llama.cpp/ggml/src/ggml-cuda
Aman Gupta f9a31eea06
CUDA: set_rows + cpy.cu refactor (#14712)
2025-07-18 14:54:18 +08:00
..
template-instances CUDA: FA support for Deepseek (Ampere or newer) (#13306) 2025-05-09 13:34:58 +02:00
vendors HIP : Add HIP 7.0+ compatibility for hipBLAS compute types (#14634) 2025-07-11 18:55:00 +02:00
CMakeLists.txt CUDA: FA support for Deepseek (Ampere or newer) (#13306) 2025-05-09 13:34:58 +02:00
acc.cu llama/ggml: add LLM training support (#10544) 2025-05-12 14:44:49 +02:00
acc.cuh llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
arange.cu llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
arange.cuh llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
argmax.cu cuda : optimize argmax (#10441) 2024-11-21 18:18:50 +01:00
argmax.cuh ggml/ex: calculate accuracy in graph, adapt MNIST (ggml/980) 2024-10-03 21:17:26 +03:00
argsort.cu ggml : reduce hash table reset cost (#8698) 2024-07-27 04:41:55 +02:00
argsort.cuh llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
binbcast.cu Support pure float16 add/sub/mul/div operations in the CUDA (and CPU) backend (ggml/1121) 2025-03-03 18:18:11 +02:00
binbcast.cuh ggml/examples: add backend support for numerical optimization (ggml/949) 2024-09-20 21:15:05 +03:00
clamp.cu cuda: unary ops as float + de-duplicate (ggml/1130) 2025-03-03 18:18:11 +02:00
clamp.cuh llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
common.cuh musa: fix build warnings (unused variable) (#14561) 2025-07-08 07:58:30 +08:00
concat.cu musa: fix all warnings, re-enable `-DLLAMA_FATAL_WARNINGS=ON` in ci and update doc (#12611) 2025-03-30 10:59:38 +02:00
concat.cuh llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
conv-transpose-1d.cu musa: fix all warnings, re-enable `-DLLAMA_FATAL_WARNINGS=ON` in ci and update doc (#12611) 2025-03-30 10:59:38 +02:00
conv-transpose-1d.cuh feat: cuda implementation for `ggml_conv_transpose_1d` (ggml/854) 2024-07-08 12:23:00 +03:00
conv2d-dw.cu CUDA: add conv_2d_dw (#14265) 2025-06-20 09:50:24 +08:00
conv2d-dw.cuh CUDA: add conv_2d_dw (#14265) 2025-06-20 09:50:24 +08:00
conv2d-transpose.cu CUDA: add conv_2d_transpose (#14287) 2025-06-20 22:48:24 +08:00
conv2d-transpose.cuh CUDA: add conv_2d_transpose (#14287) 2025-06-20 22:48:24 +08:00
convert.cu CUDA: add bf16 and f32 support to cublas_mul_mat_batched (#14361) 2025-06-29 01:30:53 +08:00
convert.cuh CUDA: add bf16 and f32 support to cublas_mul_mat_batched (#14361) 2025-06-29 01:30:53 +08:00
count-equal.cu ggml: fix zero division in ‘dne’ calculation in CUDA COUNT_EQUAL operator when ‘ne’ is small (#10213) 2024-11-09 08:35:46 +01:00
count-equal.cuh ggml/ex: calculate accuracy in graph, adapt MNIST (ggml/980) 2024-10-03 21:17:26 +03:00
cp-async.cuh CUDA: FA support for Deepseek (Ampere or newer) (#13306) 2025-05-09 13:34:58 +02:00
cpy-utils.cuh CUDA: set_rows + cpy.cu refactor (#14712) 2025-07-18 14:54:18 +08:00
cpy.cu CUDA: set_rows + cpy.cu refactor (#14712) 2025-07-18 14:54:18 +08:00
cpy.cuh ggml: Re-enable CUDA graphs in presence of CONT and DUP nodes (#12970) 2025-04-17 15:19:42 +02:00
cross-entropy-loss.cu CUDA: add dynamic shared mem to softmax, refactor general usage (#14497) 2025-07-03 07:45:11 +08:00
cross-entropy-loss.cuh ggml/examples: add backend support for numerical optimization (ggml/949) 2024-09-20 21:15:05 +03:00
dequantize.cuh llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
diagmask.cu llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
diagmask.cuh llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
fattn-common.cuh llama : add high-throughput mode (#14363) 2025-07-16 16:35:42 +03:00
fattn-mma-f16.cuh llama : add high-throughput mode (#14363) 2025-07-16 16:35:42 +03:00
fattn-tile-f16.cu llama : add high-throughput mode (#14363) 2025-07-16 16:35:42 +03:00
fattn-tile-f16.cuh llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
fattn-tile-f32.cu llama : add high-throughput mode (#14363) 2025-07-16 16:35:42 +03:00
fattn-tile-f32.cuh llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
fattn-vec-f16.cuh llama : add high-throughput mode (#14363) 2025-07-16 16:35:42 +03:00
fattn-vec-f32.cuh llama : add high-throughput mode (#14363) 2025-07-16 16:35:42 +03:00
fattn-wmma-f16.cu llama : add high-throughput mode (#14363) 2025-07-16 16:35:42 +03:00
fattn-wmma-f16.cuh CUDA: use mma PTX instructions for FlashAttention (#11583) 2025-02-02 19:31:09 +01:00
fattn.cu CUDA: faster Deepseek FA, add Turing support (#13435) 2025-05-14 16:08:20 +02:00
fattn.cuh llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
getrows.cu CUDA: add bf16 and i32 to getrows (#14529) 2025-07-07 21:45:43 +08:00
getrows.cuh CUDA: batched+noncont MMQ, refactor bs>1 MoE code (#13199) 2025-04-30 23:12:59 +02:00
ggml-cuda.cu CUDA: set_rows + cpy.cu refactor (#14712) 2025-07-18 14:54:18 +08:00
gla.cu llama: add support for QRWKV6 model architecture (#11001) 2025-01-10 09:58:08 +08:00
gla.cuh llama: add support for QRWKV6 model architecture (#11001) 2025-01-10 09:58:08 +08:00
im2col.cu CUDA: fix 1D im2col, add tests (ggml/993) 2024-10-23 16:50:02 +03:00
im2col.cuh llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
mean.cu CUDA: add mean operation (#14313) 2025-06-22 12:39:54 +08:00
mean.cuh CUDA: add mean operation (#14313) 2025-06-22 12:39:54 +08:00
mma.cuh musa: fix all warnings, re-enable `-DLLAMA_FATAL_WARNINGS=ON` in ci and update doc (#12611) 2025-03-30 10:59:38 +02:00
mmq.cu CUDA: fix crash on large batch size for quant. MoE (#13537) 2025-05-14 16:41:02 +02:00
mmq.cuh CUDA: add dynamic shared mem to softmax, refactor general usage (#14497) 2025-07-03 07:45:11 +08:00
mmv.cu CUDA/HIP: optimize mmv paths taken for HIP devices (#14324) 2025-06-24 01:12:56 +02:00
mmv.cuh CUDA: mul_mat_v support for batch sizes > 1 (#14262) 2025-06-23 13:11:31 +02:00
mmvq.cu CUDA: fix crash with partial offloading of MoE (#13439) 2025-05-11 16:09:33 +02:00
mmvq.cuh CUDA: noncont MMVQ + batched bs1 MUL_MAT_ID (#13014) 2025-04-22 21:27:40 +02:00
norm.cu llama: Add support for RWKV v7 architecture (#12412) 2025-03-18 07:27:50 +08:00
norm.cuh llama: Add support for RWKV v7 architecture (#12412) 2025-03-18 07:27:50 +08:00
opt-step-adamw.cu ggml: new optimization interface (ggml/988) 2024-11-17 08:30:29 +02:00
opt-step-adamw.cuh ggml/examples: add backend support for numerical optimization (ggml/949) 2024-09-20 21:15:05 +03:00
out-prod.cu CPU/CUDA: fix (GQA) mul mat back, add CUDA support (#11380) 2025-01-24 12:38:31 +01:00
out-prod.cuh ggml/examples: add backend support for numerical optimization (ggml/949) 2024-09-20 21:15:05 +03:00
pad.cu musa: fix all warnings, re-enable `-DLLAMA_FATAL_WARNINGS=ON` in ci and update doc (#12611) 2025-03-30 10:59:38 +02:00
pad.cuh llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
pool2d.cu llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
pool2d.cuh llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
quantize.cu CUDA: fix crash on large batch size for quant. MoE (#13537) 2025-05-14 16:41:02 +02:00
quantize.cuh CUDA: batched+noncont MMQ, refactor bs>1 MoE code (#13199) 2025-04-30 23:12:59 +02:00
rope.cu cuda : fix rope with partial rotation and non-cont src (#14580) 2025-07-08 10:15:21 +03:00
rope.cuh RoPE: fix back, CUDA support for back + noncont. (#11240) 2025-01-15 12:51:37 +01:00
scale.cu ggml : add ggml_scale_bias (#14417) 2025-07-09 18:16:12 +02:00
scale.cuh llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
set-rows.cu CUDA: set_rows + cpy.cu refactor (#14712) 2025-07-18 14:54:18 +08:00
set-rows.cuh CUDA: add set rows for f32 and f16 (#14551) 2025-07-12 16:31:38 +03:00
softmax.cu CUDA: add dynamic shared mem to softmax, refactor general usage (#14497) 2025-07-03 07:45:11 +08:00
softmax.cuh CUDA: backwards pass for misc. ops, add tests (#11257) 2025-01-16 16:43:38 +01:00
ssm-conv.cu model : support LiquidAI LFM2 hybrid family (#14620) 2025-07-11 20:27:01 +02:00
ssm-conv.cuh ggml : faster ssm scan (#10558) 2025-03-31 18:05:13 +02:00
ssm-scan.cu cuda : support Falcon-H1 state size for SSM_SCAN (#14602) 2025-07-09 23:54:38 -04:00
ssm-scan.cuh ggml : faster ssm scan (#10558) 2025-03-31 18:05:13 +02:00
sum.cu llama/ggml: add LLM training support (#10544) 2025-05-12 14:44:49 +02:00
sum.cuh tests: add gradient tests for all backends (ggml/932) 2024-09-08 11:05:55 +03:00
sumrows.cu CUDA: add mean operation (#14313) 2025-06-22 12:39:54 +08:00
sumrows.cuh CUDA: add mean operation (#14313) 2025-06-22 12:39:54 +08:00
tsembd.cu llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
tsembd.cuh llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
unary.cu cuda : add ELU support (#14657) 2025-07-13 11:33:16 +02:00
unary.cuh cuda : add ELU support (#14657) 2025-07-13 11:33:16 +02:00
upscale.cu CUDA: add bilinear interpolation for upscale (#14563) 2025-07-08 10:11:18 +08:00
upscale.cuh llama : reorganize source code + improve CMake (#8006) 2024-06-26 18:33:02 +03:00
vecdotq.cuh CUDA: noncont MMVQ + batched bs1 MUL_MAT_ID (#13014) 2025-04-22 21:27:40 +02:00
wkv.cu llama: Add support for RWKV v7 architecture (#12412) 2025-03-18 07:27:50 +08:00
wkv.cuh llama: Add support for RWKV v7 architecture (#12412) 2025-03-18 07:27:50 +08:00