Summary:
Assert from PR38737 happens on the dead block inside the parent loop
after unswitching nontrivial switch in the inner loop.
deleteDeadBlocksFromLoop now takes extra care to detect/remove dead
blocks in all the parent loops in addition to the blocks from original
loop being unswitched.
Reviewers: asbirlea, chandlerc
Reviewed By: asbirlea
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51415
llvm-svn: 340955
This is a follow-up to rL339604 which did the same transform
for a sin libcall. The handling of intrinsics vs. libcalls
is unfortunately scattered, so I'm just adding this next to
the existing transform for llvm.cos for now.
This should resolve PR38458:
https://bugs.llvm.org/show_bug.cgi?id=38458
If the call was already negated, the negates will cancel
each other out.
llvm-svn: 340952
Summary:
Port libFuzzer to windows-msvc.
This patch allows libFuzzer targets to be built and run on Windows, using -fsanitize=fuzzer and/or fsanitize=fuzzer-no-link. It allows these forms of coverage instrumentation to work on Windows as well.
It does not fix all issues, such as those with -fsanitize-coverage=stack-depth, which is not usable on Windows as of this patch.
It also does not fix any libFuzzer integration tests. Nearly all of them fail to compile, fixing them will come in a later patch, so libFuzzer tests are disabled on Windows until them.
Reviewers: morehouse, rnk
Reviewed By: morehouse, rnk
Subscribers: #sanitizers, delcypher, morehouse, kcc, eraman
Differential Revision: https://reviews.llvm.org/D51022
llvm-svn: 340949
Expand the simplification of `pow(exp{,2}(x), y)` to all FP types.
This improvement helps some benchmarks in SPEC CPU2000 and CPU2006, such as
252.eon, 447.dealII, 453.povray. Otherwise, no significant regressions on
x86-64 or A64.
Differential revision: https://reviews.llvm.org/D51195
llvm-svn: 340948
Generalize the simplification of `pow(2.0, y)` to `pow(2.0 ** n, y)` for all
scalar and vector types.
This improvement helps some benchmarks in SPEC CPU2000 and CPU2006, such as
252.eon, 447.dealII, 453.povray. Otherwise, no significant regressions on
x86-64 or A64.
Differential revision: https://reviews.llvm.org/D49273
llvm-svn: 340947
This patch adds two new fields to the perf report generated by the SummaryView.
Fields are now logically organized into two small groups; only the second group
contains throughput indicators.
Example:
```
Iterations: 100
Instructions: 300
Total Cycles: 414
Total uOps: 700
Dispatch Width: 4
uOps Per Cycle: 1.69
IPC: 0.72
Block RThroughput: 4.0
```
This patch also updates the docs for llvm-mca.
Due to the nature of this change, several tests in the tools/llvm-mca directory
were affected, and had to be updated using script `update_mca_test_checks.py`.
llvm-svn: 340946
Variables declared with the dllimport attribute are accessed via a
stub variable named __imp_<var>. In MinGW configurations, variables that
aren't declared with a dllimport attribute might still end up imported
from another DLL with runtime pseudo relocs.
For x86_64, this avoids the risk that the target is out of range
for a 32 bit PC relative reference, in case the target DLL is loaded
further than 4 GB from the reference. It also avoids having to make the
text section writable at runtime when doing the runtime fixups, which
makes it worthwhile to do for i386 as well.
Add stub variables for all dso local data references where a definition
of the variable isn't visible within the module, since the DLL data
autoimporting might make them imported even though they are marked as
dso local within LLVM.
Don't do this for variables that actually are defined within the same
module, since we then know for sure that it actually is dso local.
Don't do this for references to functions, since there's no need for
runtime pseudo relocations for autoimporting them; if a function from
a different DLL is called without the appropriate dllimport attribute,
the call just gets routed via a thunk instead.
GCC does something similar since 4.9 (when compiling with -mcmodel=medium
or large; from that version, medium is the default code model for x86_64
mingw), but only for x86_64.
Differential Revision: https://reviews.llvm.org/D51288
llvm-svn: 340942
MipsSEInstrInfo class defines for internal purpose unconditional
branches as Mips::B nad Mips:J even in case of microMIPS code
generation. Under some conditions that leads to the bug - for rather long
branch which fits to Mips jump instruction offset size, but does not fit
to microMIPS jump offset size, we generate 'short' branch and later show
an error 'out of range PC16 fixup' after check in the isBranchOffsetInRange
routine.
Differential revision: https://reviews.llvm.org/D50615
llvm-svn: 340932
Involves microMIPS's jump in the analyzable branch set to reduce some
code patterns.
Differential revision: https://reviews.llvm.org/D50613
llvm-svn: 340931
For a certain combination of options, BuildPairF64_{64}, ExtractElementF64{_64}
may be expanded into instructions using stack.
Add implicit operand $sp for such cases so that ShrinkWrapping doesn't move
prologue setup below them.
Fixes MultiSource/Benchmarks/MallocBench/cfrac for
'--target=mips-img-linux-gnu -mcpu=mips32r6 -mfpxx -mnan=2008'
and
'--target=mips-img-linux-gnu -mcpu=mips32r6 -mfp64 -mnan=2008 -mno-odd-spreg'.
Differential Revision: https://reviews.llvm.org/D50986
llvm-svn: 340927
Rebase rL338240 since the excessive memory usage observed when using
GVNHoist with UBSan has been fixed by rL340818.
Differential Revision: https://reviews.llvm.org/D49858
llvm-svn: 340922
Adjust missed test to avoid the X / X -> 1 & X % X -> 0 folds while keeping their original purposes.
Differential Revision: https://reviews.llvm.org/D50636
llvm-svn: 340917
Adjust tests to avoid the X / X -> 1 & X % X -> 0 folds while keeping their original purposes.
Differential Revision: https://reviews.llvm.org/D50636
llvm-svn: 340916
Noticed while looking at D49562 codegen - we can avoid a large constant mask load and a slow VPBLENDVB select op by using VPBLENDW+VPBLENDD instead.
TODO: As discussed on the patch, we should investigate adding VPBLENDVB handling to target shuffle combining as well, that will allow us to extend this to VPBLENDW+VPBLENDW+VPBLENDD.
Differential Revision: https://reviews.llvm.org/D50074
llvm-svn: 340913
I am experimenting with a single split dwarf (.dwo sections in .o files).
I want to make linker to ignore .dwo sections in .o, for that I am trying to add
SHF_EXCLUDE flag ("E") for them in my asm sample.
I found that currently, it is impossible to add any flag for debug sections using llvm-mc.
That happens because we have a set of predefined unique sections created early with default flags:
https://github.com/llvm-mirror/llvm/blob/master/lib/MC/MCObjectFileInfo.cpp#L391
This patch allows a user to add any flags he wants.
I had to edit TargetLoweringObjectFileImpl.cpp to set MetaData type for debug sections.
Their kind was Data by default (so they were allocatable) and so after changes introduced by
this patch the SHF_ALLOC flag was applied for them, what does not make sense for debug sections.
One of OrcJITTests tests failed because of that.
Differential revision: https://reviews.llvm.org/D51361
llvm-svn: 340904
Summary:
Add some optional code to validate getInstSizeInBytes for emitted
instructions. This flushed out some issues which are fixed by this
patch:
- Streamline getInstSizeInBytes
- Properly define the VI readlane/writelane instruction as VOP3
- Fix the inline constant determination. Specifically, this change
fixes an issue where a 32-bit value of 0xffffffff was recorded
as unsigned. This is equal to -1 when restricting to a 32-bit
comparison, and an inline constant can be used.
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D50629
Change-Id: Id87c3b7975839da0de8156a124b0ce98c5fb47f2
llvm-svn: 340903
In the PR, LoopSink was trying to sink into a catchswitch block, which
doesn't have a valid insertion point.
Differential Revision: https://reviews.llvm.org/D51307
llvm-svn: 340900
Mostly this includes <auto> and <decltype-auto> return values.
Additionally, this fixes a fairly obscure back-referencing bug
that was encountered in one of the C++14 tests, which is that
if you have something like Foo<&bar, &bar> then the `bar`
forms a backreference.
llvm-svn: 340896
Summary: This is split out from D41062 to cover the code in LegalVectorTypes.cpp
Reviewers: RKSimon, spatel, efriedma
Reviewed By: efriedma
Subscribers: sdardis, jvesely, nhaehnle, jrtc27, atanasyan, llvm-commits
Differential Revision: https://reviews.llvm.org/D51337
llvm-svn: 340891
Now that we create the label at the point of the directive, we don't
need to set the "current CV location", and then later when we emit the
next instruction, create a label for it and emit it.
DWARF still defers the labels used in .debug_loc until the next
instruction or value, for reasons unknown.
llvm-svn: 340883
In Thumb1, legal imm range is [0, 255] for ADD/SUB instructions. However, the
legal imm range for LD/ST in (R+Imm) addressing mode is [0, 127]. Imms in
[128, 255] are materialized by mov R, #imm, and LD/STs use them in (R+R)
addressing mode.
This patch checks if a constant is used as offset in (R+Imm), if so, it checks
isLegalAddressingMode passing the constant value as BaseOffset.
Differential Revision: https://reviews.llvm.org/D50931
llvm-svn: 340882
Previously we followed the DWARF implementation, which waits until the
next instruction or data to emit the label to use in the .debug_loc
section. We might want to consider re-evaluating that design choice as
well, since it means the .loc skips alignment padding, for better or
worse.
This was the most minimal fix I could come up with, but we should be
able to do a lot of cleanups now that we don't need to save a pending CV
location on the CodeViewContext. I plan to do those next, but this
immediately fixes an assertion for some of our users.
llvm-svn: 340878
The new method name/behavior more closely models the way it was being used.
It also fixes an assertion that can occur when using the new ORC Core APIs,
where flags alone don't necessarily provide enough context to decide whether
the caller is responsible for materializing a given symbol (which was always
the reason this API existed).
The default implementation of getResponsibilitySet uses lookupFlags to determine
responsibility as before, so existing JITSymbolResolvers should continue to
work.
llvm-svn: 340874
Moving PassTimingInfo from legacy pass manager code into a separate header.
Making it suitable for both legacy and new pass manager.
Adding a test on -time-passes main functionality.
llvm-svn: 340872
The addObjectFile method adds the given object file to the JIT session, making
its code available for execution.
Support for the -extra-object flag is added to lli when operating in
-jit-kind=orc-lazy mode to support testing of this feature.
llvm-svn: 340870
These are intrinsics for supporting kadd builtins in clang. These builtins are already in gcc to implement intrinsics from icc. Though they are missing from the Intel Intrinsics Guide.
This instruction adds two mask registers together as if they were scalar rather than a vXi1. We might be able to get away with a bitcast to scalar and a normal add instruction, but that would require DAG combine smarts in the backend to recoqnize add+bitcast. For now I'd prefer to go with the easiest implementation so we can get these builtins in to clang with good codegen.
Differential Revision: https://reviews.llvm.org/D51370
llvm-svn: 340869
This can leave behind the uses with the defs removed.
Since this should only really happen in tests, it's not worth the
effort of trying to handle this.
llvm-svn: 340866
https://reviews.llvm.org/D51197
Currently, IRTranslator (and GISel) seems to be arbitrarily picking
which overflow intrinsics get mapped into opcodes which either have a
carry as an input or not.
For intrinsics such as Intrinsic::uadd_with_overflow, translate it to an
opcode (G_UADDO) which doesn't have any carry inputs (similar to LLVM
IR).
This patch adds 4 missing opcodes for completeness - G_UADDO, G_USUBO,
G_SSUBE and G_SADDE.
llvm-svn: 340865
The original motivating example uses a 64-bit add, so the carry
is used. Insert a copy from VCC. This may allow shrinking of
the used carry instruction. At worst, we are replacing a
mov to materialize the constant with a copy of vcc.
llvm-svn: 340862
Summary:
Port libFuzzer to windows-msvc.
This patch allows libFuzzer targets to be built and run on Windows, using -fsanitize=fuzzer and/or fsanitize=fuzzer-no-link. It allows these forms of coverage instrumentation to work on Windows as well.
It does not fix all issues, such as those with -fsanitize-coverage=stack-depth, which is not usable on Windows as of this patch.
It also does not fix any libFuzzer integration tests. Nearly all of them fail to compile, fixing them will come in a later patch, so libFuzzer tests are disabled on Windows until them.
Patch By: metzman
Reviewers: morehouse, rnk
Reviewed By: morehouse, rnk
Subscribers: morehouse, kcc, eraman
Differential Revision: https://reviews.llvm.org/D51022
llvm-svn: 340860
This needs to be done in the SSA fold operands
pass to be effective, so there is a bit of overlap
with SIShrinkInstructions but I don't think this
is practically avoidable.
llvm-svn: 340859
Summary:
The updated tests were previously infallible because the SIMD bitwise
operations do not contain vector types in their names.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D51369
llvm-svn: 340858