_iter: 100,
|
||||
batch_size: 50,
|
||||
random_seed: nil
|
||||
}.freeze
|
||||
|
||||
# The weight vector for SVC.
|
||||
attr_reader :weight_vec
|
||||
|
||||
# The random generator for performing random sampling in the Pegasos algorithm.
|
||||
attr_reader :rng
|
||||
|
||||
# Create a new classifier with Support Vector Machine by the Pegasos algorithm.
|
||||
#
|
||||
# :call-seq:
|
||||
# new(reg_param: 1.0, max_iter: 100, batch_size: 50, random_seed: 1) -> PegasosSVC
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +:reg_param+ (Float) (defaults to: 1.0) -- The regularization parameter.
|
||||
# - +:max_iter+ (Integer) (defaults to: 100) -- The maximum number of iterations.
|
||||
# - +:batch_size+ (Integer) (defaults to: 50) -- The size of the mini batches.
|
||||
# - +:random_seed+ (Integer) (defaults to: nil) -- The seed value using to initialize the random generator.
|
||||
def initialize(params = {})
|
||||
self.params = DEFAULT_PARAMS.merge(Hash[params.map { |k, v| [k.to_sym, v] }])
|
||||
self.params[:random_seed] ||= srand
|
||||
@weight_vec = nil
|
||||
@rng = Random.new(self.params[:random_seed])
|
||||
end
|
||||
|
||||
# Fit the model with given training data.
|
||||
#
|
||||
# :call-seq:
|
||||
# fit(x, y) -> PegasosSVC
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- The training data to be used for fitting the model.
|
||||
# - +y+ (NMatrix, shape: [1, n_samples]) -- The labels to be used for fitting the model.
|
||||
# * *Returns* :
|
||||
# - The learned classifier itself.
|
||||
def fit(x, y)
|
||||
# Generate binary labels
|
||||
negative_label = y.uniq.sort.shift
|
||||
bin_y = y.to_flat_a.map { |l| l != negative_label ? 1 : -1 }
|
||||
# Initialize some variables.
|
||||
n_samples, n_features = x.shape
|
||||
rand_ids = [*0..n_samples - 1].shuffle(random: @rng)
|
||||
@weight_vec = NMatrix.zeros([1, n_features])
|
||||
# Start optimization.
|
||||
params[:max_iter].times do |t|
|
||||
# random sampling
|
||||
subset_ids = rand_ids.shift(params[:batch_size])
|
||||
rand_ids.concat(subset_ids)
|
||||
target_ids = subset_ids.map do |n|
|
||||
n if @weight_vec.dot(x.row(n).transpose) * bin_y[n] < 1
|
||||
end
|
||||
n_subsamples = target_ids.size
|
||||
next if n_subsamples.zero?
|
||||
# update the weight vector.
|
||||
eta = 1.0 / (params[:reg_param] * (t + 1))
|
||||
mean_vec = NMatrix.zeros([1, n_features])
|
||||
target_ids.each { |n| mean_vec += x.row(n) * bin_y[n] }
|
||||
mean_vec *= eta / n_subsamples
|
||||
@weight_vec = @weight_vec * (1.0 - eta * params[:reg_param]) + mean_vec
|
||||
# scale the weight vector.
|
||||
scaler = (1.0 / params[:reg_param]**0.5) / @weight_vec.norm2
|
||||
@weight_vec *= [1.0, scaler].min
|
||||
end
|
||||
self
|
||||
end
|
||||
|
||||
# Calculate confidence scores for samples.
|
||||
#
|
||||
# :call-seq:
|
||||
# decision_function(x) -> NMatrix, shape: [1, n_samples]
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to compute the scores.
|
||||
# * *Returns* :
|
||||
# - Confidence score per sample.
|
||||
def decision_function(x)
|
||||
@weight_vec.dot(x.transpose)
|
||||
end
|
||||
|
||||
# Predict class labels for samples.
|
||||
#
|
||||
# :call-seq:
|
||||
# predict(x) -> NMatrix, shape: [1, n_samples]
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to predict the labels.
|
||||
# * *Returns* :
|
||||
# - Predicted class label per sample.
|
||||
def predict(x)
|
||||
decision_function(x).map { |v| v >= 0 ? 1 : -1 }
|
||||
end
|
||||
|
||||
# Claculate the mean accuracy of the given testing data.
|
||||
#
|
||||
# :call-seq:
|
||||
# predict(x, y) -> Float
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- Testing data.
|
||||
# - +y+ (NMatrix, shape: [1, n_samples]) -- True labels for testing data.
|
||||
# * *Returns* :
|
||||
# - Mean accuracy
|
||||
def score(x, y)
|
||||
p = predict(x)
|
||||
n_hits = (y.to_flat_a.map.with_index { |l, n| l == p[n] ? 1 : 0 }).inject(:+)
|
||||
n_hits / y.size.to_f
|
||||
end
|
||||
|
||||
# Serializes object through Marshal#dump.
|
||||
def marshal_dump # :nodoc:
|
||||
{ params: params, weight_vec: Utils.dump_nmatrix(@weight_vec), rng: @rng }
|
||||
end
|
||||
|
||||
# Deserialize object through Marshal#load.
|
||||
def marshal_load(obj) # :nodoc:
|
||||
self.params = obj[:params]
|
||||
@weight_vec = Utils.restore_nmatrix(obj[:weight_vec])
|
||||
@rng = obj[:rng]
|
||||
nil
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
|
@ -0,0 +1,127 @@
|
|||
require 'svmkit/base/base_estimator.rb'
|
||||
require 'svmkit/base/classifier.rb'
|
||||
|
||||
module SVMKit
|
||||
# This module consists of the classes that implement multi-label classification strategy.
|
||||
module Multiclass
|
||||
# OneVsRestClassifier is a class that implements One-vs-Rest (OvR) strategy for multi-label classification.
|
||||
#
|
||||
# base_estimator =
|
||||
# SVMKit::LinearModel::PegasosSVC.new(penalty: 1.0, max_iter: 100, batch_size: 20, random_seed: 1)
|
||||
# estimator = SVMKit::Multiclass::OneVsRestClassifier.new(estimator: base_estimator)
|
||||
# estimator.fit(training_samples, training_labels)
|
||||
# results = estimator.predict(testing_samples)
|
||||
#
|
||||
class OneVsRestClassifier
|
||||
include Base::BaseEstimator
|
||||
include Base::Classifier
|
||||
|
||||
DEFAULT_PARAMS = { # :nodoc:
|
||||
estimator: nil
|
||||
}.freeze
|
||||
|
||||
# The set of estimators.
|
||||
attr_reader :estimators
|
||||
|
||||
# The class labels.
|
||||
attr_reader :classes
|
||||
|
||||
# Create a new multi-label classifier with the one-vs-rest startegy.
|
||||
#
|
||||
# :call-seq:
|
||||
# new(estimator: base_estimator) -> OneVsRestClassifier
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +:estimator+ (Classifier) (defaults to: nil) -- The (binary) classifier for construction a multi-label classifier.
|
||||
def initialize(params = {})
|
||||
self.params = DEFAULT_PARAMS.merge(Hash[params.map { |k, v| [k.to_sym, v] }])
|
||||
@estimators = nil
|
||||
@classes = nil
|
||||
end
|
||||
|
||||
# Fit the model with given training data.
|
||||
#
|
||||
# :call-seq:
|
||||
# fit(x, y) -> OneVsRestClassifier
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- The training data to be used for fitting the model.
|
||||
# - +y+ (NMatrix, shape: [1, n_samples]) -- The labels to be used for fitting the model.
|
||||
# * *Returns* :
|
||||
# - The learned classifier itself.
|
||||
def fit(x, y)
|
||||
@classes = y.uniq.sort
|
||||
@estimators = @classes.map do |label|
|
||||
bin_y = y.map { |l| l == label ? 1 : -1 }
|
||||
params[:estimator].dup.fit(x, bin_y)
|
||||
end
|
||||
self
|
||||
end
|
||||
|
||||
# Calculate confidence scores for samples.
|
||||
#
|
||||
# :call-seq:
|
||||
# decision_function(x) -> NMatrix, shape: [n_samples, n_classes]
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to compute the scores.
|
||||
# * *Returns* :
|
||||
# - Confidence scores per sample for each class.
|
||||
def decision_function(x)
|
||||
n_samples, = x.shape
|
||||
n_classes = @classes.size
|
||||
NMatrix.new(
|
||||
[n_classes, n_samples],
|
||||
Array.new(n_classes) { |m| @estimators[m].decision_function(x).to_a }.flatten
|
||||
).transpose
|
||||
end
|
||||
|
||||
# Predict class labels for samples.
|
||||
#
|
||||
# :call-seq:
|
||||
# predict(x) -> NMatrix, shape: [1, n_samples]
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to predict the labels.
|
||||
# * *Returns* :
|
||||
# - Predicted class label per sample.
|
||||
def predict(x)
|
||||
n_samples, = x.shape
|
||||
decision_values = decision_function(x)
|
||||
NMatrix.new([1, n_samples],
|
||||
decision_values.each_row.map { |vals| @classes[vals.to_a.index(vals.to_a.max)] })
|
||||
end
|
||||
|
||||
# Claculate the mean accuracy of the given testing data.
|
||||
#
|
||||
# :call-seq:
|
||||
# predict(x, y) -> Float
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- Testing data.
|
||||
# - +y+ (NMatrix, shape: [1, n_samples]) -- True labels for testing data.
|
||||
# * *Returns* :
|
||||
# - Mean accuracy
|
||||
def score(x, y)
|
||||
p = predict(x)
|
||||
n_hits = (y.to_flat_a.map.with_index { |l, n| l == p[n] ? 1 : 0 }).inject(:+)
|
||||
n_hits / y.size.to_f
|
||||
end
|
||||
|
||||
# Serializes object through Marshal#dump.
|
||||
def marshal_dump # :nodoc:
|
||||
{ params: params,
|
||||
classes: @classes,
|
||||
estimators: @estimators.map { |e| Marshal.dump(e) } }
|
||||
end
|
||||
|
||||
# Deserialize object through Marshal#load.
|
||||
def marshal_load(obj) # :nodoc:
|
||||
self.params = obj[:params]
|
||||
@classes = obj[:classes]
|
||||
@estimators = obj[:estimators].map { |e| Marshal.load(e) }
|
||||
nil
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
|
@ -0,0 +1,57 @@
|
|||
require 'svmkit/base/base_estimator'
|
||||
require 'svmkit/base/transformer'
|
||||
|
||||
module SVMKit
|
||||
# This module consists of the classes that perform preprocessings.
|
||||
module Preprocessing
|
||||
# Normalize samples to unit L2-norm.
|
||||
#
|
||||
# normalizer = SVMKit::Preprocessing::StandardScaler.new
|
||||
# new_samples = normalizer.fit_transform(samples)
|
||||
class L2Normalizer
|
||||
include Base::BaseEstimator
|
||||
include Base::Transformer
|
||||
|
||||
# The vector consists of norms of each sample.
|
||||
attr_reader :norm_vec # :nodoc:
|
||||
|
||||
# Create a new normalizer for normaliing to unit L2-norm.
|
||||
#
|
||||
# :call-seq:
|
||||
# new() -> L2Normalizer
|
||||
def initialize(_params = {})
|
||||
@norm_vec = nil
|
||||
end
|
||||
|
||||
# Calculate L2 norms of each sample.
|
||||
#
|
||||
# :call-seq:
|
||||
# fit(x) -> L2Normalizer
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to calculate L2-norms.
|
||||
# * *Returns* :
|
||||
# - L2Normalizer
|
||||
def fit(x, _y = nil)
|
||||
n_samples, = x.shape
|
||||
@norm_vec = NMatrix.new([1, n_samples],
|
||||
Array.new(n_samples) { |n| x.row(n).norm2 })
|
||||
self
|
||||
end
|
||||
|
||||
# Calculate L2 norms of each sample, and then normalize samples to unit L2-norm.
|
||||
#
|
||||
# :call-seq:
|
||||
# fit_transform(x) -> NMatrix
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to calculate L2-norms.
|
||||
# * *Returns* :
|
||||
# - The normalized samples (NMatrix)
|
||||
def fit_transform(x, _y = nil)
|
||||
fit(x)
|
||||
x / @norm_vec.transpose.repeat(x.shape[1], 1)
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
|
@ -0,0 +1,99 @@
|
|||
require 'svmkit/base/base_estimator'
|
||||
require 'svmkit/base/transformer'
|
||||
|
||||
module SVMKit
|
||||
# This module consists of the classes that perform preprocessings.
|
||||
module Preprocessing
|
||||
# Normalize samples by scaling each feature to a given range.
|
||||
#
|
||||
# normalizer = SVMKit::Preprocessing::MinMaxScaler.new(feature_range: [0.0, 1.0])
|
||||
# new_training_samples = normalizer.fit_transform(training_samples)
|
||||
# new_testing_samples = normalizer.transform(testing_samples)
|
||||
class MinMaxScaler
|
||||
include Base::BaseEstimator
|
||||
include Base::Transformer
|
||||
|
||||
DEFAULT_PARAMS = { # :nodoc:
|
||||
feature_range: [0.0, 1.0]
|
||||
}.freeze
|
||||
|
||||
# The vector consists of the minimum value for each feature.
|
||||
attr_reader :min_vec # :nodoc:
|
||||
|
||||
# The vector consists of the maximum value for each feature.
|
||||
attr_reader :max_vec # :nodoc:
|
||||
|
||||
# Creates a new normalizer for scaling each feature to a given range.
|
||||
#
|
||||
# call-seq:
|
||||
# new(feature_range: [0.0, 1.0]) -> MinMaxScaler
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +:feature_range+ (Array) (defaults to: [0.0, 1.0]) -- The desired range of samples.
|
||||
def initialize(params = {})
|
||||
@params = DEFAULT_PARAMS.merge(Hash[params.map { |k, v| [k.to_sym, v] }])
|
||||
@min_vec = nil
|
||||
@max_vec = nil
|
||||
end
|
||||
|
||||
# Calculate the minimum and maximum value of each feature for scaling.
|
||||
#
|
||||
# :call-seq:
|
||||
# fit(x) -> MinMaxScaler
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to calculate the minimum and maximum values.
|
||||
# * *Returns* :
|
||||
# - MinMaxScaler
|
||||
def fit(x, _y = nil)
|
||||
@min_vec = x.min(0)
|
||||
@max_vec = x.max(0)
|
||||
self
|
||||
end
|
||||
|
||||
# Calculate the minimum and maximum values, and then normalize samples to feature_range.
|
||||
#
|
||||
# :call-seq:
|
||||
# fit_transform(x) -> NMatrix
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to calculate the minimum and maximum values.
|
||||
# * *Returns* :
|
||||
# - The scaled samples (NMatrix)
|
||||
def fit_transform(x, _y = nil)
|
||||
fit(x).transform(x)
|
||||
end
|
||||
|
||||
# Perform scaling the given samples according to feature_range.
|
||||
#
|
||||
# call-seq:
|
||||
# transform(x) -> NMatrix
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to be scaled.
|
||||
# * *Returns* :
|
||||
# - The scaled samples (NMatrix)
|
||||
def transform(x)
|
||||
n_samples, = x.shape
|
||||
dif_vec = @max_vec - @min_vec
|
||||
nx = (x - @min_vec.repeat(n_samples, 0)) / dif_vec.repeat(n_samples, 0)
|
||||
nx * (@params[:feature_range][1] - @params[:feature_range][0]) + @params[:feature_range][0]
|
||||
end
|
||||
|
||||
# Serializes object through Marshal#dump.
|
||||
def marshal_dump # :nodoc:
|
||||
{ params: @params,
|
||||
min_vec: Utils.dump_nmatrix(@min_vec),
|
||||
max_vec: Utils.dump_nmatrix(@max_vec) }
|
||||
end
|
||||
|
||||
# Deserialize object through Marshal#load.
|
||||
def marshal_load(obj) # :nodoc:
|
||||
@params = obj[:params]
|
||||
@min_vec = Utils.restore_nmatrix(obj[:min_vec])
|
||||
@max_vec = Utils.restore_nmatrix(obj[:max_vec])
|
||||
nil
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
|
@ -0,0 +1,87 @@
|
|||
require 'svmkit/base/base_estimator'
|
||||
require 'svmkit/base/transformer'
|
||||
|
||||
module SVMKit
|
||||
# This module consists of the classes that perform preprocessings.
|
||||
module Preprocessing
|
||||
# Normalize samples by centering and scaling to unit variance.
|
||||
#
|
||||
# normalizer = SVMKit::Preprocessing::StandardScaler.new
|
||||
# new_training_samples = normalizer.fit_transform(training_samples)
|
||||
# new_testing_samples = normalizer.transform(testing_samples)
|
||||
class StandardScaler
|
||||
include Base::BaseEstimator
|
||||
include Base::Transformer
|
||||
|
||||
# The vector consists of the mean value for each feature.
|
||||
attr_reader :mean_vec # :nodoc:
|
||||
|
||||
# The vector consists of the standard deviation for each feature.
|
||||
attr_reader :std_vec # :nodoc:
|
||||
|
||||
# Create a new normalizer for centering and scaling to unit variance.
|
||||
#
|
||||
# :call-seq:
|
||||
# new() -> StandardScaler
|
||||
def initialize(_params = {})
|
||||
@mean_vec = nil
|
||||
@std_vec = nil
|
||||
end
|
||||
|
||||
# Calculate the mean value and standard deviation of each feature for scaling.
|
||||
#
|
||||
# :call-seq:
|
||||
# fit(x) -> StandardScaler
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to calculate the mean values and standard deviations.
|
||||
# * *Returns* :
|
||||
# - StandardScaler
|
||||
def fit(x, _y = nil)
|
||||
@mean_vec = x.mean(0)
|
||||
@std_vec = x.std(0)
|
||||
self
|
||||
end
|
||||
|
||||
# Calculate the mean values and standard deviations, and then normalize samples using them.
|
||||
#
|
||||
# :call-seq:
|
||||
# fit_transform(x) -> NMatrix
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to calculate the mean values and standard deviations.
|
||||
# * *Returns* :
|
||||
# - The scaled samples (NMatrix)
|
||||
def fit_transform(x, _y = nil)
|
||||
fit(x).transform(x)
|
||||
end
|
||||
|
||||
# Perform standardization the given samples.
|
||||
#
|
||||
# call-seq:
|
||||
# transform(x) -> NMatrix
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +x+ (NMatrix, shape: [n_samples, n_features]) -- The samples to be scaled.
|
||||
# * *Returns* :
|
||||
# - The scaled samples (NMatrix)
|
||||
def transform(x)
|
||||
n_samples, = x.shape
|
||||
(x - @mean_vec.repeat(n_samples, 0)) / @std_vec.repeat(n_samples, 0)
|
||||
end
|
||||
|
||||
# Serializes object through Marshal#dump.
|
||||
def marshal_dump # :nodoc:
|
||||
{ mean_vec: Utils.dump_nmatrix(@mean_vec),
|
||||
std_vec: Utils.dump_nmatrix(@std_vec) }
|
||||
end
|
||||
|
||||
# Deserialize object through Marshal#load.
|
||||
def marshal_load(obj) # :nodoc:
|
||||
@mean_vec = Utils.restore_nmatrix(obj[:mean_vec])
|
||||
@std_vec = Utils.restore_nmatrix(obj[:std_vec])
|
||||
nil
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
|
@ -0,0 +1,33 @@
|
|||
module SVMKit
|
||||
# Module for utility methods.
|
||||
module Utils
|
||||
class << self
|
||||
# Dump an NMatrix object converted to a Ruby Hash.
|
||||
# # call-seq:
|
||||
# dump_nmatrix(mat) -> Hash
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +mat+ -- An NMatrix object converted to a Ruby Hash.
|
||||
# * *Returns* :
|
||||
# - A Ruby Hash containing matrix information.
|
||||
def dump_nmatrix(mat)
|
||||
return nil if mat.class != NMatrix
|
||||
{ shape: mat.shape, array: mat.to_flat_a, dtype: mat.dtype, stype: mat.stype }
|
||||
end
|
||||
|
||||
# Return the results of converting the dumped data into an NMatrix object.
|
||||
#
|
||||
# call-seq:
|
||||
# restore_nmatrix(dumped_mat) -> NMatrix
|
||||
#
|
||||
# * *Arguments* :
|
||||
# - +dumpted_mat+ -- A Ruby Hash about NMatrix object created with SVMKit::Utils.dump_nmatrix method.
|
||||
# * *Returns* :
|
||||
# - An NMatrix object restored from the given Hash.
|
||||
def restore_nmatrix(dmp = {})
|
||||
return nil unless dmp.class == Hash && %i[shape array dtype stype].all?(&dmp.method(:has_key?))
|
||||
NMatrix.new(dmp[:shape], dmp[:array], dtype: dmp[:dtype], stype: dmp[:stype])
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
|
@ -0,0 +1,3 @@
|
|||
module SVMKit
|
||||
VERSION = '0.1.0'.freeze
|
||||
end
|
|
@ -0,0 +1,48 @@
|
|||
require 'spec_helper'
|
||||
|
||||
RSpec.describe SVMKit::KernelApproximation::RBF do
|
||||
let(:n_samples) { 10 }
|
||||
let(:n_features) { 4 }
|
||||
let(:samples) do
|
||||
rng = Random.new(1)
|
||||
rnd_vals = Array.new(n_samples * n_features) { rng.rand }
|
||||
NMatrix.new([n_samples, n_features], rnd_vals, dtype: :float64, stype: :dense)
|
||||
end
|
||||
|
||||
it 'has a small approximation error for the RBF kernel function.' do
|
||||
# calculate RBF kernel matrix.
|
||||
kernel_matrix = NMatrix.zeros([n_samples, n_samples])
|
||||
n_samples.times do |m|
|
||||
n_samples.times do |n|
|
||||
distance = (samples.row(m) - samples.row(n)).norm2
|
||||
kernel_matrix[m, n] = Math.exp(-distance**2)
|
||||
end
|
||||
end
|
||||
# calculate approximate RBF kernel matrix.
|
||||
transformer = described_class.new(gamma: 1.0, n_components: 4096, random_seed: 1)
|
||||
new_samples = transformer.fit_transform(samples)
|
||||
inner_matrix = new_samples.dot(new_samples.transpose)
|
||||
# evalute mean error.
|
||||
mean_error = 0.0
|
||||
n_samples.times do |m|
|
||||
n_samples.times do |n|
|
||||
mean_error += ((kernel_matrix[m, n] - inner_matrix[m, n])**2)**0.5
|
||||
end
|
||||
end
|
||||
mean_error /= n_samples * n_samples
|
||||
expect(mean_error).to be < 0.01
|
||||
end
|
||||
|
||||
it 'dumps and restores itself using Marshal module.' do
|
||||
transformer = described_class.new(gamma: 1.0, n_components: 128, random_seed: 1)
|
||||
transformer.fit(samples)
|
||||
copied = Marshal.load(Marshal.dump(transformer))
|
||||
expect(transformer.class).to eq(copied.class)
|
||||
expect(transformer.params[:gamma]).to eq(copied.params[:gamma])
|
||||
expect(transformer.params[:n_components]).to eq(copied.params[:n_components])
|
||||
expect(transformer.params[:random_seed]).to eq(copied.params[:random_seed])
|
||||
expect(transformer.random_mat).to eq(copied.random_mat)
|
||||
expect(transformer.random_vec).to eq(copied.random_vec)
|
||||
expect(transformer.rng).to eq(copied.rng)
|
||||
end
|
||||
end
|
|
@ -0,0 +1,25 @@
|
|||
require 'spec_helper'
|
||||
|
||||
RSpec.describe SVMKit::LinearModel::PegasosSVC do
|
||||
let(:samples) { SVMKit::Utils.restore_nmatrix(Marshal.load(File.read(__dir__ + '/test_samples.dat'))) }
|
||||
let(:labels) { SVMKit::Utils.restore_nmatrix(Marshal.load(File.read(__dir__ + '/test_labels.dat'))) }
|
||||
let(:estimator) { described_class.new(penalty: 1.0, max_iter: 100, batch_size: 20, random_seed: 1) }
|
||||
|
||||
it 'classifies two clusters.' do
|
||||
estimator.fit(samples, labels)
|
||||
score = estimator.score(samples, labels)
|
||||
expect(score).to eq(1.0)
|
||||
end
|
||||
|
||||
it 'dumps and restores itself using Marshal module.' do
|
||||
estimator.fit(samples, labels)
|
||||
copied = Marshal.load(Marshal.dump(estimator))
|
||||
expect(estimator.class).to eq(copied.class)
|
||||
expect(estimator.params[:reg_param]).to eq(copied.params[:reg_param])
|
||||
expect(estimator.params[:max_iter]).to eq(copied.params[:max_iter])
|
||||
expect(estimator.params[:batch_size]).to eq(copied.params[:batch_size])
|
||||
expect(estimator.params[:random_seed]).to eq(copied.params[:random_seed])
|
||||
expect(estimator.weight_vec).to eq(copied.weight_vec)
|
||||
expect(estimator.rng).to eq(copied.rng)
|
||||
end
|
||||
end
|
|
@ -0,0 +1,7 @@
|
|||
{ :
|
||||
shape[iiÈ:
|
||||
array[Èiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii:
|
||||
dtype:
|
||||
int32:
|
||||
stype:
|
||||
dense
|
File diff suppressed because one or more lines are too long
|
@ -0,0 +1,35 @@
|
|||
require 'spec_helper'
|
||||
|
||||
RSpec.describe SVMKit::Multiclass::OneVsRestClassifier do
|
||||
let(:samples) do
|
||||
SVMKit::Utils.restore_nmatrix(Marshal.load(File.read(__dir__ + '/test_samples_three_clusters.dat')))
|
||||
end
|
||||
let(:labels) do
|
||||
SVMKit::Utils.restore_nmatrix(Marshal.load(File.read(__dir__ + '/test_labels_three_clusters.dat')))
|
||||
end
|
||||
let(:base_estimator) do
|
||||
SVMKit::LinearModel::PegasosSVC.new(penalty: 1.0, max_iter: 100, batch_size: 20, random_seed: 1)
|
||||
end
|
||||
let(:estimator) { described_class.new(estimator: base_estimator) }
|
||||
|
||||
it 'classifies three clusters.' do
|
||||
estimator.fit(samples, labels)
|
||||
score = estimator.score(samples, labels)
|
||||
expect(score).to eq(1.0)
|
||||
end
|
||||
|
||||
it 'dumps and restores itself using Marshal module.' do
|
||||
estimator.fit(samples, labels)
|
||||
copied = Marshal.load(Marshal.dump(estimator))
|
||||
expect(estimator.class).to eq(copied.class)
|
||||
expect(estimator.estimators.size).to eq(copied.estimators.size)
|
||||
expect(estimator.estimators[0].class).to eq(copied.estimators[0].class)
|
||||
expect(estimator.estimators[1].class).to eq(copied.estimators[1].class)
|
||||
expect(estimator.estimators[2].class).to eq(copied.estimators[2].class)
|
||||
expect(estimator.estimators[0].weight_vec).to eq(copied.estimators[0].weight_vec)
|
||||
expect(estimator.estimators[1].weight_vec).to eq(copied.estimators[1].weight_vec)
|
||||
expect(estimator.estimators[2].weight_vec).to eq(copied.estimators[2].weight_vec)
|
||||
expect(estimator.classes).to eq(copied.classes)
|
||||
expect(estimator.params[:estimator].class).to eq(copied.params[:estimator].class)
|
||||
end
|
||||
end
|
|
@ -0,0 +1,7 @@
|
|||
{ :
|
||||
shape[ii,:
|
||||
array[,iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii:
|
||||
dtype:
|
||||
int32:
|
||||
stype:
|
||||
dense
|
File diff suppressed because one or more lines are too long
|
@ -0,0 +1,21 @@
|
|||
require 'spec_helper'
|
||||
|
||||
RSpec.describe SVMKit::Preprocessing::L2Normalizer do
|
||||
let(:n_samples) { 10 }
|
||||
let(:n_features) { 4 }
|
||||
let(:samples) do
|
||||
rng = Random.new(1)
|
||||
rnd_vals = Array.new(n_samples * n_features) { rng.rand }
|
||||
NMatrix.new([n_samples, n_features], rnd_vals, dtype: :float64, stype: :dense)
|
||||
end
|
||||
|
||||
it 'normalizes each sample to unit length.' do
|
||||
normalizer = described_class.new
|
||||
normalized = normalizer.fit_transform(samples)
|
||||
sum_norm = 0.0
|
||||
n_samples.times do |n|
|
||||
sum_norm += normalized.row(n).norm2
|
||||
end
|
||||
expect((sum_norm - n_samples).abs).to be < 1.0e-6
|
||||
end
|
||||
end
|
|
@ -0,0 +1,35 @@
|
|||
require 'spec_helper'
|
||||
|
||||
RSpec.describe SVMKit::Preprocessing::MinMaxScaler do
|
||||
let(:n_samples) { 10 }
|
||||
let(:n_features) { 4 }
|
||||
let(:samples) do
|
||||
rng = Random.new(1)
|
||||
rnd_vals = Array.new(n_samples * n_features) { rng.rand }
|
||||
NMatrix.new([n_samples, n_features], rnd_vals, dtype: :float64, stype: :dense)
|
||||
end
|
||||
|
||||
it 'normalizes range of features to [0,1].' do
|
||||
normalizer = described_class.new
|
||||
normalized = normalizer.fit_transform(samples)
|
||||
expect(normalized.min.to_a.min).to eq(0)
|
||||
expect(normalized.max.to_a.max).to eq(1)
|
||||
end
|
||||
|
||||
it 'normalizes range of features to a given range.' do
|
||||
normalizer = described_class.new(feature_range: [-3, 2])
|
||||
normalized = normalizer.fit_transform(samples)
|
||||
expect(normalized.min.to_a.min).to eq(-3)
|
||||
expect(normalized.max.to_a.max).to eq(2)
|
||||
end
|
||||
|
||||
it 'dumps and restores itself using Marshal module.' do
|
||||
transformer = described_class.new
|
||||
transformer.fit(samples)
|
||||
copied = Marshal.load(Marshal.dump(transformer))
|
||||
expect(transformer.min_vec).to eq(copied.min_vec)
|
||||
expect(transformer.max_vec).to eq(copied.max_vec)
|
||||
expect(transformer.params[:feature_range][0]).to eq(copied.params[:feature_range][0])
|
||||
expect(transformer.params[:feature_range][1]).to eq(copied.params[:feature_range][1])
|
||||
end
|
||||
end
|
|
@ -0,0 +1,28 @@
|
|||
require 'spec_helper'
|
||||
|
||||
RSpec.describe SVMKit::Preprocessing::StandardScaler do
|
||||
let(:n_samples) { 10 }
|
||||
let(:n_features) { 4 }
|
||||
let(:samples) do
|
||||
rng = Random.new(1)
|
||||
rnd_vals = Array.new(n_samples * n_features) { rng.rand }
|
||||
NMatrix.new([n_samples, n_features], rnd_vals, dtype: :float64, stype: :dense)
|
||||
end
|
||||
|
||||
it 'performs standardization of samples.' do
|
||||
normalizer = described_class.new
|
||||
normalized = normalizer.fit_transform(samples)
|
||||
mean_err = (normalized.mean(0) - NMatrix.zeros([1, n_features])).abs.sum(1)[0]
|
||||
std_err = (normalized.std(0) - NMatrix.ones([1, n_features])).abs.sum(1)[0]
|
||||
expect(mean_err).to be < 1.0e-8
|
||||
expect(std_err).to be < 1.0e-8
|
||||
end
|
||||
|
||||
it 'dumps and restores itself using Marshal module.' do
|
||||
transformer = described_class.new
|
||||
transformer.fit(samples)
|
||||
copied = Marshal.load(Marshal.dump(transformer))
|
||||
expect(transformer.mean_vec).to eq(copied.mean_vec)
|
||||
expect(transformer.std_vec).to eq(copied.std_vec)
|
||||
end
|
||||
end
|
|
@ -0,0 +1,14 @@
|
|||
require 'bundler/setup'
|
||||
require 'svmkit'
|
||||
|
||||
RSpec.configure do |config|
|
||||
# Enable flags like --only-failures and --next-failure
|
||||
config.example_status_persistence_file_path = '.rspec_status'
|
||||
|
||||
# Disable RSpec exposing methods globally on `Module` and `main`
|
||||
config.disable_monkey_patching!
|
||||
|
||||
config.expect_with :rspec do |c|
|
||||
c.syntax = :expect
|
||||
end
|
||||
end
|
|
@ -0,0 +1,23 @@
|
|||
require 'spec_helper'
|
||||
|
||||
RSpec.describe SVMKit do
|
||||
let(:samples) do
|
||||
SVMKit::Utils.restore_nmatrix(Marshal.load(File.read(__dir__ + '/test_samples_xor.dat')))
|
||||
end
|
||||
let(:labels) do
|
||||
SVMKit::Utils.restore_nmatrix(Marshal.load(File.read(__dir__ + '/test_labels_xor.dat')))
|
||||
end
|
||||
let(:estimator) do
|
||||
SVMKit::LinearModel::PegasosSVC.new(penalty: 1.0, max_iter: 100, batch_size: 20, random_seed: 1)
|
||||
end
|
||||
let(:transformer) do
|
||||
SVMKit::KernelApproximation::RBF.new(gamma: 1.0, n_components: 1024, random_seed: 1)
|
||||
end
|
||||
|
||||
it 'classifies xor data.' do
|
||||
new_samples = transformer.fit_transform(samples)
|
||||
estimator.fit(new_samples, labels)
|
||||
score = estimator.score(new_samples, labels)
|
||||
expect(score).to eq(1.0)
|
||||
end
|
||||
end
|
|
@ -0,0 +1,7 @@
|
|||
{ :
|
||||
shape[ii<02>:
|
||||
array[<02>iúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiúiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii:
|
||||
dtype:
|
||||
int32:
|
||||
stype:
|
||||
dense
|
File diff suppressed because one or more lines are too long
|
@ -0,0 +1,10 @@
|
|||
require 'spec_helper'
|
||||
|
||||
RSpec.describe SVMKit::Utils do
|
||||
it 'dumps and restores NMatrix object.' do
|
||||
mat = NMatrix.rand([3, 3])
|
||||
dumped = described_class.dump_nmatrix(mat)
|
||||
restored = described_class.restore_nmatrix(dumped)
|
||||
expect(mat).to eq(restored)
|
||||
end
|
||||
end
|
|
@ -0,0 +1,37 @@
|
|||
# coding: utf-8
|
||||
lib = File.expand_path('../lib', __FILE__)
|
||||
$LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
|
||||
|
||||
require 'svmkit/version'
|
||||
|
||||
SVMKit::DESCRIPTION = <<MSG
|
||||
SVMKit is a library for machine learninig in Ruby.
|
||||
SVMKit implements machine learning algorithms with an interface similar to Scikit-Learn in Python.
|
||||
However, since SVMKit is an experimental library, there are few machine learning algorithms implemented.
|
||||
MSG
|
||||
|
||||
Gem::Specification.new do |spec|
|
||||
spec.name = 'svmkit'
|
||||
spec.version = SVMKit::VERSION
|
||||
spec.authors = ['yoshoku']
|
||||
spec.email = ['yoshoku@outlook.com']
|
||||
|
||||
spec.summary = %q{SVMKit is an experimental library of machine learning in Ruby.}
|
||||
spec.description = SVMKit::DESCRIPTION
|
||||
spec.homepage = 'https://github.com/yoshoku/svmkit'
|
||||
spec.license = 'BSD-2-Clause'
|
||||
|
||||
spec.files = `git ls-files -z`.split("\x0").reject do |f|
|
||||
f.match(%r{^(test|spec|features)/})
|
||||
end
|
||||
spec.bindir = 'exe'
|
||||
spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
|
||||
spec.require_paths = ['lib']
|
||||
|
||||
#spec.add_runtime_dependency 'nmatrix', '~> 0.2.3'
|
||||
|
||||
spec.add_development_dependency 'bundler', '~> 1.15'
|
||||
spec.add_development_dependency 'rake', '~> 10.0'
|
||||
spec.add_development_dependency 'rspec', '~> 3.0'
|
||||
spec.add_development_dependency 'nmatrix', '~> 0.2.3'
|
||||
end
|
Loading…
Reference in New Issue