Summary:
This changes allows to disable or use customized libxml2 for lldb.
1. Removes redundant include_directories. The one in LLDBConfig.cmake should be enough.
2. Link to ${LIBXML2_LIBRARIES} if xml2 is enabled.
Subscribers: mgorny, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D80257
This setting was added last year, defaulting to false. There have been
no bug reports about the svr4 code path since then, and the using this
packet is definitely faster than walking the module list from lldb.
Set the default value of the setting to true, as that is a better
default. Users can still change it back if encountering problems, or we
can revert the change as well, in case of bigger issues.
I also add a note to the setting description that it is only effective
if lldb is built with xml support.
All entry points into ProcessGDBRemote that connect to the debug server
should connect to the replay server instead during reproducer replay.
This patch adds the necessary logic for ConnectRemote, which is
accessible from the SB API. This fixes active replay for
TestRecognizeBreakpoint.py as described in D78588.
Summary:
This patch adds support to access AArch64 FP SIMD core dump registers and adds a test case to verify registers.
This patches fixes a bug where doing "register read --all" causes lldb to crash.
Reviewers: labath
Reviewed By: labath
Subscribers: kristof.beyls, danielkiss, lldb-commits
Differential Revision: https://reviews.llvm.org/D77793
Summary: This patch increases maximum register size to 256 bytes to accommodate AArch64 SVE registers maximum possible size of 256 bytes.
Reviewers: labath, jankratochvil, rengolin
Reviewed By: labath
Subscribers: tschuett, kristof.beyls, danielkiss, lldb-commits
Differential Revision: https://reviews.llvm.org/D77044
this is dead and non-functional code that hasn't been touched (modulo
refactors) since it was checked in (as an "NFC, with no review and
tests) in 2016.
Anyone interested in adding darwin support to lldb-server can look this
up in git history.
This patch adds parts of the stack that should be useful for unwinding
to the jThreadsInfo reply from lldb-server. We return the top of the
stack (12 words), and we also try to walk the frame pointer linked list
and return the memory containing frame pointer and return address pairs.
The idea is to cover the cases with and without frame pointer omission.
Differential Revision: https://reviews.llvm.org/D74398
Summary:
Currently we only log in debug builds but I don't see why we would do this as this is neither
expensive and seems useful.
I looked into the git history of this code and it seems originally there was also an assert here
and the logging here was the #else branch branch for non-Debug builds.
Reviewers: #lldb, labath
Reviewed By: labath
Subscribers: JDevlieghere
Differential Revision: https://reviews.llvm.org/D76698
Summary:
The memory history plugin for Asan creates a HistoryThread with the
recorded PC values provided by the Asan runtime. In other cases,
thoses PCs are gathered by LLDB directly.
The PCs returned by the Asan runtime are the PCs of the calls in the
backtrace, not the return addresses you would normally get when
unwinding the stack (look for a call to GetPreviousIntructionPc in
AsanGetStack).
When the above addresses are passed to the unwinder, it will subtract
1 from each address of the non zero frames because it treats them as
return addresses. This can lead to the final report referencing the
wrong line.
This patch fixes this issue by threading a flag through HistoryThread
and HistoryUnwinder that tells them to treat every frame like the
first one. The Asan MemoryHistory plugin can then use this flag.
This fixes running TestMemoryHistory on arm64 devices, although it's
hard to guarantee that the test will continue to exhibit the boundary
condition that triggers this bug.
Reviewers: jasonmolenda, kubamracek
Subscribers: kristof.beyls, danielkiss, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D76341
The GDB replay server sanity-checks that every packet it receives
matches what it expects from the serialized packet log. This mechanism
tripped for TestReproducerAttach.py on Linux, because one of the packets
(jModulesInfo) uses run-length encoding. The replay server was comparing
the expanded incoming packet with the unexpanded packet in the log. As a
result, it claimed to have received an unexpected packet, which caused
the test to fail.
This patch addresses that issue by expanding the run-length encoding
before comparing the packets.
Differential revision: https://reviews.llvm.org/D76163
Summary:
This is the only real unwinder, and things have been this way for quite
a long time. At this point, the class has accumulated so many features
it is unlikely that anyone will want to reimplement the whole thing.
The class is also fairly closely coupled (through UnwindPlans and
FuncUnwinders) with a lot of other lldb components that it is hard to
imagine a different unwinder implementation being substantially
different without reimplementing all of those.
The existing unwinding functionality is nonetheless fairly complex and
there is space for adding more structure to it, but I believe a more
worthwhile effort would be to take the existing UnwindLLDB class and try
to break it down and introduce extension/customization points, instead
of writing a brand new Unwind implementation.
Reviewers: jasonmolenda, JDevlieghere, xiaobai
Subscribers: mgorny, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D75848
Summary:
Otherwise this code won't run on the Release+Asserts builds we have on the CI.
Fixes rdar://problem/59867885 (partly)
Reviewers: aprantl
Reviewed By: aprantl
Subscribers: JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D75493
Starting with iOS 13 simulator binaries are identified with an
explicit platform in the new LC_BUILD_VERSION load command.
On older deployment targets using the LC_VERSION_MIN load commands,
this patch detects when an ios process runs on a macOS host and
updates the target triple with the "simulator" environment
accordingly.
(Patch re-applied with bugfix this time).
This is part of https://bugs.swift.org/browse/SR-11971
rdar://problem/58438125
Differential Revision: https://reviews.llvm.org/D75696
Starting with iOS 13 simulator binaries are identified with an
explicit platform in the new LC_BUILD_VERSION load command.
On older deployment targets using the LC_VERSION_MIN load commands,
this patch detects when an ios process runs on a macOS host and
updates the target triple with the "simulator" environment
accordingly.
(Patch re-applied without modifications, the bot failure was unrelated).
This is part of https://bugs.swift.org/browse/SR-11971
rdar://problem/58438125
Differential Revision: https://reviews.llvm.org/D75696
Starting with iOS 13 simulator binaries are identified with an
explicit platform in the new LC_BUILD_VERSION load command.
On older deployment targets using the LC_VERSION_MIN load commands,
this patch detects when an ios process runs on a macOS host and
updates the target triple with the "simulator" environment
accordingly.
This is part of https://bugs.swift.org/browse/SR-11971
rdar://problem/58438125
Differential Revision: https://reviews.llvm.org/D75696
Summary:
It isn't used anywhere (except on imaginary triples like
sparc-apple-ios) and it also violates plugin separation.
This patch deletes it and declares UnwindLLDB to be _the_ lldb unwinder.
Reviewers: jasonmolenda, JDevlieghere, xiaobai
Subscribers: jyknight, mgorny, krytarowski, fedor.sergeev, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D75680
and follow-ups:
a2ca1c2d "build: disable zlib by default on Windows"
2181bf40 "[CMake] Link against ZLIB::ZLIB"
1079c68a "Attempt to fix ZLIB CMake logic on Windows"
This changed the output of llvm-config --system-libs, and more
importantly it broke stand-alone builds. Instead of piling on more fix
attempts, let's revert this to reduce the risk of more breakages.
Summary:
This packet is necessary to make lldb work with the remote-gdb stub in
user mode qemu when running position-independent binaries. It reports
the relative position (load bias) of the loaded executable wrt. the
addresses in the file itself.
Lldb needs to know this information in order to correctly set the load
address of the executable. Normally, lldb would be able to find this out
on its own by following the breadcrumbs in the process auxiliary vector,
but we can't do this here because qemu does not support the
qXfer:auxv:read packet.
This patch does not implement full scope of the qOffsets packet (it only
supports packets with identical code, data and bss offsets), because it
is not fully clear how should the different offsets be handled and I am
not aware of a producer which would make use of this feature (qemu will
always
<https://github.com/qemu/qemu/blob/master/linux-user/elfload.c#L2436>
return the same value for code and data offsets). In fact, even gdb
ignores the offset for the bss sections, and uses the "data" offset
instead. So, until the we need more of this packet, I think it's best
to stick to the simplest solution possible. This patch simply rejects
replies with non-uniform offsets.
Reviewers: clayborg, jasonmolenda
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74598
Updated the patch to only fetch $pc on a Return Address-using
target only if we're in a trap frame *and* if there is a saved
location for $pc in the trap frame's unwind rules. If not,
we fall back to fetching the Return Address register (eg $lr).
Original commit msg:
Unwind past an interrupt handler correctly on arm or at pc==0
Fix RegisterContextLLDB::InitializeNonZerothFrame so that it
will fetch a FullUnwindPlan instead of falling back to the
architectural default unwind plan -- GetFullUnwindPlan knows
how to spot a jmp 0x0 that results in a fault, which may be
the case when we see a trap handler on the stack.
Fix RegisterContextLLDB::SavedLocationForRegister so that when
the pc value is requested from a trap handler frame, where we
have a complete register context available to us, don't provide
the Return Address register (lr) instead of the pc. We have
an actual pc value here, and it's pointing to the instruction
that faulted.
Differential revision: https://reviews.llvm.org/D75007
<rdar://problem/59416588>
The aarcht64-ubuntu bot is showing a test failure in TestHandleAbort.py
with this patch. Adding some logging to that file, it looks like
the saved register context above the trap handler does not have
save state for $pc, but it does have it for $lr on that platform.
I need to fall back to looking for $lr if the $pc cannot be retrieved.
I'll update the patch and re-commit once that's fixed.
This reverts commit edc4f4c9c9.
Fix RegisterContextLLDB::InitializeNonZerothFrame so that it
will fetch a FullUnwindPlan instead of falling back to the
architectural default unwind plan -- GetFullUnwindPlan knows
how to spot a jmp 0x0 that results in a fault, which may be
the case when we see a trap handler on the stack.
Fix RegisterContextLLDB::SavedLocationForRegister so that when
the pc value is requested from a trap handler frame, where we
have a complete register context available to us, don't provide
the Return Address register (lr) instead of the pc. We have
an actual pc value here, and it's pointing to the instruction
that faulted.
Differential revision: https://reviews.llvm.org/D75007
<rdar://problem/59416588>
Summary:
Requesting registers one by one takes a while in our project.
We want to get rid of it by using target.xml.
Reviewers: jarin, labath, omjavaid
Reviewed By: labath, omjavaid
Subscribers: omjavaid, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74217
Comparing those two `const char *` values relies on the assumption that both
strings were created by a ConstString. Let's check that assumption with an
assert as otherwise this code silently does nothing and that's not great.
LLDB has a few different styles of header guards and they're not very
consistent because things get moved around or copy/pasted. This patch
unifies the header guards across LLDB and converts everything to match
LLVM's style.
Differential revision: https://reviews.llvm.org/D74743
Use LLDB_PLUGIN_DEFINE_ADV to make the name of the generated initializer
match the name of the plugin. This is a step towards generating the
initializers with a def file. I'm landing this change in pieces so I can
narrow down what exactly breaks the Windows bot.
This patch changes the way we initialize and terminate the plugins in
the system initializer. It uses an approach similar to LLVM's
TARGETS_TO_BUILD with a def file that enumerates the plugins.
The previously landed patch got reverted because it was lacking:
(1) A plugin definition for the Objective-C language runtime,
(2) The dependency between the Static and WASM dynamic loader,
(3) Explicit initialization of ScriptInterpreterNone for lldb-test.
All issues have been addressed in this patch.
Differential revision: https://reviews.llvm.org/D73067
This patch changes the way we initialize and terminate the plugins in
the system initializer. It uses an approach similar to LLVM's
TARGETS_TO_BUILD with a def file that enumerates the plugins.
Differential revision: https://reviews.llvm.org/D73067
Summary:
Synthesize target.xml in lldb-server to avoid a long chain of
qRegisterInfo packets, which can be slow over low-latency links.
Reviewers: jarin, labath
Reviewed By: labath
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74217
- reduce indentation by removing the defensive
GetID()!=INVALID_PROCESS_ID check -- this function is only called when
an attach or launch succeeds
- replace LLDB_LOGF with LLDB_LOG
StringRef will call strlen on the C string which is inefficient (as ConstString already
knows the string lenght and so does StringRef). This patch replaces all those calls
with GetStringRef() which doesn't recompute the length.
This is a step towards making the initialize and terminate calls be
generated by CMake, which in turn is towards making it possible to
disable plugins at configuration time.
Differential revision: https://reviews.llvm.org/D74245
Implement detection of ELF binary format, and support for i386 register
context on amd64 when a 32-bit executable is being debugged. This is
roughly based on the code from Linux.
Differential Revision: https://reviews.llvm.org/D73974
Due to a c++ quirk, these are found through ADL only when a function with that
name is found through regular lookup. We have one such function in SharingPtr.h,
but I am trying to remove it.
Introduce support for i386 platform that is shared with amd64
in the same plugin. The concept is partially based on the Linux
implementation.
The plugin tries to reuse as much code as possible. As a result, i386
register enums are mapped into amd64 values and those are used in actual
code. The code for accessing FPU and debug registers is shared,
although general-purpose register layouts do not match between the two
kernel APIs and need to be #ifdef-ed.
This layout will also make it possible to add support for debugging
32-bit programs on amd64 with minimal added code.
In order for this to work, I had to add missing data for debug registers
on i386.
Differential Revision: https://reviews.llvm.org/D73802
This fixes building for mingw with BUILD_SHARED_LIBS. In static builds,
the psapi dependency gets linked in transitively from Support, but
when linking Support dynamically, it's revealed that these components
also need linking against psapi.
Differential Revision: https://reviews.llvm.org/D73839
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Recognize hardware breakpoints as breakpoints instead of just mach
exceptions. The mach exception is the same for watch and breakpoints, so
we have to try each to figure out which is which.
Differential revision: https://reviews.llvm.org/D73401
Summary:
A *.cpp file header in LLDB (and in LLDB) should like this:
```
//===-- TestUtilities.cpp -------------------------------------------------===//
```
However in LLDB most of our source files have arbitrary changes to this format and
these changes are spreading through LLDB as folks usually just use the existing
source files as templates for their new files (most notably the unnecessary
editor language indicator `-*- C++ -*-` is spreading and in every review
someone is pointing out that this is wrong, resulting in people pointing out that this
is done in the same way in other files).
This patch removes most of these inconsistencies including the editor language indicators,
all the different missing/additional '-' characters, files that center the file name, missing
trailing `===//` (mostly caused by clang-format breaking the line).
Reviewers: aprantl, espindola, jfb, shafik, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: dexonsmith, wuzish, emaste, sdardis, nemanjai, kbarton, MaskRay, atanasyan, arphaman, jfb, abidh, jsji, JDevlieghere, usaxena95, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73258
Summary:
Normally, on linux we retrieve the process ID from the LinuxProcStatus
stream (which is just the contents of /proc/%d/status pseudo-file).
However, this stream is not strictly required (it's a breakpad
extension), and we are encountering a fair amount of minidumps which do
not have it present. It's not clear whether this is the case with all
these minidumps, but the two known situations where this stream can be
missing are:
- /proc filesystem not mounted (or something to that effect)
- process crashing after exhausting (almost) all file descriptors (so
the minidump writer may not be able to open the /proc file)
Since this is a corner case which will become less and less relevant
(crashpad-generated minidumps should not suffer from this problem), I
work around this problem by hardcoding the PID to 1 in these cases.
The same thing is done by the gdb plugin when talking to a stub which
does not report a process id (e.g. a hardware probe).
Reviewers: jingham, clayborg
Subscribers: markmentovai, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70238
qemu has a very small maximum packet size (4096) and it actually
only uses half of that buffer for some implementation reason,
so when lldb asks for the register target definitions, the x86_64
definition is larger than 4096/2 and we need to fetch it in two parts.
This patch and test is fixing a bug in
GDBRemoteCommunicationClient::ReadExtFeature when reading a target
file in multiple parts. lldb was assuming that it would always
get back the maximum packet size response (4096) instead of
using the actual size received and asking for the next group of
bytes.
We now have two tests in gdb_remote_client for unique features
of qemu - TestNestedRegDefinitions.py would test the ability
of lldb to follow multiple levels of xml includes; I opted to
create a separate TestRegDefinitionInParts.py test to test this
wrinkle in qemu's gdb remote serial protocol stub implementation.
Instead of combining both tests into a single test file.
<rdar://problem/49537922>
Summary: There are a few places in LLDB where we do a `reinterpret_cast` for conversions that we could also do with `static_cast`. This patch moves all this code to `static_cast`.
Reviewers: shafik, JDevlieghere, labath
Reviewed By: labath
Subscribers: arphaman, usaxena95, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D72161
orig_*ax logic is Linux-specific, and was never used on NetBSD.
In fact, its support seems to be a dead code entirely.
Differential Revision: https://reviews.llvm.org/D72195
Rather than handling zlib handling manually, use `find_package` from CMake
to find zlib properly. Use this to normalize the `LLVM_ENABLE_ZLIB`,
`HAVE_ZLIB`, `HAVE_ZLIB_H`. Furthermore, require zlib if `LLVM_ENABLE_ZLIB` is
set to `YES`, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
This restores 68a235d07f,
e6c7ed6d21. The problem with the windows
bot is a need for clearing the cache.
This reverts commit 68a235d07f.
This commit broke the clang-x64-windows-msvc build bot and a follow-up
commit did not fix it. Reverting to fix the bot.
Rather than handling zlib handling manually, use `find_package` from CMake
to find zlib properly. Use this to normalize the `LLVM_ENABLE_ZLIB`,
`HAVE_ZLIB`, `HAVE_ZLIB_H`. Furthermore, require zlib if `LLVM_ENABLE_ZLIB` is
set to `YES`, which requires the distributor to explicitly select whether
zlib is enabled or not. This simplifies the CMake handling and usage in
the rest of the tooling.
echo -e '#include <unistd.h>\nint main(void){\nsync();return 0;}'|./bin/clang -g -x c -;./bin/lldb -o 'file ./a.out' -o 'b main' -o r -o 'p (void)sync()'
Actual:
error: Expression can't be run, because there is no JIT compiled function
Expected:
<nothing, sync() has been executed>
This patch has been checked by:
D71707: clang-tidy: new bugprone-pointer-cast-widening
https://reviews.llvm.org/D71707
Casting from 32-bit `void *` to `uint64_t` requires an intermediate `uintptr_t` cast otherwise the pointer gets sign-extended:
echo -e '#include <stdio.h>\n#include <stdint.h>\nint main(void){void *p=(void *)0x80000000;unsigned long long ull=(unsigned long long)p;unsigned long long ull2=(unsigned long
long)(uintptr_t)p;printf("p=%p ull=0x%llx ull2=0x%llx\\n",p,ull,ull2);return 0;}'|gcc -Wall -m32 -x c -;./a.out
<stdin>: In function ‘main’:
<stdin>:3:66: warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]
p=0x80000000 ull=0xffffffff80000000 ull2=0x80000000
With debug output:
Actual:
IRMemoryMap::WriteMemory (0xb6ff8640, 0xffffffffb6f82158, 0x112) went to [0xb6ff8640..0xb6ff86b3)
Code can be run in the target.
Found function, has local address 0xffffffffb6f84000 and remote address 0xffffffffffffffff
Couldn't disassemble function : Couldn't find code range for function _Z12$__lldb_exprPv
Sections:
[0xb6f84000+0x3c]->0xb6ff9020 (alignment 4, section ID 0, name .text)
...
HandleCommand, command did not succeed
error: Expression can't be run, because there is no JIT compiled function
Expected:
IRMemoryMap::WriteMemory (0xb6ff8640, 0xb6faa15c, 0x128) went to [0xb6ff8640..0xb6ff86c3)
IRExecutionUnit::GetRemoteAddressForLocal() found 0xb6fac000 in [0xb6fac000..0xb6fac040], and returned 0xb6ff9020 from [0xb6ff9020..0xb6ff9060].
Code can be run in the target.
Found function, has local address 0xb6fac000 and remote address 0xb6ff9020
Function's code range is [0xb6ff9020+0x40]
...
Function data has contents:
0xb6ff9020: 10 4c 2d e9 08 b0 8d e2 08 d0 4d e2 00 40 a0 e1
...
Function disassembly:
0xb6ff9020: 0xe92d4c10 push {r4, r10, r11, lr}
Differential revision: https://reviews.llvm.org/D71498
Remove the hack that populates the cpsr register in the gpr struct by
writing past the end of the array. This was tripping up ASan.
Patch by: Reva Cuthbertson
When running the test suite with always capture on, a handful of tests
are failing because they have multiple targets and therefore multiple
GDB remote connections. The current reproducer infrastructure is capable
of dealing with that.
This patch reworks the GDB remote provider to support multiple GDB
remote connections, similar to how the reproducers support shadowing
multiple command interpreter inputs. The provider now keeps a list of
packet recorders which deal with a single GDB remote connection. During
replay we rely on the order of creation to match the number of packets
to the GDB remote connection.
Differential revision: https://reviews.llvm.org/D71105
Summary:
This patch simplifies register accesses in NativeRegisterContextLinux_arm64
and also adds some bare minimum caching to avoid multiple calls to ptrace
during a stop.
Linux ptrace returns data in the form of structures containing GPR/FPR data.
This means that one single call is enough to read all GPRs or FPRs. We do
that once per stop and keep reading from or writing to the buffer that we
have in NativeRegisterContextLinux_arm64 class. Before a resume or detach we
write all buffers back.
This is tested on aarch64 thunder x1 with Ubuntu 18.04. Also tested
regressions on x86_64.
Reviewers: labath, clayborg
Reviewed By: labath
Subscribers: kristof.beyls, lldb-commits
Differential Revision: https://reviews.llvm.org/D69371
Summary:
Previously the ABI plugin exposed some "register infos" and the
gdb-remote code used those to fill in the missing bits. Now, the
"filling in" code is in the ABI plugin itself, and the gdb-remote code
just invokes that.
The motivation for this is two-fold:
a) the "augmentation" logic is useful outside of process gdb-remote. For
instance, it would allow us to avoid repeating the register number
definitions in minidump code.
b) It gives more implementation freedom to the ABI classes. Now that
these "register infos" are essentially implementation details, classes
can use other methods to obtain dwarf/eh_frame register numbers -- for
instance they can consult llvm MC layer.
Since the augmentation code was not currently tested anywhere, I took
the opportunity to create a simple test for it.
Reviewers: jasonmolenda, clayborg, tatyana-krasnukha
Subscribers: aprantl, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70906
InitializeContext is useful for allocating a (potentially variable
size) CONTEXT struct in an unaligned byte buffer. In this case, we
already have a fixed size CONTEXT we want to initialize, and we only
used this as a very roundabout way of zero initializing it.
Instead just memset the CONTEXT we have, and set the ContextFlags field
manually.
This matches how it is done in NativeRegisterContextWindows_*.cpp.
This also makes LLDB run successfully in Wine (for a trivial tested
case at least), as Wine hasn't implemented the InitializeContext
function.
Differential Revision: https://reviews.llvm.org/D70742
Fix handling concurrent watchpoint events so that they are reported
correctly in LLDB.
If multiple watchpoints are hit concurrently, the NetBSD kernel reports
them as series of SIGTRAPs with a thread specified, and the debugger
investigates DR6 in order to establish which watchpoint was hit. This
is normally fine.
However, LLDB disables and reenables the watchpoint on all threads after
each hit, which results in the hit status from DR6 being wiped.
As a result, it can't establish which watchpoint was hit in successive
SIGTRAP processing.
In order to workaround this problem, clear DR6 only if the breakpoint
is overwritten with a new one. More specifically, move cleaning DR6
from ClearHardwareWatchpoint() to SetHardwareWatchpointWithIndex(),
and do that only if the newly requested watchpoint is different
from the one being set previously. This ensures that the disable-enable
logic of LLDB does not clear watchpoint hit status for the remaining
threads.
This also involves refactoring of watchpoint logic. With the old logic,
clearing watchpoint involved wiping dr6 & dr7, and setting it setting
dr{0..3} & dr7. With the new logic, only enable bit is cleared
from dr7, and the remaining bits are cleared/overwritten while setting
new watchpoint.
Differential Revision: https://reviews.llvm.org/D70025
NetBSD ptrace interface does not populate watchpoints to newly-created
threads. Solve this via copying the watchpoints from the current thread
when new thread is reported via TRAP_LWP.
Add a test that verifies that when the user does not have permissions
to set watchpoints on NetBSD, the 'watchpoint set' errors out gracefully
and thread monitoring does not crash on being unable to copy watchpoints
to new threads.
Differential Revision: https://reviews.llvm.org/D70023
Implement major improvements to multithreaded program support. Notably,
support tracking new and exited threads, associate signals and events
with correct threads and support controlling individual threads when
resuming.
Firstly, use PT_SET_EVENT_MASK to enable reporting of created and exited
threads via SIGTRAP. Handle TRAP_LWP events to keep track
of the currently running threads.
Secondly, update the signal (both generic and SIGTRAP) handling code
to account for per-thread signals correctly. Signals delivered
to the whole process are reported on all threads, while per-thread
signals and events are reported only to the specific thread.
The remaining threads are marked as 'stopped with no reason'. Note that
NetBSD always stops all threads on debugger events.
Thirdly, implement the ability to set every thread as running, stopped
or single-stepping separately while continuing the process. This also
provides the ability to send a signal to the whole process or to one
of its thread while resuming.
Differential Revision: https://reviews.llvm.org/D70022
lldb would silently accept a response to the 'g' packet
(read all registers) which was too large; this handles the
case where it is too small.
Differential Revision: https://reviews.llvm.org/D70417
<rdar://problem/34916465>
Implement thread name getting sysctl() on NetBSD. Also fix
the incorrect type in pthread_setname_np() in the relevant test.
Differential Revision: https://reviews.llvm.org/D70363
until we can automatically fall back to p/P if g/G are not supported;
it looks like there is a bug in debugserver's g/G packets taht needs
to be fixed, or debugserver should stop supporting g/G until that bug
is fixed. But we need lldb to be able to fall back to p/P correctly
for that to be a viable workaround.
While investigating an issue where a different packet was sent during
replay I noticed how annoying it is that the existing assert doesn't
specify what packet is actually different. It's printed to the log, but
enabling logging has the potential to change LLDB's behavior. The same
is true when debugging LLDB while it's replaying the reproducer.
I replaced the assert with a printf of the unexpected packet followed by
a fatal_error wrapped in ifndef NDEBUG. The behavior is the same as the
previous assert, just with more/better context.
Following up on https://reviews.llvm.org/D62221, this change introduces
the settings plugin.process.gdb-remote.use-g-packet-for-reading. When
they are on, 'g' packets are used for reading registers.
Using 'g' packets can improve performance by reducing the number of
packets exchanged between client and server when a large number of
registers needs to be fetched.
Differential revision: https://reviews.llvm.org/D62931