.. |
template-instances
|
CUDA: FA support for Deepseek (Ampere or newer) (#13306)
|
2025-05-09 13:34:58 +02:00 |
vendors
|
HIP : Add HIP 7.0+ compatibility for hipBLAS compute types (#14634)
|
2025-07-11 18:55:00 +02:00 |
CMakeLists.txt
|
CUDA: FA support for Deepseek (Ampere or newer) (#13306)
|
2025-05-09 13:34:58 +02:00 |
acc.cu
|
llama/ggml: add LLM training support (#10544)
|
2025-05-12 14:44:49 +02:00 |
acc.cuh
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
arange.cu
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
arange.cuh
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
argmax.cu
|
cuda : optimize argmax (#10441)
|
2024-11-21 18:18:50 +01:00 |
argmax.cuh
|
ggml/ex: calculate accuracy in graph, adapt MNIST (ggml/980)
|
2024-10-03 21:17:26 +03:00 |
argsort.cu
|
ggml : reduce hash table reset cost (#8698)
|
2024-07-27 04:41:55 +02:00 |
argsort.cuh
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
binbcast.cu
|
Support pure float16 add/sub/mul/div operations in the CUDA (and CPU) backend (ggml/1121)
|
2025-03-03 18:18:11 +02:00 |
binbcast.cuh
|
ggml/examples: add backend support for numerical optimization (ggml/949)
|
2024-09-20 21:15:05 +03:00 |
clamp.cu
|
cuda: unary ops as float + de-duplicate (ggml/1130)
|
2025-03-03 18:18:11 +02:00 |
clamp.cuh
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
common.cuh
|
musa: fix build warnings (unused variable) (#14561)
|
2025-07-08 07:58:30 +08:00 |
concat.cu
|
musa: fix all warnings, re-enable `-DLLAMA_FATAL_WARNINGS=ON` in ci and update doc (#12611)
|
2025-03-30 10:59:38 +02:00 |
concat.cuh
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
conv-transpose-1d.cu
|
musa: fix all warnings, re-enable `-DLLAMA_FATAL_WARNINGS=ON` in ci and update doc (#12611)
|
2025-03-30 10:59:38 +02:00 |
conv-transpose-1d.cuh
|
feat: cuda implementation for `ggml_conv_transpose_1d` (ggml/854)
|
2024-07-08 12:23:00 +03:00 |
conv2d-dw.cu
|
CUDA: add conv_2d_dw (#14265)
|
2025-06-20 09:50:24 +08:00 |
conv2d-dw.cuh
|
CUDA: add conv_2d_dw (#14265)
|
2025-06-20 09:50:24 +08:00 |
conv2d-transpose.cu
|
CUDA: add conv_2d_transpose (#14287)
|
2025-06-20 22:48:24 +08:00 |
conv2d-transpose.cuh
|
CUDA: add conv_2d_transpose (#14287)
|
2025-06-20 22:48:24 +08:00 |
convert.cu
|
CUDA: add bf16 and f32 support to cublas_mul_mat_batched (#14361)
|
2025-06-29 01:30:53 +08:00 |
convert.cuh
|
CUDA: add bf16 and f32 support to cublas_mul_mat_batched (#14361)
|
2025-06-29 01:30:53 +08:00 |
count-equal.cu
|
ggml: fix zero division in ‘dne’ calculation in CUDA COUNT_EQUAL operator when ‘ne’ is small (#10213)
|
2024-11-09 08:35:46 +01:00 |
count-equal.cuh
|
ggml/ex: calculate accuracy in graph, adapt MNIST (ggml/980)
|
2024-10-03 21:17:26 +03:00 |
cp-async.cuh
|
CUDA: FA support for Deepseek (Ampere or newer) (#13306)
|
2025-05-09 13:34:58 +02:00 |
cpy-utils.cuh
|
CUDA: set_rows + cpy.cu refactor (#14712)
|
2025-07-18 14:54:18 +08:00 |
cpy.cu
|
CUDA: set_rows + cpy.cu refactor (#14712)
|
2025-07-18 14:54:18 +08:00 |
cpy.cuh
|
ggml: Re-enable CUDA graphs in presence of CONT and DUP nodes (#12970)
|
2025-04-17 15:19:42 +02:00 |
cross-entropy-loss.cu
|
CUDA: add dynamic shared mem to softmax, refactor general usage (#14497)
|
2025-07-03 07:45:11 +08:00 |
cross-entropy-loss.cuh
|
ggml/examples: add backend support for numerical optimization (ggml/949)
|
2024-09-20 21:15:05 +03:00 |
dequantize.cuh
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
diagmask.cu
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
diagmask.cuh
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
fattn-common.cuh
|
llama : add high-throughput mode (#14363)
|
2025-07-16 16:35:42 +03:00 |
fattn-mma-f16.cuh
|
llama : add high-throughput mode (#14363)
|
2025-07-16 16:35:42 +03:00 |
fattn-tile-f16.cu
|
llama : add high-throughput mode (#14363)
|
2025-07-16 16:35:42 +03:00 |
fattn-tile-f16.cuh
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
fattn-tile-f32.cu
|
llama : add high-throughput mode (#14363)
|
2025-07-16 16:35:42 +03:00 |
fattn-tile-f32.cuh
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
fattn-vec-f16.cuh
|
llama : add high-throughput mode (#14363)
|
2025-07-16 16:35:42 +03:00 |
fattn-vec-f32.cuh
|
llama : add high-throughput mode (#14363)
|
2025-07-16 16:35:42 +03:00 |
fattn-wmma-f16.cu
|
llama : add high-throughput mode (#14363)
|
2025-07-16 16:35:42 +03:00 |
fattn-wmma-f16.cuh
|
CUDA: use mma PTX instructions for FlashAttention (#11583)
|
2025-02-02 19:31:09 +01:00 |
fattn.cu
|
CUDA: faster Deepseek FA, add Turing support (#13435)
|
2025-05-14 16:08:20 +02:00 |
fattn.cuh
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
getrows.cu
|
CUDA: add bf16 and i32 to getrows (#14529)
|
2025-07-07 21:45:43 +08:00 |
getrows.cuh
|
CUDA: batched+noncont MMQ, refactor bs>1 MoE code (#13199)
|
2025-04-30 23:12:59 +02:00 |
ggml-cuda.cu
|
CUDA: set_rows + cpy.cu refactor (#14712)
|
2025-07-18 14:54:18 +08:00 |
gla.cu
|
llama: add support for QRWKV6 model architecture (#11001)
|
2025-01-10 09:58:08 +08:00 |
gla.cuh
|
llama: add support for QRWKV6 model architecture (#11001)
|
2025-01-10 09:58:08 +08:00 |
im2col.cu
|
CUDA: fix 1D im2col, add tests (ggml/993)
|
2024-10-23 16:50:02 +03:00 |
im2col.cuh
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
mean.cu
|
CUDA: add mean operation (#14313)
|
2025-06-22 12:39:54 +08:00 |
mean.cuh
|
CUDA: add mean operation (#14313)
|
2025-06-22 12:39:54 +08:00 |
mma.cuh
|
musa: fix all warnings, re-enable `-DLLAMA_FATAL_WARNINGS=ON` in ci and update doc (#12611)
|
2025-03-30 10:59:38 +02:00 |
mmq.cu
|
CUDA: fix crash on large batch size for quant. MoE (#13537)
|
2025-05-14 16:41:02 +02:00 |
mmq.cuh
|
CUDA: add dynamic shared mem to softmax, refactor general usage (#14497)
|
2025-07-03 07:45:11 +08:00 |
mmv.cu
|
CUDA/HIP: optimize mmv paths taken for HIP devices (#14324)
|
2025-06-24 01:12:56 +02:00 |
mmv.cuh
|
CUDA: mul_mat_v support for batch sizes > 1 (#14262)
|
2025-06-23 13:11:31 +02:00 |
mmvq.cu
|
CUDA: fix crash with partial offloading of MoE (#13439)
|
2025-05-11 16:09:33 +02:00 |
mmvq.cuh
|
CUDA: noncont MMVQ + batched bs1 MUL_MAT_ID (#13014)
|
2025-04-22 21:27:40 +02:00 |
norm.cu
|
llama: Add support for RWKV v7 architecture (#12412)
|
2025-03-18 07:27:50 +08:00 |
norm.cuh
|
llama: Add support for RWKV v7 architecture (#12412)
|
2025-03-18 07:27:50 +08:00 |
opt-step-adamw.cu
|
ggml: new optimization interface (ggml/988)
|
2024-11-17 08:30:29 +02:00 |
opt-step-adamw.cuh
|
ggml/examples: add backend support for numerical optimization (ggml/949)
|
2024-09-20 21:15:05 +03:00 |
out-prod.cu
|
CPU/CUDA: fix (GQA) mul mat back, add CUDA support (#11380)
|
2025-01-24 12:38:31 +01:00 |
out-prod.cuh
|
ggml/examples: add backend support for numerical optimization (ggml/949)
|
2024-09-20 21:15:05 +03:00 |
pad.cu
|
musa: fix all warnings, re-enable `-DLLAMA_FATAL_WARNINGS=ON` in ci and update doc (#12611)
|
2025-03-30 10:59:38 +02:00 |
pad.cuh
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
pool2d.cu
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
pool2d.cuh
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
quantize.cu
|
CUDA: fix crash on large batch size for quant. MoE (#13537)
|
2025-05-14 16:41:02 +02:00 |
quantize.cuh
|
CUDA: batched+noncont MMQ, refactor bs>1 MoE code (#13199)
|
2025-04-30 23:12:59 +02:00 |
rope.cu
|
cuda : fix rope with partial rotation and non-cont src (#14580)
|
2025-07-08 10:15:21 +03:00 |
rope.cuh
|
RoPE: fix back, CUDA support for back + noncont. (#11240)
|
2025-01-15 12:51:37 +01:00 |
scale.cu
|
ggml : add ggml_scale_bias (#14417)
|
2025-07-09 18:16:12 +02:00 |
scale.cuh
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
set-rows.cu
|
CUDA: set_rows + cpy.cu refactor (#14712)
|
2025-07-18 14:54:18 +08:00 |
set-rows.cuh
|
CUDA: add set rows for f32 and f16 (#14551)
|
2025-07-12 16:31:38 +03:00 |
softmax.cu
|
CUDA: add dynamic shared mem to softmax, refactor general usage (#14497)
|
2025-07-03 07:45:11 +08:00 |
softmax.cuh
|
CUDA: backwards pass for misc. ops, add tests (#11257)
|
2025-01-16 16:43:38 +01:00 |
ssm-conv.cu
|
model : support LiquidAI LFM2 hybrid family (#14620)
|
2025-07-11 20:27:01 +02:00 |
ssm-conv.cuh
|
ggml : faster ssm scan (#10558)
|
2025-03-31 18:05:13 +02:00 |
ssm-scan.cu
|
cuda : support Falcon-H1 state size for SSM_SCAN (#14602)
|
2025-07-09 23:54:38 -04:00 |
ssm-scan.cuh
|
ggml : faster ssm scan (#10558)
|
2025-03-31 18:05:13 +02:00 |
sum.cu
|
llama/ggml: add LLM training support (#10544)
|
2025-05-12 14:44:49 +02:00 |
sum.cuh
|
tests: add gradient tests for all backends (ggml/932)
|
2024-09-08 11:05:55 +03:00 |
sumrows.cu
|
CUDA: add mean operation (#14313)
|
2025-06-22 12:39:54 +08:00 |
sumrows.cuh
|
CUDA: add mean operation (#14313)
|
2025-06-22 12:39:54 +08:00 |
tsembd.cu
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
tsembd.cuh
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
unary.cu
|
cuda : add ELU support (#14657)
|
2025-07-13 11:33:16 +02:00 |
unary.cuh
|
cuda : add ELU support (#14657)
|
2025-07-13 11:33:16 +02:00 |
upscale.cu
|
CUDA: add bilinear interpolation for upscale (#14563)
|
2025-07-08 10:11:18 +08:00 |
upscale.cuh
|
llama : reorganize source code + improve CMake (#8006)
|
2024-06-26 18:33:02 +03:00 |
vecdotq.cuh
|
CUDA: noncont MMVQ + batched bs1 MUL_MAT_ID (#13014)
|
2025-04-22 21:27:40 +02:00 |
wkv.cu
|
llama: Add support for RWKV v7 architecture (#12412)
|
2025-03-18 07:27:50 +08:00 |
wkv.cuh
|
llama: Add support for RWKV v7 architecture (#12412)
|
2025-03-18 07:27:50 +08:00 |