Not sure this is truly needed but we had the floating point equivalents, the aligned equivalents, and the EVEX equivalents. So this just makes it complete.
llvm-svn: 287960
Summary:
Shuffle lowering may have widened the element size of a i32 shuffle to i64 before selecting X86ISD::SHUF128. If this shuffle was used by a vselect this can prevent us from selecting masked operations.
This patch detects this and changes the element size to match the vselect.
I don't handle changing integer to floating point or vice versa as its not clear if its better to push such a bitcast to the inputs of the shuffle or to the user of the vselect. So I'm ignoring that case for now.
Reviewers: delena, zvi, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27087
llvm-svn: 287939
Vectorize UINT_TO_FP v2i32 -> v2f64 instead of scalarization (albeit still on the SIMD unit).
The codegen matches that generated by legalization (and is in fact used by AVX for UINT_TO_FP v4i32 -> v4f64), but has to be done in the x86 backend to account for legalization via 4i32.
Differential Revision: https://reviews.llvm.org/D26938
llvm-svn: 287886
The bug arises during register allocation on i686 for
CMPXCHG8B instruction when base pointer is needed. CMPXCHG8B
needs 4 implicit registers (EAX, EBX, ECX, EDX) and a memory address,
plus ESI is reserved as the base pointer. With such constraints the only
way register allocator would do its job successfully is when the addressing
mode of the instruction requires only one register. If that is not the case
- we are emitting additional LEA instruction to compute the address.
It fixes PR28755.
Patch by Alexander Ivchenko <alexander.ivchenko@intel.com>
Differential Revision: https://reviews.llvm.org/D25088
llvm-svn: 287875
Move the definitions of three variables out of the switch.
Patch by Alexander Ivchenko <alexander.ivchenko@intel.com>
Differential Revision: https://reviews.llvm.org/D25192
llvm-svn: 287874
- It does not modify the input instruction
- Second operand of any address is always an Index Register,
make sure we actually check for that, instead of a check for
an immediate value
Patch by Alexander Ivchenko <alexander.ivchenko@intel.com>
Differential Revision: https://reviews.llvm.org/D24938
llvm-svn: 287873
Replace the CVTTPD2DQ/CVTTPD2UDQ and CVTDQ2PD/CVTUDQ2PD opcodes with general versions.
This is an initial step towards similar FP_TO_SINT/FP_TO_UINT and SINT_TO_FP/UINT_TO_FP lowering to AVX512 CVTTPS2QQ/CVTTPS2UQQ and CVTQQ2PS/CVTUQQ2PS with illegal types.
Differential Revision: https://reviews.llvm.org/D27072
llvm-svn: 287870
We did not support subregs in InlineSpiller:foldMemoryOperand() because targets
may not deal with them correctly.
This adds a target hook to let the spiller know that a target can handle
subregs, and actually enables it for x86 for the case of stack slot reloads.
This fixes PR30832.
Differential Revision: https://reviews.llvm.org/D26521
llvm-svn: 287792
Summary: This function is only called with integer VT arguments, so remove code that handles FP vectors.
Reviewers: RKSimon, craig.topper, delena, andreadb
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26985
llvm-svn: 287743
This occurs during UINT_TO_FP v2f64 lowering.
We can easily generalize this to other horizontal ops (FHSUB, PACKSS, PACKUS) as required - we are doing something similar with PACKUS in lowerV2I64VectorShuffle
llvm-svn: 287676
No-one actually had a mangler handy when calling this function, and
getSymbol itself went most of the way towards getting its own mangler
(with a local TLOF variable) so forcing all callers to supply one was
just extra complication.
llvm-svn: 287645
Summary: Splat vectors are canonicalized to BUILD_VECTOR's so the code can be simplified. NFC-ish.
Reviewers: craig.topper, delena, RKSimon, andreadb
Subscribers: RKSimon, llvm-commits
Differential Revision: https://reviews.llvm.org/D26678
llvm-svn: 287643
This commit handles cases where the size qualifier of an indirect memory reference operand in Intel syntax is missing (e.g. "vaddps xmm1, xmm2, [a]").
GCC will deduce the size qualifier for AVX512 vector and broadcast memory operands based on the possible matches:
"vaddps xmm1, xmm2, [a]" matches only “XMMWORD PTR” qualifier.
"vaddps xmm1, xmm2, [a]{1to4}" matches only “DWORD PTR” qualifier.
This is different from the current behavior of LLVM, which deduces the size qualifier based on the size of the memory operand.
For "vaddps xmm1, xmm2, [a]"
"char a;" will imply "BYTE PTR" qualifier
"short a;" will imply "WORD PTR" qualifier.
This commit aligns LLVM to GCC’s behavior.
This is the LLVM part of the review.
The Clang part of the review: https://reviews.llvm.org/D26587
Differential Revision: https://reviews.llvm.org/D26586
llvm-svn: 287630
I'm sure this caused the load size to misprint in Intel syntax output. We were also inconsistent about which patterns used which instruction between VEX and EVEX.
There are two different reg/reg versions of movq, one from a GPR and one from the lower 64-bits of an XMM register. This changes the loading folding table to use the single i64mem memory form for folding both cases. But we need to use TB_NO_REVERSE to prevent a duplicate entry in the unfolding table.
llvm-svn: 287622
Summary:
The index and one of the table operands can be swapped by changing the opcode to the other version. Neither of these operands are the one that can load from memory so this can't be used to increase memory folding opportunities.
We need to handle the unmasked forms and the kz forms. Since the load operand isn't being commuted we can commute the load and broadcast instructions too.
Reviewers: igorb, delena, Ayal, Farhana, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25652
llvm-svn: 287621
Summary:
Shuffle lowering widens the element size of a shuffle if elements are contiguous. This is sometimes help because wider element types have more shuffle options. If the shuffle is one of the arguments to a vselect this shuffle widening can introduce a bitcast between the vselect and the shuffle. This will prevent isel from selecting a masked operation. If the shuffle can be written equally efficiently with a different element size to match the vselect type we should change the shuffle type to allow masking.
This patch does this conversion for all VALIGND/VALIGNQ sizes. It also supports turning 128-bit PALIGNR into VALIGND/VALIGNQ. This fixes the case shown in PR31018.
I plan to add support for more operations in future patches.
Reviewers: RKSimon, zvi, delena
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26902
llvm-svn: 287612
At the moment we only use truncateVectorCompareWithPACKSS with direct vector comparison results (just one example of a known all/none signbits input).
This change relaxes the direct matching of a SETCC opcode by moving the logic up into SelectionDAG::ComputeNumSignBits and accepting any input with a known splatted signbit.
llvm-svn: 287535
The change is part of RegCall calling convention support for LLVM.
Long double (f80) requires special treatment as the first f80 parameter is saved in FP0 (floating point stack).
This review present the change and the corresponding tests.
Differential Revision: https://reviews.llvm.org/D26151
llvm-svn: 287485
The same thing was done to 32-bit and 64-bit element sizes previously.
This will allow us to support these shuffls in InstCombineCalls along with the other variable shift intrinsics.
llvm-svn: 287312
Summary:
This extends FCOPYSIGN support to 512-bit vectors.
I've also added tests to show what the 128-bit and 256-bit cases look like with broadcast loads.
Reviewers: delena, zvi, RKSimon, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26791
llvm-svn: 287298
vXi64 multiplication is lowered into 3 calls of vpmuludq with the upper/lower 32-bit halves.
If any of these halves are zero then we can remove individual calls. Although there was isBuildVectorAllZeros code to do this I don't think it ever worked (maybe just for constant folded cases that don't seem to be tested for any longer).
This requires additional X86ISD support for computeKnownBitsForTargetNode, so far I've just added support for X86ISD::VZEXT (VPMOVZX* - helping the AVX2+ cases).
Partial fix for PR30845
Differential Revision: https://reviews.llvm.org/D26590
llvm-svn: 287223
Register Calling Convention defines a new behavior for v64i1 types.
This type should be saved in GPR.
However for 32 bit machine we need to split the value into 2 GPRs (because each is 32 bit).
Differential Revision: https://reviews.llvm.org/D26181
llvm-svn: 287217
We save an inter-register file move this way. If there's any CPU where
the FP logic is slower, we could transform this back to int-logic in
MachineCombiner.
This helps, but doesn't solve, PR6137:
https://llvm.org/bugs/show_bug.cgi?id=6137
The 'andn' test shows that we're missing a pattern match to
recognize the xor with -1 constant as a 'not' op.
llvm-svn: 287171
We only ever create TargetConstantPool, TargetJumpTable, TargetExternalSymbol,
TargetGlobalAddress, TargetGlobalTLSAddress, MCSymbol and TargetBlockAddress
nodes as operands of X86ISD::Wrapper nodes, so we can remove one check and
invert the other.
Also update the documentation comment for X86ISD::Wrapper.
Differential Revision: https://reviews.llvm.org/D26731
llvm-svn: 287160
We can replace "scalar" FP-bitwise-logic with other forms of bitwise-logic instructions.
Scalar SSE/AVX FP-logic instructions only exist in your imagination and/or the bowels of
compilers, but logically equivalent int, float, and double variants of bitwise-logic
instructions are reality in x86, and the float variant may be a shorter instruction
depending on which flavor (SSE or AVX) of vector ISA you have...so just prefer float all
the time.
This is a preliminary step towards solving PR6137:
https://llvm.org/bugs/show_bug.cgi?id=6137
Differential Revision:
https://reviews.llvm.org/D26712
llvm-svn: 287122
Both the (V)CVTDQ2PD (i32 to f64) and (V)CVTUDQ2PD (u32 to f64) conversion instructions are lossless and can be safely represented as generic SINT_TO_FP/UINT_TO_FP calls instead of x86 intrinsics without affecting final codegen.
LLVM counterpart to D26686
Differential Revision: https://reviews.llvm.org/D26736
llvm-svn: 287108
Summary: These intrinsics have been unused for clang for a while. This patch removes them. We auto upgrade them to extractelements, a scalar operation and then an insertelement. This matches the sequence used by clangs intrinsic file.
Reviewers: zvi, delena, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26660
llvm-svn: 287083
This patch helps avoids poor legalization of boolean vector results (e.g. 8f32 -> 8i1 -> 8i16) that feed into SINT_TO_FP by inserting an early SIGN_EXTEND and so help improve the truncation logic.
This is not necessary for AVX512 targets where boolean vectors are legal - AVX512 manages to lower ( sint_to_fp vXi1 ) into some form of ( select mask, 1.0f , 0.0f ) in most cases.
Fix for PR13248
Differential Revision: https://reviews.llvm.org/D26583
llvm-svn: 286979
Summary:
Fix a case where the overflow value of type i1, which is legal on AVX512, was assigned to a VK1 register class.
We always want this value to be assigned to a GPR since the overflow return value is lowered to a SETO instruction.
Fixes pr30981.
Reviewers: mkuper, igorb, craig.topper, guyblank, qcolombet
Subscribers: qcolombet, llvm-commits
Differential Revision: https://reviews.llvm.org/D26620
llvm-svn: 286958
Summary:
Add basic functionality to support call lowering for X86.
Currently only supports functions which return void and take zero arguments.
Inspired by commit 286573.
Reviewers: ab, qcolombet, t.p.northover
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26593
llvm-svn: 286935
Add explicit v16i16/v32i8 ADD/SUB costs, matching the costs of v4i64/v8i32 - they were missing for some reason.
This has side effects on the LV max bandwidth tests (AVX1 now prefers 128-bit vectors vs AVX2 which still prefers 256-bit)
llvm-svn: 286832
-Don't print the 'x' suffix for the 128-bit reg/mem VEX encoded instructions in Intel syntax. This is consistent with the EVEX versions.
-Don't print the 'y' suffix for the 256-bit reg/reg VEX encoded instructions in Intel or AT&T syntax. This is consistent with the EVEX versions.
-Allow the 'x' and 'y' suffixes to be used for the reg/mem forms when we're assembling using Intel syntax.
-Allow the 'x' and 'y' suffixes on the reg/reg EVEX encoded instructions in Intel or AT&T syntax. This is consistent with what VEX was already allowing.
This should fix at least some of PR28850.
llvm-svn: 286787
These will be used to replace the masked intrinsics so that InstCombineCalls can optimize the AVX-512 variable shifts the same way it does for AVX2.
llvm-svn: 286754
After this I'll add the unmasked intrinsics to InstCombineCalls to finish making our handling of these types of shuffles consistent between AVX-512 and the legacy intrinsics.
llvm-svn: 286725
Summary:
This is the first step towards being able to add the avx512 shift by immediate intrinsics to InstCombineCalls where we aleady support the sse2 and avx2 intrinsics. We need to the unmasked versions so we can avoid having to teach InstCombineCalls that it would need to insert selects sometimes. Instead we'll just add the selects around the new instrinsics in the frontend.
This change should also enable the shift by i32 intrinsics to take a non-constant shift value just like the avx2 and sse intrinsics. This will enable us to fix PR30691 once we update clang.
Next I'll switch clang to use the new builtins. Then we'll come back to the backend and remove/autoupgrade the old intrinsics. Then I'll work on the same series for variable shifts.
Reviewers: RKSimon, zvi, delena
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26333
llvm-svn: 286711
Summary: VALIGND and VALIGNQ are similar to PALIGNR but instead of working on a 128-bit lane they work on the entire vector register. This change leverages the shuffle rotate detection code used for PALIGNR to detect these cases.
Reviewers: delena, RKSimon
Subscribers: Farhana, llvm-commits
Differential Revision: https://reviews.llvm.org/D26297
llvm-svn: 286709
The generic infrastructure to compute the Newton series for reciprocal and
reciprocal square root was conceived to allow a target to compute the series
itself. However, the original code did not properly consider this condition
if returned by a target. This patch addresses the issues to allow a target
to compute the series on its own.
Differential revision: https://reviews.llvm.org/D22975
llvm-svn: 286523
Suspected to be the cause of a sanitizer-windows bot failure:
Assertion failed: isImm() && "Wrong MachineOperand accessor", file C:\b\slave\sanitizer-windows\llvm\include\llvm/CodeGen/MachineOperand.h, line 420
llvm-svn: 286385
A relocatable immediate is either an immediate operand or an operand that
can be relocated by the linker to an immediate, such as a regular symbol
in non-PIC code.
Start using relocImm for 32-bit and 64-bit MOV instructions, and for operands
of type "imm32_su". Remove a number of now-redundant patterns.
Differential Revision: https://reviews.llvm.org/D25812
llvm-svn: 286384
This patch adds support for fptoui to 2i32 from both 2f64 and 2f32, building on Simon's change for the signed version in r284459 and using AVX-512 instructions.
If we don't have VLX support we need to use a 512-bit operation for v2f64->v2i32 and extract the result.
It also recognises that cvttpd2udq zeroes the upper 64-bits of the xmm result.
Differential Revision: https://reviews.llvm.org/D26331
llvm-svn: 286345
Summary: This allows the SSE intrinsic to use the EVEX instruction when available. It also fixes EVEX to not use a weird (v4i32 (fp_to_sint v2f64)) node and it merges some isel patterns. This also fixes some cases that weren't combining vzmovl with cvttpd2dq to remove extra moves.
Reviewers: delena, zvi, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26330
llvm-svn: 286344
Summary:
This is needed to make the v64i8 and v32i16 types legal for the 512-bit VBMI instructions. Fixes PR30912.
Reviewers: delena, zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26322
llvm-svn: 286339
This patch avoids scalarization of CTLZ by instead expanding to use CTPOP (ref: "Hacker's Delight") when the necessary operations are available.
This also adds the necessary cost models for X86 SSE2 targets (the main beneficiary) to ensure vectorization only happens when its useful.
Differential Revision: https://reviews.llvm.org/D25910
llvm-svn: 286233
We are repeatedly calling computeZeroableShuffleElements in many shuffle lowering calls for the same shuffle mask/inputs.
This is a first step towards reusing the zeroable result, initially just for lowerVectorShuffleAsShift calls.
llvm-svn: 286037
This fixes selection of KANDN instructions and allows us to remove an extra set of patterns for KNOT and KXNOR.
Reviewers: delena, igorb
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26134
llvm-svn: 285878
2 new intrinsics covering AVX-512 compress/expand functionality.
This implementation includes syntax, DAG builder, operation lowering and tests.
Does not include: handling of illegal data types, codegen prepare pass and the cost model.
llvm-svn: 285876
Introducing "k" and "Yk" constraints for extended inline assembly, enabling use of AVX512 masked vectorized instructions.
Commit on behalf of mharoush
Extending inline assembly support, compatible with GCC as folowing:
"k" constraint hints the compiler to select any of AVX512 k0-k7 registers.
"Yk" constraint is a subset of "k" excluding k0 which is not allowd to be used as a mask.
Reviewer: 1. rnk
Differential Revision: https://reviews.llvm.org/D25062
llvm-svn: 285591
There is a bug describing poor cost model for floating point operations:
Bug 29083 - [X86][SSE] Improve costs for floating point operations. This
patch is the second one in series of patches dealing with cost model.
Differential Revision: https://reviews.llvm.org/D25722
llvm-svn: 285564
This removes a couple tablegen classes that become unused after this change. Another class gained an additional parameter to allow PMADDUBSW to specify a different result type from its input type.
llvm-svn: 285515
With DQI but without VLX, lower v2i64 and v4i64 MUL operations with v8i64 MUL (vpmullq).
Updated cost table accordingly.
Differential Revision: https://reviews.llvm.org/D26011
llvm-svn: 285304
Summary:
In the case where of 'select i1 , f32, f32' or select i1, f64, f64 prefer lowering to masked-moves over branches.
Fixes pr30561
Reviewers: igorb, aymanmus, delena
Differential Revision: https://reviews.llvm.org/D25310
llvm-svn: 285196
Summary: Clang's intrinsic header currently tries to negate the third operand of a vfmadd mask3 in order to create vfmsub, but this fails isel. This patch adds scalar vfmsub and vfnmsub mask3 that we can use instead to avoid the negate. This is consistent with the packed instructions.
Reviewers: igorb, delena
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25933
llvm-svn: 285173
We already have (V)PMOVZX* combining support, this is the beginning of handling (V)PMOVSX* similarly - other combines in combineVSZext can be generalized in future patches.
This unearthed an interesting bug in that we were generating illegal build vectors on 32-bit targets - it was proving difficult to create a test for it from PMOVZX, but it fired immediately with PMOVSX. I've created a more general form of the existing getConstVector to handle these cases - ideally this should be handled in non-target-specific code but I couldn't find an equivalent.
Differential Revision: https://reviews.llvm.org/D25874
llvm-svn: 285072
Summary: The one tricky thing about this is that the sign/zero_extend_inreg uses v64i8 as an input type which isn't legal without BWI support. Though the vpmovsxbq and vpmovzxbq instructions themselves don't require BWI. To support this we need to add custom lowering for ZERO_EXTEND_VECTOR_INREG with v64i8 input. This can mostly reuse the existing sign extend code with a couple checks for sign extend vs zero extend added.
Reviewers: delena, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D25594
llvm-svn: 285053
We were defaulting to SSE2 costs which weren't taking into account the availability of PBLENDW/PBLENDVB to improve merging of per-element shift results.
llvm-svn: 284939
If a 64-bit value is tested against a bit which is known to be in the range
[0..31) (modulo 64), we can use the 32-bit BT instruction, which has a slightly
shorter encoding.
Differential Revision: https://reviews.llvm.org/D25862
llvm-svn: 284864