GEPs can produce either scalar or vector results. If we're extracting only a subset of the vector lanes, simplifying the operands is helpful in eliminating redundant computation, and (eventually) allowing further optimizations
Differential Revision: https://reviews.llvm.org/D57177
llvm-svn: 352440
This did not cause the buildbot failure it was previously reverted for.
Original commit message:
I'm not sure why we were using SEXTLOAD. EXTLOAD seems more appropriate since we don't care about the upper bits.
This patch changes this and then modifies the X86 post legalization combine to emit a extending shuffle instead of a sign_extend_vector_inreg. Could maybe use an any_extend_vector_inre
On AVX512 targets I think we might be able to use a masked vpmovzx and not have to expand this at all.
llvm-svn: 352433
This adds support for legalizing G_FLOG into a RTLib call.
It adds a legalizer test, and updates the existing floating point tests.
https://reviews.llvm.org/D57347
llvm-svn: 352429
Since these pass the pointer in m0 unlike other DS instructions, these
need to worry about whether the address is uniform or not. This
assumes the address is dynamically uniform, and just uses
readfirstlane to get a copy into an SGPR.
I don't know if these have the same 16-bit add for the addressing mode
offset problem on SI or not, but I've just assumed they do.
Also includes some misc. changes to avoid test differences between the
LDS and GDS versions.
llvm-svn: 352422
This adds instruction selection support for @llvm.log10 in AArch64. It teaches
GISel to lower it to a library call, updates the relevant tests, and adds a
legalizer test for log10.
https://reviews.llvm.org/D57341
llvm-svn: 352418
The 'apple-latest' alias is supposed to provide a CPU that contains the
latest Apple processor model supported by LLVM.
This is supposed to be used by tools like lldb to provide a target that
supports most of the CPU features.
For now, this is mapped to Cyclone.
Differential Revision: https://reviews.llvm.org/D56384
llvm-svn: 352412
This adds ISel support for lifetime markers in opt levels above O0.
It also updates the arm64-irtranslator test, and updates some AArch64 tests that
use them for added coverage.
It also adds a testcase taken from the X86 codegen tests which verified a bug
caused by lifetime markers + stack colouring in the past. This is intended to
make sure that GISel doesn't re-introduce the bug.
(This is basically a straight copy from what SelectionDAG does in
SelectionDAGBuilder.cpp)
https://reviews.llvm.org/D57187
llvm-svn: 352410
Followup to D56636, this time handling the UADDSAT case by expanding
uadd.sat(a, b) to umin(a, ~b) + b.
Differential Revision: https://reviews.llvm.org/D56869
llvm-svn: 352409
This contains all of the legalizer changes from D57197 necessary to select
G_FCOS and G_FSIN. It also updates several existing IR tests in
test/CodeGen/AArch64 that verify that we correctly lower the G_FCOS and G_FSIN
instructions.
https://reviews.llvm.org/D57197
3/3
llvm-svn: 352402
This introduces generic instrutions for floating point sin and cos, G_FCOS and
G_FSIN. It updates the tests, etc.
https://reviews.llvm.org/D57197
1/3
llvm-svn: 352400
First step towards adding support for 64-bit unary "sublane" handling (a bit like lowerShuffleAsRepeatedMaskAndLanePermute).
This allows us to add lowerV64I8Shuffle handling.
llvm-svn: 352389
This is tricky to make optimal: sometimes we're better off using
a single wider op, but other times it makes more sense to combine
a narrow ops to achieve the same result.
This solves the case from:
https://bugs.llvm.org/show_bug.cgi?id=40434
There's potentially a similar change for vectors with 64-bit elements,
but it needs adjustments similar to rL352333 to avoid creating infinite
loops.
llvm-svn: 352380
I faced with the fact that obj2yaml does not dump the sh_entsize field.
A problem arose when I tried to dump ELF versioning sections.
This is close to what D50235 did, but D50235 did the change for yaml2obj, and now
I had to do the same for obj2yaml.
Differential revision: https://reviews.llvm.org/D57229
llvm-svn: 352373
Summary: When using llvm-objcopy -O binary and the resulting file will be empty (e.g. removing the only section that would be written, or using --only-keep with a section that doesn't exist/isn't SHF_ALLOC), we crash because FileOutputBuffer expects Size > 0. Add a regression test, and change Buffer to open/truncate the output file in this case.
Reviewers: alexshap, jhenderson, jakehehrlich, espindola
Reviewed By: alexshap, jhenderson
Subscribers: jfb, llvm-commits, emaste, arichardson
Differential Revision: https://reviews.llvm.org/D56806
llvm-svn: 352371
Instruction abs.[ds] is not generating correct result when working
with NaNs for revisions prior mips32r6 and mips64r6.
To generate a sequence which always produce a correct result, but also
to allow user more control on how his code is compiled, attribute
+abs2008 is added, so user can choose legacy or 2008.
By default legacy mode is used on revisions prior R6. Mips32r6 and
mips64r6 use abs2008 mode by default.
Differential Revision: https://reviews.llvm.org/D35983
llvm-svn: 352370
When --section-headers is used, GNU objdump prints both LMA and VMA for sections.
llvm-objdump does not do that what makes it's output be slightly inconsistent.
Patch teaches llvm-objdump to print LMA/VMA for ELF file formats.
The behavior for other formats remains unchanged.
Differential revision: https://reviews.llvm.org/D57146
llvm-svn: 352366
Lower G_USUBO and G_USUBE. Add narrowScalar for G_SUB.
Legalize and select G_SUB for MIPS 32.
Differential Revision: https://reviews.llvm.org/D53416
llvm-svn: 352351
This patch improves the placement of DBG_VALUEs when by SelectionDAG, which
as documented in PR40427 can go very wrong. At the core of this is
ProcessSourceNode, which assumes the last instruction in a BB is the start
of the last processed IR instruction, which isn't always true.
Instead, use a helper function to call InstrEmitter::EmitNode, that records
before-and-after iterators and determines the first of any new instruction
created during emission. This is passed to ProcessSourceNode, which can
then make more elightened decisions about ordering for DBG_VALUE placement.
Differential revision: https://reviews.llvm.org/D57163
llvm-svn: 352350
GNU objdump's help says: "--adjust-vma: Add OFFSET to all displayed section addresses"
In real life what it does is a bit more complicated
(and IMO not always reasonable. For example, GNU objdump prints not only VMA, but also LMA
for sections. And with --adjust-vma it adjusts LMA, but only when a section has relocations.
llvm-objsump does not seem to support printing LMAs yet, but GNU's logic anyways does not
make sense for me here).
This patch tries to adjust VMA. I tried to implement a reasonable approach.
I am not adjusting sections that are not allocatable. As, for example, adjusting debug sections
VA's and rel[a] sections VA's should not make sense. This behavior seems to be GNU compatible.
Differential revision: https://reviews.llvm.org/D57051
llvm-svn: 352347
Support G_SDIV, G_UDIV, G_SREM and G_UREM.
The only significant difference between arm and thumb mode is that we
need to check a different subtarget feature.
llvm-svn: 352346
These got removed when we autoupgraded to target independent intrinsics, but we didn't have coverage anywhere else. The avx512f/avx512vl versions do have coverage.
Also move some tests back from the upgrade file that aren't really upgraded.
llvm-svn: 352342
This transform was added with rL351346, and we had
an escape for shufps, but we also want one for
unpckps vs. vpermps because vpermps doesn't take
an immediate shuffle index operand.
llvm-svn: 352333
While i have no intention of actually commiting regeneration
of the check lines in these test files with update_llc_test_checks,
lack of that whitespace breaks that util, which is mildly inconvenient.
llvm-svn: 352318
Add generic costs calculation for SADDSAT/SSUBSAT intrinsics, this uses generic costs for sadd_with_overflow/ssub_with_overflow, an extra sign comparison + a selects based on the sign/overflow.
This completes PR40316
Differential Revision: https://reviews.llvm.org/D57239
llvm-svn: 352315
This fixes loads like 's1 = load %p (load 1 from %p)' being combined with an
extend into an illegal 's8 = g_extload %p (load 1 from %p)' which doesn't do any
extension, by avoiding touching those < s8 size loads.
This bug was uncovered by a verifier update r351584, which I reverted it to keep
the bots green.
llvm-svn: 352311
The add+and sequence followed by a branch can
happen e.g. when looping over the set bits of an integer:
```
while (x != 0) {
func(x & ~x);
x &= x - 1;
}
```
Reviewed By: ctopper
Differential Revision: https://reviews.llvm.org/D57296
llvm-svn: 352306
def32 here means the producing instruction zeroed bits 63:32. We already do this for zext, but it looks like we can get an and+anyext sometimes.
Spotted in the diffs from D33587.
llvm-svn: 352303
Bitcast and certain Ptr2Int/Int2Ptr instructions will not alter the
value of their operand and can therefore be looked through when we
determine non-nullness.
Differential Revision: https://reviews.llvm.org/D54956
llvm-svn: 352293
As discussed on PR24545, we should try to commute X86::COND_A 'icmp ugt' cases to X86::COND_B 'icmp ult' to more optimally bind the carry flag output to a SBB instruction.
Differential Revision: https://reviews.llvm.org/D57281
llvm-svn: 352289
We often generate X86ISD::SBB(X, 0) for carry flag arithmetic.
I had tried to create test cases for the ADC equivalent (which often uses the same pattern) but haven't managed to find anything yet.
Differential Revision: https://reviews.llvm.org/D57169
llvm-svn: 352288
The IR enforced limit for the address space is 24-bits, but LLT was
only using 23-bits. Additionally, the argument to the constructor was
truncating to 16-bits.
A similar problem still exists for the number of vector elements. The
IR enforces no limit, so if you try to use a vector with > 65535
elements the IRTranslator asserts in the LLT constructor.
llvm-svn: 352264
For the power9 CPU, vector operations consume a pair of execution units rather
than one execution unit like a scalar operation. Update the target transform
cost functions to reflect the higher cost of vector operations when targeting
Power9.
Patch by RolandF.
Differential revision: https://reviews.llvm.org/D55461
llvm-svn: 352261
Summary: We have isel patterns for this, but we're missing some load patterns and all broadcast patterns. A DAG combine seems like a better fit for this.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D56971
llvm-svn: 352260
These intrinsics may return different values every time they are called
and should not be CSE'd. IntrInaccessibleMemOnly appears to be the right
attribute to model this behavior.
Differential Revision: https://reviews.llvm.org/D57259
llvm-svn: 352256
Summary:
I'm not sure why we were using SEXTLOAD. EXTLOAD seems more appropriate since we don't care about the upper bits.
This patch changes this and then modifies the X86 post legalization combine to emit a extending shuffle instead of a sign_extend_vector_inreg. Could maybe use an any_extend_vector_inreg, but I just did what we already do in LowerLoad. I think we can actually get rid of this code entirely if we switch to -x86-experimental-vector-widening-legalization.
On AVX512 targets I think we might be able to use a masked vpmovzx and not have to expand this at all.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D57186
llvm-svn: 352255
DAGCombiner::visitBITCAST will perform:
fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
As shown in double-bitmanip-dagcombines.ll, this can be advantageous. But
RV32FD doesn't use bitcast directly (as i64 isn't a legal type), and instead
uses RISCVISD::SplitF64. This patch adds an equivalent DAG combine for
SplitF64.
llvm-svn: 352247
Summary:
Currently, if an instruction with a memory operand has no debug information,
X86DiscriminateMemOps will generate one based on the first line of the
enclosing function, or the last seen debug info.
This may cause confusion in certain debugging scenarios. The long term
approach would be to use the line number '0' in such cases, however, that
brings in challenges: the base discriminator value range is limited
(4096 values).
For the short term, adding an opt-in flag for this feature.
See bug 40319 (https://bugs.llvm.org/show_bug.cgi?id=40319)
Reviewers: dblaikie, jmorse, gbedwell
Reviewed By: dblaikie
Subscribers: aprantl, eraman, hiraditya
Differential Revision: https://reviews.llvm.org/D57257
llvm-svn: 352246
(fcopysign a, (fneg b)) will be expanded to bitwise operations by
DAGTypeLegalizer::SoftenFloatRes_FCOPYSIGN if the floating point type isn't
legal. Arguably it might be worth doing a combine even if it is legal.
llvm-svn: 352240
If bottom of block BB has only one successor OldTop, in most cases it is profitable to move it before OldTop, except the following case:
-->OldTop<-
| . |
| . |
| . |
---Pred |
| |
BB-----
Move BB before OldTop can't reduce the number of taken branches, this patch detects this case and prevent the moving.
Differential Revision: https://reviews.llvm.org/D57067
llvm-svn: 352236
We also need to combine to masked truncating with saturation stores, but I'm leaving that for a future patch.
This does regress some tests that used truncate wtih saturation followed by a masked store. Those now use a truncating store and use min/max to saturate.
Differential Revision: https://reviews.llvm.org/D57218
llvm-svn: 352230
The main goal of the model is to avoid *increasing* function size, as
that would eradicate any memory locality benefits from splitting. This
happens when:
- There are too many inputs or outputs to the cold region. Argument
materialization and reloads of outputs have a cost.
- The cold region has too many distinct exit blocks, causing a large
switch to be formed in the caller.
- The code size cost of the split code is less than the cost of a
set-up call.
A secondary goal is to prevent excessive overall binary size growth.
With the cost model in place, I experimented to find a splitting
threshold that works well in practice. To make warm & cold code easily
separable for analysis purposes, I moved split functions to a "cold"
section. I experimented with thresholds between [0, 4] and set the
default to the threshold which minimized geomean __text size.
Experiment data from building LNT+externals for X86 (N = 639 programs,
all sizes in bytes):
| Configuration | __text geom size | __cold geom size | TEXT geom size |
| **-Os** | 1736.3 | 0, n=0 | 10961.6 |
| -Os, thresh=0 | 1740.53 | 124.482, n=134 | 11014 |
| -Os, thresh=1 | 1734.79 | 57.8781, n=90 | 10978.6 |
| -Os, thresh=2 | ** 1733.85 ** | 65.6604, n=61 | 10977.6 |
| -Os, thresh=3 | 1733.85 | 65.3071, n=61 | 10977.6 |
| -Os, thresh=4 | 1735.08 | 67.5156, n=54 | 10965.7 |
| **-Oz** | 1554.4 | 0, n=0 | 10153 |
| -Oz, thresh=2 | ** 1552.2 ** | 65.633, n=61 | 10176 |
| **-O3** | 2563.37 | 0, n=0 | 13105.4 |
| -O3, thresh=2 | ** 2559.49 ** | 71.1072, n=61 | 13162.4 |
Picking thresh=2 reduces the geomean __text section size by 0.14% at
-Os, -Oz, and -O3 and causes ~0.2% growth in the TEXT segment. Note that
TEXT size is page-aligned, whereas section sizes are byte-aligned.
Experiment data from building LNT+externals for ARM64 (N = 558 programs,
all sizes in bytes):
| Configuration | __text geom size | __cold geom size | TEXT geom size |
| **-Os** | 1763.96 | 0, n=0 | 42934.9 |
| -Os, thresh=2 | ** 1760.9 ** | 76.6755, n=61 | 42934.9 |
Picking thresh=2 reduces the geomean __text section size by 0.17% at
-Os and causes no growth in the TEXT segment.
Measurements were done with D57082 (r352080) applied.
Differential Revision: https://reviews.llvm.org/D57125
llvm-svn: 352228
N_FUNC_COLD is a new MachO symbol attribute. It's a hint to the linker
to order a symbol towards the end of its section, to improve locality.
Example:
```
void a1() {}
__attribute__((cold)) void a2() {}
void a3() {}
int main() {
a1();
a2();
a3();
return 0;
}
```
A linker that supports N_FUNC_COLD will order _a2 to the end of the text
section. From `nm -njU` output, we see:
```
_a1
_a3
_main
_a2
```
Differential Revision: https://reviews.llvm.org/D57190
llvm-svn: 352227
This patch adds support for displaying remarks with multiple
lines. For such remarks, it creates a hidden div
containing the message's lines except the first one in a <pre>
tag. It also prepends a link (with '+' as text) to the regular remark
line. This link can be used to show/hide the div containing the
full remark.
In combination with D57159, this allows for better displaying of
multiline remarks in the html pages generated by opt-viewer.
The Javascript is very simple and should be supported by any recent
major browser.
Reviewers: hfinkel, anemet, thegameg, serge-sans-paille
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D57167
llvm-svn: 352223
The intrinsic names erroneously used the .f32 variant. As the return and
argument types were still double the intrinsics calls worked properly.
llvm-svn: 352211
Simplify to the generic ISD::ADD/SUB if we don't make use of the result flag.
This mainly helps with ADDCARRY/SUBBORROW intrinsics which get expanded to X86ISD::ADD/SUB but could be simplified further.
Noticed in some of the test cases in PR31754
Differential Revision: https://reviews.llvm.org/D57234
llvm-svn: 352210
This isn't the final fix for our reduction/horizontal codegen, but it takes care
of a lot of the problems. After we narrow the shuffle, existing combines for
insert/extract and binops kick in, and we end up with cheaper 128-bit ops.
The avg and mul reduction tests show an existing shuffle lowering hole for
AVX2/AVX512. I think in its most minimal form this is:
https://bugs.llvm.org/show_bug.cgi?id=40434
...but we might need multiple fixes to get it right.
Differential Revision: https://reviews.llvm.org/D57156
llvm-svn: 352209
This target-independent code won't trigger for cases such as RV32FD where
custom SelectionDAG nodes are generated. These new tests demonstrate such
cases. Additionally, float-arith.ll was updated so that fneg.s, fsgnjn.s, and
fabs.s selection patterns are actually exercised.
llvm-svn: 352199
If a stack trace or similar has a list of addresses from an executable
or DSO loaded at a variable address (e.g. due to ASLR), the addresses
will not directly correspond to the addresses stored in the object file.
If a user wishes to use llvm-symbolizer, they have to subtract the load
address from every address. This is somewhat inconvenient, especially as
the output of --print-address will result in the adjusted address being
listed, rather than the address coming from the stack trace, making it
harder to map results between the two.
This change adds a new switch to llvm-symbolizer --adjust-vma which
takes an offset, which is then used to automatically do this
calculation. The printed address remains the input address (allowing for
easy mapping), whilst the specified offset is applied to the addresses
when performing the lookup.
The switch is conceptually similar to llvm-objdump's new switch of the
same name (see D57051), which in turn mirrors a GNU switch. There is no
equivalent switch in addr2line.
Reviewed by: grimar
Differential Revision: https://reviews.llvm.org/D57151
llvm-svn: 352195
Same as ARM.
On this occasion we split some of the instruction select tests for more
complicated instructions into their own files, so we can reuse them for
ARM and Thumb mode. Likewise for the legalizer tests.
llvm-svn: 352188
This patch extends TableGen language with !cond operator.
Instead of embedding !if inside !if which can get cumbersome,
one can now use !cond.
Below is an example to convert an integer 'x' into a string:
!cond(!lt(x,0) : "Negative",
!eq(x,0) : "Zero",
!eq(x,1) : "One,
1 : "MoreThanOne")
Reviewed By: hfinkel, simon_tatham, greened
Differential Revision: https://reviews.llvm.org/D55758
llvm-svn: 352185
This change adds an option -g to llvm-objcopy which is an alias for the existing option --strip-debug.
This fixes PR40003.
Reviewed by: alexshap
Differential Revision: https://reviews.llvm.org/D57217
llvm-svn: 352182