Test changes are due to differences in how we generate undef elements now. We also changed the types used for extractf128_si256/insertf128_si256 to match the signature of the builtin that previously existed which this patch resurrects. This also matches gcc.
llvm-svn: 334261
Summary:
We recently switch to using a selects in the intrinsics header files for FMA instructions. But the 512-bit versions support flavors with rounding mode which must be an Integer Constant Expression. This has forced those intrinsics to be implemented as macros. As it stands now the mask and mask3 intrinsics evaluate one of their macro arguments twice. If that argument itself is another intrinsic macro, we can end up over expanding macros. Or if its something we can CSE later it would show up multiple times when it shouldn't.
I tried adding __extension__ around the macro and making it an expression statement and declaring a local variable. But whatever name you choose for the local variable can never be used as the name of an input to the macro in user code. If that happens you would end up with the same name on the LHS and RHS of an assignment after expansion. We might be safe if we use __ in front of the variable names because those names are reserved and user code shouldn't use that, but I wasn't sure I wanted to make that claim.
The other option which I've chosen here, is to add back _mask, _maskz, and _mask3 flavors of the builtin which we will expand in CGBuiltin.cpp to replicate the argument as needed and insert any fneg needed on the third operand to make a subtract. The _maskz isn't truly necessary if we have an unmasked version or if we use the masked version with a -1 mask and wrap a select around it. But I've chosen to make things more uniform.
I separated out the scalar builtin handling to avoid too many things going on in EmitX86FMAExpr. It was different enough due to the extract and insert that the minor duplication of the CreateCall was probably worth it.
Reviewers: tkrupa, RKSimon, spatel, GBuella
Reviewed By: tkrupa
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D47724
llvm-svn: 334159
This is more consistent with other usages of builtin_shufflevector. Later optimization passes or codegen will detect the duplicate vector and replace it with undef. Using _mm_undefined just puts a zeroinitializer that still needs to be optimized out later.
llvm-svn: 333944
This patch replaces all packed (and scalar without rounding
mode) fused intrinsics with fmadd/fmaddsub variations.
Then fmadd/fmaddsub are lowered to native IR.
Patch by tkrupa
Reviewers: craig.topper, sroland, spatel, RKSimon
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D47444
llvm-svn: 333555
Because the intrinsics in the headers are implemented as macros, we can't just use a select builtin and pternlog builtin. This would require one of the macro arguments to be used twice. Depending on what was passed to the macro we could expand an expression twice leading to weird behavior. We could maybe declare our local variable in the macro, but that would need to worry about name collisions.
To avoid that just generate IR directly in CGBuiltin.cpp.
Differential Revision: https://reviews.llvm.org/D47125
llvm-svn: 332891
I believe this is safe assuming default default FP environment. The conversion might be inexact, but it can never overflow the FP type so this shouldn't be undefined behavior for the uitofp/sitofp instructions.
We already do something similar for scalar conversions.
Differential Revision: https://reviews.llvm.org/D46863
llvm-svn: 332882
As long as the destination type is a 256 or 128 bit vector with the same number of elements we can use __builtin_convertvector to directly generate trunc IR instruction which will be handled natively by the backend.
Differential Revision: https://reviews.llvm.org/D46742
llvm-svn: 332266
If we're using default rounding mode we can let __builtin_convertvector to generate an fpextend. This matches 128 and 256 bit.
If we're using the version that takes an explicit rounding mode argument we would need to look at the immediate to see if its CUR_DIRECTION.
llvm-svn: 332210
We can use direct C code for these that will use uitofp and insertelement instructions.
For the versions that take an explicit rounding mode we can't do this.
llvm-svn: 332203
This is unnecessary for AVX512VL supporting CPUs like SKX. We can just emit a 128-bit masked load/store here no matter what. The backend will widen it to 512-bits on KNL CPUs.
Fixes the frontend portion of PR37386. Need to fix the backend to optimize the new sequences well.
llvm-svn: 331958
On AVX512F targets we'll produce an emulated sequence using 3 pmuludqs with shifts and adds. On AVX512DQ we'll use vpmulld.
Fixes PR37140.
llvm-svn: 330923
The unmasked versions already didn't have this restrction. I don't think gcc or icc limit these to 64-bit mode so we shouldn't either.
llvm-svn: 330681
I believe all the pieces are now in place in the backend to make this work correctly. We can either mask the input to 32 bits for pmuludg or shl/ashr for pmuldq and use a regular mul instruction. The backend should combine this to PMULUDQ/PMULDQ and then SimplifyDemandedBits will remove the and/shifts.
Differential Revision: https://reviews.llvm.org/D45421
llvm-svn: 329605
Summary:
kunpck intrinsics were removed in favor of native IR a few months ago. The implementation lowers them as by operation on the integer types passed to the intrinsic and then just shifting, masking, and oring them together. A special X86 DAG combine was added to recognize this patter and turn it into a concat_vector operation.
I think it makes more sense to keep the IR implementation closer to vector operations on vXi1. Given that we expect these builtins to be used around other builtins that operate on k-registers which we try to represent in IR with vXi1. InstCombine should be able to get rid of the bitcasts between integers and vXi1 leaving only the vector operations.
Reviewers: RKSimon, spatel, zvi, jina.nahias
Reviewed By: RKSimon
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D42016
llvm-svn: 322461
This patch, together with a matching llvm patch (https://reviews.llvm.org/D39720), implements the lowering of X86 kunpack intrinsics to IR.
Differential Revision: https://reviews.llvm.org/D39719
Change-Id: Id5d3cb394ad33b98be79a6783d1d15569e2b798d
llvm-svn: 319777
Change Header files of the intrinsics for lowering test and testn intrinsics to IR code.
Removed test and testn builtins from clang
Differential Revision: https://reviews.llvm.org/D38737
llvm-svn: 318035
This patch, together with a matching llvm patch (https://reviews.llvm.org/D38671), implements the lowering of X86 shuffle i/f intrinsics to IR.
Differential Revision: https://reviews.llvm.org/D38672
Change-Id: I9b3c2f2b34323bd9ccb21d0c1832f848b88ec047
llvm-svn: 318025
Clang regression tests that depend on the optimizer can break
when there are changes to LLVM...as in:
https://reviews.llvm.org/rL314117
llvm-svn: 314144
The __builtin_ia32_pbroadcastq512_mem_mask we were previously trying to use in 32-bit mode is not implemented in the x86 backend and causes isel to fail in release builds. In debug builds it fails even earlier during legalization with an llvm_unreachable.
While there add the missing test case for this intrinsic for this for 64-bit mode.
This fixes PR34631. D37668 should be able to recover this for 32-bit mode soon. But I wanted to fix the crash ahead of that.
llvm-svn: 313392
Based off the Intel Intrinsics guide, we should expect a void const* argument.
Prevents 'passing 'const void *' to parameter of type 'void *' discards qualifiers' warnings.
Differential Revision: https://reviews.llvm.org/D37449
llvm-svn: 312523
MOVNTDQA non-temporal aligned vector loads can be correctly represented using generic builtin loads, allowing us to remove the existing x86 intrinsics.
LLVM companion patch: D31767.
Differential Revision: https://reviews.llvm.org/D31766
llvm-svn: 300326
x86 has undef SSE/AVX intrinsics that should represent a bogus register operand.
This is not the same as LLVM's undef value which can take on multiple bit patterns.
There are better solutions / follow-ups to this discussed here:
https://bugs.llvm.org/show_bug.cgi?id=32176
...but this should prevent miscompiles with a one-line code change.
Differential Revision: https://reviews.llvm.org/D30834
llvm-svn: 297588
This will allow the backend to constant fold these to generic shuffle vectors like 128-bit and 256-bit without having to working about handling masking.
llvm-svn: 289351
Both the (V)CVTDQ2PD (i32 to f64) and (V)CVTUDQ2PD (u32 to f64) conversion instructions are lossless and can be safely represented as generic __builtin_convertvector calls instead of x86 intrinsics without affecting final codegen.
This patch removes the clang builtins and their use in the headers - a future patch will deal with removing the llvm intrinsics.
This is an extension patch to D20528 which dealt with the equivalent sse/avx cases.
Differential Revision: https://reviews.llvm.org/D26686
llvm-svn: 287088
This is part of a set of changes to allow InstCombine in the backend to optimize variable shifts without having to know about masking.
llvm-svn: 286757
Summary: Inverting the mask argument does not reflect the intended semantics of the intrinsic.
Reviewers: igorb, delena
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D26019
llvm-svn: 286733
Unfortunately, the backend currently doesn't fold masks into the instructions correctly when they come from these shufflevectors. I'll work on that in a future commit.
llvm-svn: 285667
Unfortunately, the backend currently doesn't fold masks into the instructions correctly when they come from these shufflevectors. I'll work on that in a future commit.
llvm-svn: 285540
The X86 clang/test/CodeGen/*builtins.c tests define the mm_malloc.h include
guard as a hack for avoiding its inclusion (mm_malloc.h requires a hosted
environment since it expects stdlib.h to be available - which is not the case
in these internal clang codegen tests).
This patch removes this hack and instead passes -ffreestanding to clang cc1.
Differential Revision: https://reviews.llvm.org/D24825
llvm-svn: 282581
add abs intrinsics that use native LLVM-IR.
change _mm512_mask[z]_and_epi{32|64} to use select intrinsic
Differential Revision: http://reviews.llvm.org/D21973
llvm-svn: 274542
We can now use __builtin_nontemporal_store instead of target specific builtins for naturally aligned nontemporal stores which avoids the need for handling in CGBuiltin.cpp
The scalar integer nontemporal (unaligned) store builtins will have to wait as __builtin_nontemporal_store currently assumes natural alignment and doesn't accept the 'packed struct' trick that we use for normal unaligned load/stores.
The nontemporal loads require further backend support before we can safely convert them to __builtin_nontemporal_load
Differential Revision: http://reviews.llvm.org/D21272
llvm-svn: 272540