add Gamma Distribution on Cuda (#435)

* add digamma.

* add tdir.

* add gamma distribution.

* add test for gamma distribution.

* update location.

* add api directly into jt.__init__
This commit is contained in:
Haoyang Peng 2023-04-25 14:25:10 +08:00 committed by GitHub
parent 6bf14ee650
commit 4825cead21
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 1009 additions and 2 deletions

View File

@ -2091,3 +2091,5 @@ for k,v in list(Var.__dict__.items()):
inplace_wrapper(new_k, v)
from . import math_util
from .math_util import *
from . import distributions

View File

@ -8,9 +8,13 @@
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
import math
import os
import numpy as np
import jittor as jt
from jittor import nn
from jittor.nn import binary_cross_entropy_with_logits
from jittor import lgamma, igamma
from jittor.math_util.gamma import gamma_grad, sample_gamma
def simple_presum(x):
src = '''
@ -138,6 +142,36 @@ class Geometric:
return binary_cross_entropy_with_logits(jt.array(self.logits),jt.array(self.prob)) / self.prob
class GammaDistribution:
'''
For now only support gamma distribution.
'''
def __init__(self, concentration, rate):
self.concentration = concentration
self.rate = rate
self.lgamma_alpha = lgamma.apply(jt.array([concentration,]))
def sample(self, shape):
return sample_gamma(self.concentration, shape)
def cdf(self, value):
return igamma(self.concentration, value)
def log_prob(self, value):
return (self.concentration * jt.log(self.rate) +
(self.concentration - 1) * jt.log(value) -
self.rate * value - self.lgamma_alpha)
def mean(self):
return self.concentration / self.rate
def mode(self):
return np.minimum((self.concentration - 1) / self.rate, 1)
def variance(self):
return self.concentration / (self.rate * self.rate)
def kl_divergence(cur_dist, old_dist):
assert isinstance(cur_dist, type(old_dist))
if isinstance(cur_dist, Normal):

View File

@ -1 +1,2 @@
from .gamma import digamma
from .gamma import digamma, lgamma
from .igamma import igamma

View File

@ -341,4 +341,76 @@ class digamma(jt.Function):
def grad(self, grad_d):
return grad_d * polygamma.apply(self.input, 1)
def gamma_grad(x, alpha):
cuda_header = open(os.path.join(os.path.realpath(os.path.dirname(__file__)), "src", "gamma_grad.h"), "r").read()
cuda_src = '''
@alias(x, in0)
@alias(di_x, out0)
int block_num = x_stride0 == 1 ? 1 : x_shape0;
int batch_shape = x_stride0 == 1 ? x_shape0: x_stride0;
float alpha = data["alpha"];
gamma_grad_kenrel<<<block_num, 16>>>(x_p, di_x_p, alpha, batch_shape);
'''
grad = jt.code(x.shape, x.dtype, [x], cuda_header=cuda_header, cuda_src=cuda_src, data={"alpha":alpha})
return grad
def sample_gamma(alpha, shape):
cuda_header = '''
#include <curand_kernel.h>
template<typename scalar_t, typename accscalar_t>
__device__ float sample_gamma(float alpha, curandState& state) {
accscalar_t scale = 1.0f;
// Boost alpha for higher acceptance probability.
if (alpha < 1.0f) {
if (alpha == 0.f) return 0.f;
scale *= pow(1 - curand_uniform(&state), 1.0f / alpha);
alpha += 1.0f;
}
// This implements the acceptance-rejection method of Marsaglia and Tsang (2000)
// doi:10.1145/358407.358414
const accscalar_t d = alpha - 1.0f / 3.0f;
const accscalar_t c = 1.0f / sqrt(9.0f * d + 1e-8);
for (;;) {
accscalar_t x, y;
do {
x = curand_normal(&state);
y = 1.0f + c * x;
} while (y <= 0);
const accscalar_t v = y * y * y;
const accscalar_t u = 1 - curand_uniform(&state);
const accscalar_t xx = x * x;
if (u < 1.0f - 0.0331f * xx * xx)
return static_cast<scalar_t>(scale * d * v);
if (log(u) < 0.5f * xx + d * (1.0f - v + log(v)))
return static_cast<scalar_t>(scale * d * v);
}
}
__global__ void sample_gamma_kernel(float* out,
float alpha,
int seed,
int batch_shape)
{
int tidx = threadIdx.x;
int start = batch_shape / blockDim.x * tidx;
int end = threadIdx.x == blockDim.x - 1 ? batch_shape : start + batch_shape / blockDim.x;
if(start > end)
return;
float* bout = out + batch_shape * blockIdx.x;
curandState state;
curand_init(clock64(), threadIdx.x, 0, &state);
for(int i=start;i<end;i++) bout[i] = sample_gamma<float, float>(alpha, state);
}
'''
cuda_src = '''
@alias(lx ,out0)
int batch_size = lx_stride0 == 1 ? 1 : lx_shape0;
int batch_shape = lx_shape0 * lx_stride0 / batch_size;
float alpha = data["alpha"];
sample_gamma_kernel<<<batch_size, 16>>>(lx_p, alpha, time(NULL), batch_shape);
'''
samples = jt.code(shape, jt.float32, [], cuda_header=cuda_header, cuda_src=cuda_src, data={"alpha":alpha})
return samples

View File

@ -0,0 +1,21 @@
import os
import numpy as np
import jittor as jt
from jittor import nn
f = open(os.path.join(os.path.realpath(os.path.dirname(__file__)), "src", "igamma.h"), "r")
cuda_header = f.read()
f.close()
def igamma(alpha, x):
cuda_src = '''
@alias(x, in0)
@alias(px ,out0)
int batch_size = x_stride0 == 1 ? 1 : x_shape0;
int batch_shape = x_shape0 * x_stride0 / batch_size;
float alpha = data["alpha"];
igamma_kernel<<<batch_size, 16>>>(x_p, px_p, alpha, batch_shape);
'''
out = jt.code(x.shape, x.dtype, [x], cuda_header=cuda_header, cuda_src=cuda_src, data={"alpha": alpha})
return out

View File

@ -0,0 +1,141 @@
#include <math.h>
template <typename T>
__device__ static inline T polevl(const T x, const T A[], size_t len) {
T result = 0;
for (size_t i = 0; i <= len; i++) {
result = result * x + A[i];
}
return result;
}
template<typename scalar_t, typename accscalar_t>
__device__ static inline scalar_t digamma_one(scalar_t x) {
constexpr accscalar_t PSI_10 = 2.25175258906672110764;
if (x == 0) {
return INFINITY;
}
accscalar_t additional_summand = 0;
int x_is_integer = x == floor(x);
if (x < 0) {
if (x_is_integer) {
return INFINITY;
}
// it is more standard to write this as recursion, but
// nvcc does not like that
additional_summand = -M_PI /
tan(M_PI * x);
x = 1 - x;
}
// Push x to be >= 10
accscalar_t result = 0;
while (x < 10) {
result -= 1 / x;
x += 1;
}
if (x == 10) {
return result + PSI_10 + additional_summand;
}
// Compute asymptotic digamma
static const accscalar_t A[] = {
8.33333333333333333333E-2,
-2.10927960927960927961E-2,
7.57575757575757575758E-3,
-4.16666666666666666667E-3,
3.96825396825396825397E-3,
-8.33333333333333333333E-3,
8.33333333333333333333E-2,
};
accscalar_t y = 0;
if (x < 1.0e17f) {
accscalar_t z = 1.0 / (x * x);
y = z * polevl<accscalar_t>(z, A, 6);
}
return static_cast<scalar_t>(
result + log(x) - (0.5f / x) - y + additional_summand);
}
template <typename scalar_t, typename accscalar_t>
__device__ scalar_t standard_gamma_grad_one(scalar_t alpha_, scalar_t x_) {
// Use a Taylor series expansion for small x.
accscalar_t x = static_cast<accscalar_t>(x_);
accscalar_t alpha = static_cast<accscalar_t>(alpha_);
if (x < 0.8f) {
accscalar_t numer = 1;
accscalar_t denom = alpha;
auto series1 = numer / denom;
auto series2 = numer / (denom * denom);
for (int i = 1; i <= 5; ++i) {
numer *= -x / static_cast<accscalar_t>(i);
denom += 1;
series1 += numer / denom;
series2 += numer / (denom * denom);
}
const auto pow_x_alpha = pow(x, alpha);
const auto gamma_pdf = pow(x, alpha - 1) * exp(-x);
const auto gamma_cdf = pow_x_alpha * series1;
const auto gamma_cdf_alpha =
(log(x) - digamma_one<accscalar_t, accscalar_t>(alpha)) *
gamma_cdf -
pow_x_alpha * series2;
const auto result = -gamma_cdf_alpha / gamma_pdf;
return isnan(result) ? static_cast<scalar_t>( 0.f ) : static_cast<scalar_t>(result);
}
// Use a Rice saddle point expansion for large alpha.
if (alpha > 8.0f) {
if (0.9f * alpha <= x && x <= 1.1f * alpha) {
const auto numer_1 = 1 + 24 * alpha * (1 + 12 * alpha);
const auto numer_2 = 1440 * (alpha * alpha) + 6 * x * (53 - 120 * x)
- 65 * x * x / alpha + alpha * (107 + 3600 * x);
const auto denom = 1244160 * (alpha * alpha) * (alpha * alpha);
return static_cast<scalar_t>(numer_1 * numer_2 / denom);
}
const auto denom = sqrt(8 * alpha + 1e-8);
const auto term2 = denom / (alpha - x);
const auto term3 = pow(
x - alpha - alpha * log(x / alpha),
static_cast<accscalar_t>(-1.5));
const auto term23 = (x < alpha) ? term2 - term3 : term2 + term3;
const auto term1 = log(x / alpha) * term23 -
sqrt(2 / alpha + 1e-8) * (alpha + x) / ((alpha - x) * (alpha - x));
const auto stirling = 1 + 1 / (12 * alpha) * (1 + 1 / (24 * alpha));
const auto numer = x * term1;
return static_cast<scalar_t>(-stirling * numer / denom);
}
// Use a bivariate rational approximation to the reparameterized gradient.
const auto u = log(x / alpha);
const auto v = log(alpha);
static const accscalar_t coef_uv[3][8] = {
{0.16009398, -0.094634809, 0.025146376, -0.0030648343,
1, 0.32668115, 0.10406089, 0.0014179084},
{0.53487893, 0.1298071, 0.065735949, -0.0015649758,
0.16639465, 0.020070113, -0.0035938915, -0.00058392623},
{0.040121004, -0.0065914022, -0.0026286047, -0.0013441777,
0.017050642, -0.0021309326, 0.00085092367, -1.5247877e-07},
};
accscalar_t coef_v[8];
for (int i = 0; i < 8; ++ i) {
coef_v[i] = coef_uv[0][i] + u * (coef_uv[1][i] + u * coef_uv[2][i]);
}
const auto p = coef_v[0] + v * (coef_v[1] + v * (coef_v[2] + v * coef_v[3]));
const auto q = coef_v[4] + v * (coef_v[5] + v * (coef_v[6] + v * coef_v[7]));
return static_cast<scalar_t>(exp(p / q));
}
__global__ void gamma_grad_kenrel(float* __restrict__ x,
float* out,
float alpha,
int batch_shape)
{
int tidx = threadIdx.x;
int start = batch_shape / blockDim.x * tidx;
int end = threadIdx.x == blockDim.x - 1 ? batch_shape : start + batch_shape / blockDim.x;
float* bx = x+batch_shape*blockIdx.x;
float* bout = out + batch_shape * blockIdx.x;
for(int i=start;i<end;i++) bout[i] = standard_gamma_grad_one<float, float>(alpha, bx[i]);
}

View File

@ -0,0 +1,694 @@
// THIS FILE ACTS AS THE HEADER OF IGAMMA FUNCTION.
#include <math.h>
#define C10_DEVICE __host__ __device__
template <typename scalar_t>
static C10_DEVICE scalar_t ratevl(scalar_t x, const scalar_t num[], int64_t M,
const scalar_t denom[], int64_t N) {
// evaluating rational function, i.e., the ratio of two polynomials
// the coefficients for numerator are given by `num` while coeffs for
// denumerator are given by `denom`
int64_t i, dir;
scalar_t y, num_ans, denom_ans;
scalar_t absx = std::fabs(x);
const scalar_t *p;
if (absx > 1) {
/* Evaluate as a polynomial in 1/x. */
dir = -1;
p = num + M;
y = 1 / x;
}
else {
dir = 1;
p = num;
y = x;
}
/* Evaluate the numerator */
num_ans = *p;
p += dir;
for (i = 1; i <= M; i++) {
num_ans = num_ans * y + *p;
p += dir;
}
/* Evaluate the denominator */
if (absx > 1) {
p = denom + N;
}
else {
p = denom;
}
denom_ans = *p;
p += dir;
for (i = 1; i <= N; i++) {
denom_ans = denom_ans * y + *p;
p += dir;
}
if (absx > 1) {
i = N - M;
return std::pow(x, i) * num_ans / denom_ans;
}
else {
return num_ans / denom_ans;
}
}
template <typename scalar_t>
static C10_DEVICE scalar_t lanczos_sum_expg_scaled(scalar_t x) {
// lanczos approximation
static const scalar_t lanczos_sum_expg_scaled_num[13] = {
0.006061842346248906525783753964555936883222,
0.5098416655656676188125178644804694509993,
19.51992788247617482847860966235652136208,
449.9445569063168119446858607650988409623,
6955.999602515376140356310115515198987526,
75999.29304014542649875303443598909137092,
601859.6171681098786670226533699352302507,
3481712.15498064590882071018964774556468,
14605578.08768506808414169982791359218571,
43338889.32467613834773723740590533316085,
86363131.28813859145546927288977868422342,
103794043.1163445451906271053616070238554,
56906521.91347156388090791033559122686859
};
static const scalar_t lanczos_sum_expg_scaled_denom[13] = {
1.,
66.,
1925.,
32670.,
357423.,
2637558.,
13339535.,
45995730.,
105258076.,
150917976.,
120543840.,
39916800.,
0.
};
return ratevl(x, lanczos_sum_expg_scaled_num,
sizeof(lanczos_sum_expg_scaled_num) / sizeof(lanczos_sum_expg_scaled_num[0]) - 1,
lanczos_sum_expg_scaled_denom,
sizeof(lanczos_sum_expg_scaled_denom) / sizeof(lanczos_sum_expg_scaled_denom[0]) - 1);
}
template <typename scalar_t>
static C10_DEVICE scalar_t _igam_helper_fac(scalar_t a, scalar_t x) {
// compute x^a * exp(-a) / gamma(a)
// corrected from (15) and (16) in [igam2] by replacing exp(x - a) with
// exp(a - x).
scalar_t ax, fac, res, num, numfac;
static scalar_t MAXLOG = std::is_same<scalar_t,double>::value ?
7.09782712893383996843E2 : 88.72283905206835;
static scalar_t EXP1 = 2.718281828459045;
static scalar_t lanczos_g = 6.024680040776729583740234375;
if (std::fabs(a - x) > 0.4 * std::fabs(a)) {
ax = a * std::log(x) - x - std::lgamma(a);
if (ax < -MAXLOG) {
return 0.0;
}
return std::exp(ax);
}
fac = a + lanczos_g - 0.5;
res = std::sqrt(fac / EXP1) / lanczos_sum_expg_scaled(a);
if ((a < 200) && (x < 200)) {
res *= std::exp(a - x) * std::pow(x / fac, a);
}
else {
num = x - a - lanczos_g + 0.5;
numfac = num / fac;
res *= std::exp(a * (std::log1p(numfac) - numfac) + x * (0.5 - lanczos_g) / fac);
}
return res;
}
template <typename scalar_t>
static C10_DEVICE scalar_t _igam_helper_series(scalar_t a, scalar_t x) {
// Compute igam using DLMF 8.11.4. [igam1]
static scalar_t MACHEP = std::is_same<scalar_t, double>::value ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
static int MAXITER = 2000;
int i;
scalar_t ans, ax, c, r;
ax = _igam_helper_fac(a, x);
if (ax == 0.0) {
return 0.0;
}
/* power series */
r = a;
c = 1.0;
ans = 1.0;
for (i = 0; i < MAXITER; i++) {
r += 1.0;
c *= x / r;
ans += c;
if (c <= MACHEP * ans) {
break;
}
}
return (ans * ax / a);
}
template <typename scalar_t>
static C10_DEVICE scalar_t _igamc_helper_series(scalar_t a, scalar_t x) {
// Compute igamc using DLMF 8.7.3 [igam1]. This is related to the series in
// _igam_helper_series but extra care is taken to avoid cancellation.
int n;
scalar_t fac = 1;
scalar_t sum = 0;
scalar_t term, logx;
static scalar_t MAXITER = 2000;
static scalar_t MACHEP = std::is_same<scalar_t, double>::value ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
for (n = 1; n < MAXITER; n++) {
fac *= -x / n;
term = fac / (a + n);
sum += term;
if (std::fabs(term) <= MACHEP * std::fabs(sum)) {
break;
}
}
logx = std::log(x);
term = -std::expm1(a * logx - std::lgamma(1+a));
return term - std::exp(a * logx - std::lgamma(a)) * sum;
}
template <typename scalar_t>
static C10_DEVICE scalar_t _igam_helper_asymptotic_series(scalar_t a, scalar_t x, bool igam) {
// Compute igam/igamc using DLMF 8.12.3/8.12.4 [igam1]
static const scalar_t d[25][25] =
{{-3.3333333333333333e-1, 8.3333333333333333e-2, -1.4814814814814815e-2,
1.1574074074074074e-3, 3.527336860670194e-4, -1.7875514403292181e-4,
3.9192631785224378e-5, -2.1854485106799922e-6, -1.85406221071516e-6,
8.296711340953086e-7, -1.7665952736826079e-7, 6.7078535434014986e-9,
1.0261809784240308e-8, -4.3820360184533532e-9, 9.1476995822367902e-10,
-2.551419399494625e-11, -5.8307721325504251e-11, 2.4361948020667416e-11,
-5.0276692801141756e-12, 1.1004392031956135e-13, 3.3717632624009854e-13,
-1.3923887224181621e-13, 2.8534893807047443e-14, -5.1391118342425726e-16,
-1.9752288294349443e-15},
{-1.8518518518518519e-3, -3.4722222222222222e-3, 2.6455026455026455e-3,
-9.9022633744855967e-4, 2.0576131687242798e-4, -4.0187757201646091e-7,
-1.8098550334489978e-5, 7.6491609160811101e-6, -1.6120900894563446e-6,
4.6471278028074343e-9, 1.378633446915721e-7, -5.752545603517705e-8,
1.1951628599778147e-8, -1.7543241719747648e-11, -1.0091543710600413e-9,
4.1627929918425826e-10, -8.5639070264929806e-11, 6.0672151016047586e-14,
7.1624989648114854e-12, -2.9331866437714371e-12, 5.9966963656836887e-13,
-2.1671786527323314e-16, -4.9783399723692616e-14, 2.0291628823713425e-14,
-4.13125571381061e-15},
{4.1335978835978836e-3, -2.6813271604938272e-3, 7.7160493827160494e-4,
2.0093878600823045e-6, -1.0736653226365161e-4, 5.2923448829120125e-5,
-1.2760635188618728e-5, 3.4235787340961381e-8, 1.3721957309062933e-6,
-6.298992138380055e-7, 1.4280614206064242e-7, -2.0477098421990866e-10,
-1.4092529910867521e-8, 6.228974084922022e-9, -1.3670488396617113e-9,
9.4283561590146782e-13, 1.2872252400089318e-10, -5.5645956134363321e-11,
1.1975935546366981e-11, -4.1689782251838635e-15, -1.0940640427884594e-12,
4.6622399463901357e-13, -9.905105763906906e-14, 1.8931876768373515e-17,
8.8592218725911273e-15},
{6.4943415637860082e-4, 2.2947209362139918e-4, -4.6918949439525571e-4,
2.6772063206283885e-4, -7.5618016718839764e-5, -2.3965051138672967e-7,
1.1082654115347302e-5, -5.6749528269915966e-6, 1.4230900732435884e-6,
-2.7861080291528142e-11, -1.6958404091930277e-7, 8.0994649053880824e-8,
-1.9111168485973654e-8, 2.3928620439808118e-12, 2.0620131815488798e-9,
-9.4604966618551322e-10, 2.1541049775774908e-10, -1.388823336813903e-14,
-2.1894761681963939e-11, 9.7909989511716851e-12, -2.1782191880180962e-12,
6.2088195734079014e-17, 2.126978363279737e-13, -9.3446887915174333e-14,
2.0453671226782849e-14},
{-8.618882909167117e-4, 7.8403922172006663e-4, -2.9907248030319018e-4,
-1.4638452578843418e-6, 6.6414982154651222e-5, -3.9683650471794347e-5,
1.1375726970678419e-5, 2.5074972262375328e-10, -1.6954149536558306e-6,
8.9075075322053097e-7, -2.2929348340008049e-7, 2.956794137544049e-11,
2.8865829742708784e-8, -1.4189739437803219e-8, 3.4463580499464897e-9,
-2.3024517174528067e-13, -3.9409233028046405e-10, 1.8602338968504502e-10,
-4.356323005056618e-11, 1.2786001016296231e-15, 4.6792750266579195e-12,
-2.1492464706134829e-12, 4.9088156148096522e-13, -6.3385914848915603e-18,
-5.0453320690800944e-14},
{-3.3679855336635815e-4, -6.9728137583658578e-5, 2.7727532449593921e-4,
-1.9932570516188848e-4, 6.7977804779372078e-5, 1.419062920643967e-7,
-1.3594048189768693e-5, 8.0184702563342015e-6, -2.2914811765080952e-6,
-3.252473551298454e-10, 3.4652846491085265e-7, -1.8447187191171343e-7,
4.8240967037894181e-8, -1.7989466721743515e-14, -6.3061945000135234e-9,
3.1624176287745679e-9, -7.8409242536974293e-10, 5.1926791652540407e-15,
9.3589442423067836e-11, -4.5134262161632782e-11, 1.0799129993116827e-11,
-3.661886712685252e-17, -1.210902069055155e-12, 5.6807435849905643e-13,
-1.3249659916340829e-13},
{5.3130793646399222e-4, -5.9216643735369388e-4, 2.7087820967180448e-4,
7.9023532326603279e-7, -8.1539693675619688e-5, 5.6116827531062497e-5,
-1.8329116582843376e-5, -3.0796134506033048e-9, 3.4651553688036091e-6,
-2.0291327396058604e-6, 5.7887928631490037e-7, 2.338630673826657e-13,
-8.8286007463304835e-8, 4.7435958880408128e-8, -1.2545415020710382e-8,
8.6496488580102925e-14, 1.6846058979264063e-9, -8.5754928235775947e-10,
2.1598224929232125e-10, -7.6132305204761539e-16, -2.6639822008536144e-11,
1.3065700536611057e-11, -3.1799163902367977e-12, 4.7109761213674315e-18,
3.6902800842763467e-13},
{3.4436760689237767e-4, 5.1717909082605922e-5, -3.3493161081142236e-4,
2.812695154763237e-4, -1.0976582244684731e-4, -1.2741009095484485e-7,
2.7744451511563644e-5, -1.8263488805711333e-5, 5.7876949497350524e-6,
4.9387589339362704e-10, -1.0595367014026043e-6, 6.1667143761104075e-7,
-1.7562973359060462e-7, -1.2974473287015439e-12, 2.695423606288966e-8,
-1.4578352908731271e-8, 3.887645959386175e-9, -3.8810022510194121e-17,
-5.3279941738772867e-10, 2.7437977643314845e-10, -6.9957960920705679e-11,
2.5899863874868481e-17, 8.8566890996696381e-12, -4.403168815871311e-12,
1.0865561947091654e-12},
{-6.5262391859530942e-4, 8.3949872067208728e-4, -4.3829709854172101e-4,
-6.969091458420552e-7, 1.6644846642067548e-4, -1.2783517679769219e-4,
4.6299532636913043e-5, 4.5579098679227077e-9, -1.0595271125805195e-5,
6.7833429048651666e-6, -2.1075476666258804e-6, -1.7213731432817145e-11,
3.7735877416110979e-7, -2.1867506700122867e-7, 6.2202288040189269e-8,
6.5977038267330006e-16, -9.5903864974256858e-9, 5.2132144922808078e-9,
-1.3991589583935709e-9, 5.382058999060575e-16, 1.9484714275467745e-10,
-1.0127287556389682e-10, 2.6077347197254926e-11, -5.0904186999932993e-18,
-3.3721464474854592e-12},
{-5.9676129019274625e-4, -7.2048954160200106e-5, 6.7823088376673284e-4,
-6.4014752602627585e-4, 2.7750107634328704e-4, 1.8197008380465151e-7,
-8.4795071170685032e-5, 6.105192082501531e-5, -2.1073920183404862e-5,
-8.8585890141255994e-10, 4.5284535953805377e-6, -2.8427815022504408e-6,
8.7082341778646412e-7, 3.6886101871706965e-12, -1.5344695190702061e-7,
8.862466778790695e-8, -2.5184812301826817e-8, -1.0225912098215092e-14,
3.8969470758154777e-9, -2.1267304792235635e-9, 5.7370135528051385e-10,
-1.887749850169741e-19, -8.0931538694657866e-11, 4.2382723283449199e-11,
-1.1002224534207726e-11},
{1.3324454494800656e-3, -1.9144384985654775e-3, 1.1089369134596637e-3,
9.932404122642299e-7, -5.0874501293093199e-4, 4.2735056665392884e-4,
-1.6858853767910799e-4, -8.1301893922784998e-9, 4.5284402370562147e-5,
-3.127053674781734e-5, 1.044986828530338e-5, 4.8435226265680926e-11,
-2.1482565873456258e-6, 1.329369701097492e-6, -4.0295693092101029e-7,
-1.7567877666323291e-13, 7.0145043163668257e-8, -4.040787734999483e-8,
1.1474026743371963e-8, 3.9642746853563325e-18, -1.7804938269892714e-9,
9.7480262548731646e-10, -2.6405338676507616e-10, 5.794875163403742e-18,
3.7647749553543836e-11},
{1.579727660730835e-3, 1.6251626278391582e-4, -2.0633421035543276e-3,
2.1389686185689098e-3, -1.0108559391263003e-3, -3.9912705529919201e-7,
3.6235025084764691e-4, -2.8143901463712154e-4, 1.0449513336495887e-4,
2.1211418491830297e-9, -2.5779417251947842e-5, 1.7281818956040463e-5,
-5.6413773872904282e-6, -1.1024320105776174e-11, 1.1223224418895175e-6,
-6.8693396379526735e-7, 2.0653236975414887e-7, 4.6714772409838506e-14,
-3.5609886164949055e-8, 2.0470855345905963e-8, -5.8091738633283358e-9,
-1.332821287582869e-16, 9.0354604391335133e-10, -4.9598782517330834e-10,
1.3481607129399749e-10},
{-4.0725121195140166e-3, 6.4033628338080698e-3, -4.0410161081676618e-3,
-2.183732802866233e-6, 2.1740441801254639e-3, -1.9700440518418892e-3,
8.3595469747962458e-4, 1.9445447567109655e-8, -2.5779387120421696e-4,
1.9009987368139304e-4, -6.7696499937438965e-5, -1.4440629666426572e-10,
1.5712512518742269e-5, -1.0304008744776893e-5, 3.304517767401387e-6,
7.9829760242325709e-13, -6.4097794149313004e-7, 3.8894624761300056e-7,
-1.1618347644948869e-7, -2.816808630596451e-15, 1.9878012911297093e-8,
-1.1407719956357511e-8, 3.2355857064185555e-9, 4.1759468293455945e-20,
-5.0423112718105824e-10},
{-5.9475779383993003e-3, -5.4016476789260452e-4, 8.7910413550767898e-3,
-9.8576315587856125e-3, 5.0134695031021538e-3, 1.2807521786221875e-6,
-2.0626019342754683e-3, 1.7109128573523058e-3, -6.7695312714133799e-4,
-6.9011545676562133e-9, 1.8855128143995902e-4, -1.3395215663491969e-4,
4.6263183033528039e-5, 4.0034230613321351e-11, -1.0255652921494033e-5,
6.612086372797651e-6, -2.0913022027253008e-6, -2.0951775649603837e-13,
3.9756029041993247e-7, -2.3956211978815887e-7, 7.1182883382145864e-8,
8.925574873053455e-16, -1.2101547235064676e-8, 6.9350618248334386e-9,
-1.9661464453856102e-9},
{1.7402027787522711e-2, -2.9527880945699121e-2, 2.0045875571402799e-2,
7.0289515966903407e-6, -1.2375421071343148e-2, 1.1976293444235254e-2,
-5.4156038466518525e-3, -6.3290893396418616e-8, 1.8855118129005065e-3,
-1.473473274825001e-3, 5.5515810097708387e-4, 5.2406834412550662e-10,
-1.4357913535784836e-4, 9.9181293224943297e-5, -3.3460834749478311e-5,
-3.5755837291098993e-12, 7.1560851960630076e-6, -4.5516802628155526e-6,
1.4236576649271475e-6, 1.8803149082089664e-14, -2.6623403898929211e-7,
1.5950642189595716e-7, -4.7187514673841102e-8, -6.5107872958755177e-17,
7.9795091026746235e-9},
{3.0249124160905891e-2, 2.4817436002649977e-3, -4.9939134373457022e-2,
5.9915643009307869e-2, -3.2483207601623391e-2, -5.7212968652103441e-6,
1.5085251778569354e-2, -1.3261324005088445e-2, 5.5515262632426148e-3,
3.0263182257030016e-8, -1.7229548406756723e-3, 1.2893570099929637e-3,
-4.6845138348319876e-4, -1.830259937893045e-10, 1.1449739014822654e-4,
-7.7378565221244477e-5, 2.5625836246985201e-5, 1.0766165333192814e-12,
-5.3246809282422621e-6, 3.349634863064464e-6, -1.0381253128684018e-6,
-5.608909920621128e-15, 1.9150821930676591e-7, -1.1418365800203486e-7,
3.3654425209171788e-8},
{-9.9051020880159045e-2, 1.7954011706123486e-1, -1.2989606383463778e-1,
-3.1478872752284357e-5, 9.0510635276848131e-2, -9.2828824411184397e-2,
4.4412112839877808e-2, 2.7779236316835888e-7, -1.7229543805449697e-2,
1.4182925050891573e-2, -5.6214161633747336e-3, -2.39598509186381e-9,
1.6029634366079908e-3, -1.1606784674435773e-3, 4.1001337768153873e-4,
1.8365800754090661e-11, -9.5844256563655903e-5, 6.3643062337764708e-5,
-2.076250624489065e-5, -1.1806020912804483e-13, 4.2131808239120649e-6,
-2.6262241337012467e-6, 8.0770620494930662e-7, 6.0125912123632725e-16,
-1.4729737374018841e-7},
{-1.9994542198219728e-1, -1.5056113040026424e-2, 3.6470239469348489e-1,
-4.6435192311733545e-1, 2.6640934719197893e-1, 3.4038266027147191e-5,
-1.3784338709329624e-1, 1.276467178337056e-1, -5.6213828755200985e-2,
-1.753150885483011e-7, 1.9235592956768113e-2, -1.5088821281095315e-2,
5.7401854451350123e-3, 1.0622382710310225e-9, -1.5335082692563998e-3,
1.0819320643228214e-3, -3.7372510193945659e-4, -6.6170909729031985e-12,
8.4263617380909628e-5, -5.5150706827483479e-5, 1.7769536448348069e-5,
3.8827923210205533e-14, -3.53513697488768e-6, 2.1865832130045269e-6,
-6.6812849447625594e-7},
{7.2438608504029431e-1, -1.3918010932653375, 1.0654143352413968,
1.876173868950258e-4, -8.2705501176152696e-1, 8.9352433347828414e-1,
-4.4971003995291339e-1, -1.6107401567546652e-6, 1.9235590165271091e-1,
-1.6597702160042609e-1, 6.8882222681814333e-2, 1.3910091724608687e-8,
-2.146911561508663e-2, 1.6228980898865892e-2, -5.9796016172584256e-3,
-1.1287469112826745e-10, 1.5167451119784857e-3, -1.0478634293553899e-3,
3.5539072889126421e-4, 8.1704322111801517e-13, -7.7773013442452395e-5,
5.0291413897007722e-5, -1.6035083867000518e-5, 1.2469354315487605e-14,
3.1369106244517615e-6},
{1.6668949727276811, 1.165462765994632e-1, -3.3288393225018906,
4.4692325482864037, -2.6977693045875807, -2.600667859891061e-4,
1.5389017615694539, -1.4937962361134612, 6.8881964633233148e-1,
1.3077482004552385e-6, -2.5762963325596288e-1, 2.1097676102125449e-1,
-8.3714408359219882e-2, -7.7920428881354753e-9, 2.4267923064833599e-2,
-1.7813678334552311e-2, 6.3970330388900056e-3, 4.9430807090480523e-11,
-1.5554602758465635e-3, 1.0561196919903214e-3, -3.5277184460472902e-4,
9.3002334645022459e-14, 7.5285855026557172e-5, -4.8186515569156351e-5,
1.5227271505597605e-5},
{-6.6188298861372935, 1.3397985455142589e+1, -1.0789350606845146e+1,
-1.4352254537875018e-3, 9.2333694596189809, -1.0456552819547769e+1,
5.5105526029033471, 1.2024439690716742e-5, -2.5762961164755816,
2.3207442745387179, -1.0045728797216284, -1.0207833290021914e-7,
3.3975092171169466e-1, -2.6720517450757468e-1, 1.0235252851562706e-1,
8.4329730484871625e-10, -2.7998284958442595e-2, 2.0066274144976813e-2,
-7.0554368915086242e-3, 1.9402238183698188e-12, 1.6562888105449611e-3,
-1.1082898580743683e-3, 3.654545161310169e-4, -5.1290032026971794e-11,
-7.6340103696869031e-5},
{-1.7112706061976095e+1, -1.1208044642899116, 3.7131966511885444e+1,
-5.2298271025348962e+1, 3.3058589696624618e+1, 2.4791298976200222e-3,
-2.061089403411526e+1, 2.088672775145582e+1, -1.0045703956517752e+1,
-1.2238783449063012e-5, 4.0770134274221141, -3.473667358470195,
1.4329352617312006, 7.1359914411879712e-8, -4.4797257159115612e-1,
3.4112666080644461e-1, -1.2699786326594923e-1, -2.8953677269081528e-10,
3.3125776278259863e-2, -2.3274087021036101e-2, 8.0399993503648882e-3,
-1.177805216235265e-9, -1.8321624891071668e-3, 1.2108282933588665e-3,
-3.9479941246822517e-4},
{7.389033153567425e+1, -1.5680141270402273e+2, 1.322177542759164e+2,
1.3692876877324546e-2, -1.2366496885920151e+2, 1.4620689391062729e+2,
-8.0365587724865346e+1, -1.1259851148881298e-4, 4.0770132196179938e+1,
-3.8210340013273034e+1, 1.719522294277362e+1, 9.3519707955168356e-7,
-6.2716159907747034, 5.1168999071852637, -2.0319658112299095,
-4.9507215582761543e-9, 5.9626397294332597e-1, -4.4220765337238094e-1,
1.6079998700166273e-1, -2.4733786203223402e-8, -4.0307574759979762e-2,
2.7849050747097869e-2, -9.4751858992054221e-3, 6.419922235909132e-6,
2.1250180774699461e-3},
{2.1216837098382522e+2, 1.3107863022633868e+1, -4.9698285932871748e+2,
7.3121595266969204e+2, -4.8213821720890847e+2, -2.8817248692894889e-2,
3.2616720302947102e+2, -3.4389340280087117e+2, 1.7195193870816232e+2,
1.4038077378096158e-4, -7.52594195897599e+1, 6.651969984520934e+1,
-2.8447519748152462e+1, -7.613702615875391e-7, 9.5402237105304373,
-7.5175301113311376, 2.8943997568871961, -4.6612194999538201e-7,
-8.0615149598794088e-1, 5.8483006570631029e-1, -2.0845408972964956e-1,
1.4765818959305817e-4, 5.1000433863753019e-2, -3.3066252141883665e-2,
1.5109265210467774e-2},
{-9.8959643098322368e+2, 2.1925555360905233e+3, -1.9283586782723356e+3,
-1.5925738122215253e-1, 1.9569985945919857e+3, -2.4072514765081556e+3,
1.3756149959336496e+3, 1.2920735237496668e-3, -7.525941715948055e+2,
7.3171668742208716e+2, -3.4137023466220065e+2, -9.9857390260608043e-6,
1.3356313181291573e+2, -1.1276295161252794e+2, 4.6310396098204458e+1,
-7.9237387133614756e-6, -1.4510726927018646e+1, 1.1111771248100563e+1,
-4.1690817945270892, 3.1008219800117808e-3, 1.1220095449981468,
-7.6052379926149916e-1, 3.6262236505085254e-1, 2.216867741940747e-1,
4.8683443692930507e-1}};
int k, n, sgn;
int maxpow = 0;
static scalar_t MACHEP = std::is_same<scalar_t, double>::value ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
scalar_t lambda = x / a;
scalar_t sigma = (x - a) / a;
scalar_t eta, res, ck, ckterm, term, absterm;
scalar_t absoldterm = INFINITY;
scalar_t etapow[25] = {1};
scalar_t sum = 0;
scalar_t afac = 1;
if (igam) {
sgn = -1;
}
else {
sgn = 1;
}
if (lambda > 1) {
eta = std::sqrt(-2 * (std::log1p(sigma) - sigma));
}
else if (lambda < 1) {
eta = -std::sqrt(-2 * (std::log1p(sigma) - sigma));
}
else {
eta = 0;
}
res = 0.5 * std::erfc(sgn * eta * std::sqrt(a / 2));
for (k = 0; k < 25; k++) {
ck = d[k][0];
for (n = 1; n < 25; n++) {
if (n > maxpow) {
etapow[n] = eta * etapow[n-1];
maxpow += 1;
}
ckterm = d[k][n]*etapow[n];
ck += ckterm;
if (std::fabs(ckterm) < MACHEP * std::fabs(ck)) {
break;
}
}
term = ck * afac;
absterm = std::fabs(term);
if (absterm > absoldterm) {
break;
}
sum += term;
if (absterm < MACHEP * std::fabs(sum)) {
break;
}
absoldterm = absterm;
afac /= a;
}
res += sgn * std::exp(-0.5 * a * eta * eta) * sum / std::sqrt(2 * M_PI * a);
return res;
}
template <typename scalar_t>
static C10_DEVICE scalar_t _igamc_helper_continued_fraction(scalar_t a, scalar_t x) {
// Compute igamc using DLMF 8.9.2. [igam1]
int i;
scalar_t ans, ax, c, yc, r, t, y, z;
scalar_t pk, pkm1, pkm2, qk, qkm1, qkm2;
int MAXITER = 2000;
static scalar_t MACHEP = std::is_same<scalar_t, double>::value ?
1.11022302462515654042E-16 : 5.9604644775390625E-8;
static scalar_t BIG = std::is_same<scalar_t,double>::value ?
4.503599627370496e15 : 16777216.;
static scalar_t BIGINV = std::is_same<scalar_t,double>::value ?
2.22044604925031308085e-16 : 5.9604644775390625E-8;
ax = _igam_helper_fac(a, x);
if (ax == 0.0) {
return 0.0;
}
/* continued fraction */
y = 1.0 - a;
z = x + y + 1.0;
c = 0.0;
pkm2 = 1.0;
qkm2 = x;
pkm1 = x + 1.0;
qkm1 = z * x;
ans = pkm1 / qkm1;
for (i = 0; i < MAXITER; i++) {
c += 1.0;
y += 1.0;
z += 2.0;
yc = y * c;
pk = pkm1 * z - pkm2 * yc;
qk = qkm1 * z - qkm2 * yc;
if (qk != 0) {
r = pk / qk;
t = std::fabs((ans - r) / r);
ans = r;
}
else {
t = 1.0;
}
pkm2 = pkm1;
pkm1 = pk;
qkm2 = qkm1;
qkm1 = qk;
if (std::fabs(pk) > BIG) {
pkm2 *= BIGINV;
pkm1 *= BIGINV;
qkm2 *= BIGINV;
qkm1 *= BIGINV;
}
if (t <= MACHEP) {
break;
}
}
return ans * ax;
}
template <typename scalar_t>
static C10_DEVICE inline scalar_t calc_igammac(scalar_t a, scalar_t x) {
/* the calculation of the regularized upper incomplete gamma function
* is done differently based on the values of a and x:
* - if x and/or a is at the boundary of defined region, then assign the
* result at the boundary
* - if a is large and a ~ x, then using Uniform Asymptotic Expansions for
* Large Parameter (see DLMF 8.12.4 [igam1])
* - if x > 1.1 and x < a, using the substraction from the regularized lower
* incomplete gamma
* - otherwise, calculate the series from [igam2] eq (5)
*/
scalar_t absxma_a;
static scalar_t SMALL = 20.0;
static scalar_t LARGE = 200.0;
static scalar_t SMALLRATIO = 0.3;
static scalar_t LARGERATIO = 4.5;
// note that in SciPy, a and x are non-negative, with exclusive 0s (i.e.,
// at most 1 of them can be 0), where igammac(0, x) = 0.0 iff x > 0.
if ((x < 0) || (a < 0)) {
// out of defined-region of the function
return std::numeric_limits<scalar_t>::quiet_NaN();
}
else if (a == 0) {
if (x > 0) {
return 0.0;
}
else {
return std::numeric_limits<scalar_t>::quiet_NaN();
}
}
else if (x == 0) {
return 1.0;
}
else if (std::isinf(a)) {
if (std::isinf(x)) {
return std::numeric_limits<scalar_t>::quiet_NaN();
}
return 1.0;
}
else if (std::isinf(x)) {
return 0.0;
}
absxma_a = std::fabs(x - a) / a;
if ((a > SMALL) && (a < LARGE) && (absxma_a < SMALLRATIO)) {
return _igam_helper_asymptotic_series(a, x, 0);
}
else if ((a > LARGE) && (absxma_a < LARGERATIO / std::sqrt(a))) {
return _igam_helper_asymptotic_series(a, x, 0);
}
if (x > 1.1) {
if (x < a) {
return 1.0 - _igam_helper_series(a, x);
}
else {
return _igamc_helper_continued_fraction(a, x);
}
}
else if (x <= 0.5) {
if (-0.4 / std::log(x) < a) {
return 1.0 - _igam_helper_series(a, x);
}
else {
return _igamc_helper_series(a, x);
}
}
else {
if (x * 1.1 < a) {
return 1.0 - _igam_helper_series(a, x);
}
else {
return _igamc_helper_series(a, x);
}
}
}
template <typename scalar_t>
static C10_DEVICE inline scalar_t calc_igamma(scalar_t a, scalar_t x) {
/* the calculation of the regularized lower incomplete gamma function
* is done differently based on the values of a and x:
* - if x and/or a is at the boundary of defined region, then assign the
* result at the boundary
* - if a is large and a ~ x, then using Uniform Asymptotic Expansions for
* Large Parameter (see DLMF 8.12.3 [igam1])
* - if x > 1 and x > a, using the substraction from the regularized upper
* incomplete gamma
* - otherwise, calculate the series from [igam2] eq (4)
*/
scalar_t absxma_a;
static scalar_t SMALL = 20.0;
static scalar_t LARGE = 200.0;
static scalar_t SMALLRATIO = 0.3;
static scalar_t LARGERATIO = 4.5;
// boundary values following SciPy
// note that in SciPy, a and x are non-negative, with exclusive 0s (i.e.,
// at most 1 of them can be 0), where igamma(0, x) = 1.0 iff x > 0.
if ((x < 0) || (a < 0)) {
// out of defined-region of the function
return std::numeric_limits<scalar_t>::quiet_NaN();
}
else if (a == 0) {
if (x > 0) {
return 1.0;
}
else {
return std::numeric_limits<scalar_t>::quiet_NaN();
}
}
else if (x == 0) {
return 0.0; // zero integration limit
}
else if (std::isinf(a)) {
if (std::isinf(x)) {
return std::numeric_limits<scalar_t>::quiet_NaN();
}
return 0.0;
}
else if (std::isinf(x)) {
return 1.0;
}
/* Asymptotic regime where a ~ x. See [igam2] */
absxma_a = std::fabs(x - a) / a;
if ((a > SMALL) && (a < LARGE) && (absxma_a < SMALLRATIO)) {
return _igam_helper_asymptotic_series(a, x, 1);
}
else if ((a > LARGE) && (absxma_a < LARGERATIO / std::sqrt(a))) {
return _igam_helper_asymptotic_series(a, x, 1);
}
if ((x > 1.0) && (x > a)) {
return 1.0 - calc_igammac(a, x);
}
return _igam_helper_series(a, x);
}
__global__ void igamma_kernel(float* __restrict__ x,
float* out,
float alpha,
int batch_shape)
{
int tidx = threadIdx.x;
int start = batch_shape / blockDim.x * tidx;
int end = threadIdx.x == blockDim.x - 1 ? batch_shape : start + batch_shape / blockDim.x;
float* bx = x+batch_shape*blockIdx.x;
float* bout = out + batch_shape * blockIdx.x;
for(int i=start;i<end;i++)
bout[i] = calc_igamma(alpha, bx[i]);
}

View File

@ -25,7 +25,7 @@ class TestDigamma(unittest.TestCase):
nx = np.random.uniform(0, 1, (32, 32))
x = jt.array(nx)
tx = torch.autograd.Variable(torch.tensor(nx, dtype=torch.float32), requires_grad=True)
dx = jt.math_util.gamma.digamma.apply(x)
dx = jt.digamma.apply(x)
tdx = torch.digamma(tx)
np.testing.assert_allclose(dx.data, tdx.detach().numpy(), rtol=1e-4, atol=1e-6)
jgdx = jt.grad(dx, x)

View File

@ -0,0 +1,42 @@
# ***************************************************************
# Copyright (c) 2022 Jittor. All Rights Reserved.
# Maintainers:
# Haoyang Peng <2247838039@qq.com>
# Dun Liang <randonlang@gmail.com>.
#
# This file is subject to the terms and conditions defined in
# file 'LICENSE.txt', which is part of this source code package.
# ***************************************************************
import jittor as jt
import numpy as np
import unittest
try:
import torch
from torch.autograd import Variable
has_autograd = True
except:
has_autograd = False
@unittest.skipIf(not has_autograd or not jt.compiler.has_cuda, "No autograd or cuda found.")
class TestDigamma(unittest.TestCase):
def setUp(self):
jt.flags.use_cuda = 1
def tearDown(self):
jt.flags.use_cuda = 0
def test_digamma(self):
for i in range(30):
concentration = np.random.uniform(1, 3)
rate = np.random.uniform(1, 2)
j_gamma = jt.distributions.GammaDistribution(concentration, rate)
t_gamma = torch.distributions.gamma.Gamma(torch.tensor([concentration]), torch.tensor([rate]))
samples = t_gamma.sample((30, i+5))
j_samples = jt.array(samples.detach().numpy())
np.testing.assert_allclose(j_gamma.log_prob(j_samples).data, t_gamma.log_prob(samples).detach().numpy(), rtol=1e-4, atol=1e-6)
samples = j_gamma.sample((30,i+5))
t_samples = torch.tensor(samples.numpy())
np.testing.assert_allclose(j_gamma.log_prob(samples).data, t_gamma.log_prob(t_samples).detach().numpy(), rtol=1e-4, atol=1e-6)
if __name__ == "__main__":
unittest.main()