Use DL-aware ConstantFoldCompareInstOperands() API instead of
ConstantExpr API. The practical effect of this is that SCCP can
now fold comparisons that require DL.
Relative to the previous attempt, this also updates the
ValueLattice unit tests.
-----
Resolve the TODO about incorrect getCompare() behavior. This can
be made more precise (e.g. by materializing the undef value and
performing constant folding on it), but for now just return an
unknown result to fix the correctness issue.
This should be NFC in terms of user-visible behavior, because the
only user of this method (SCCP) was already guarding against
UndefValue results.
Resolve the TODO about incorrect getCompare() behavior. This can
be made more precise (e.g. by materializing the undef value and
performing constant folding on it), but for now just return an
unknown result.
The existing way of creating the predicate in the guard blocks uses
a boolean value per outgoing block. This increases the number of live
booleans as the number of outgoing blocks increases. The new way added
in this change is to store one integer to represent the outgoing block
we want to branch to, then at each guard block, an integer equality
check is performed to decide which a specific outgoing block is taken.
Using an integer reduces the number of live values and decreases
register pressure especially in cases where there are a large number
of outgoing blocks. The integer based approach is used when the
number of outgoing blocks crosses a threshold, which is currently set
to 32.
Patch by Ruiling Song.
Differential review: https://reviews.llvm.org/D127831
The `FunctionSpecialization` pass needs loop analysis results for its
cost function. For this purpose, it computes the `DominatorTree` and
`LoopInfo` for a function in `getSpecializationBonus`. This function,
however, is called O(number of call sites x number of arguments), but
the DominatorTree/LoopInfo can be computed just once.
This patch plugs into the PassManager infrastructure to obtain
LoopInfo for a function and removes ad-hoc computation from
`getSpecializatioBonus`.
Reviewed By: ChuanqiXu, labrinea
Differential Revision: https://reviews.llvm.org/D136332
This reverts commit bd7949bcd8.
Revert this patch since reviwers have different opinions regarding
the approach in post-commit review.
Will open RFC for further discussion.
Differential Revision: https://reviews.llvm.org/D132408
This teaches the SCCP Solver how to constant fold more intrinsics. Constant
folding appears to be just as good as D115737 but much, much lower in code
change impact as suggested by nikic.
The constrained floating-point intrinsics all take at least one metadata
argument and were the motivation for the change.
Differential Revision: https://reviews.llvm.org/D136466
Additional SCEV verification highlighted a case where the cached loop
dispositions where incorrect after simplifying a condition in IndVars
and moving the user in LoopDeletion. Fix it by invalidating ICmp and all
its users.
Fixes#58515.
This implements IR and bitcode support for the memory attribute,
as specified in https://reviews.llvm.org/D135597.
The new attribute is not used for anything yet (and as such, the
old memory attributes are unaffected).
Differential Revision: https://reviews.llvm.org/D135592
Currently, compiling a program with the `-pg` flag will result in an
undefined symbol error for `.mcount`. This revision fixes the call to
use `__mcount`, which requires a pointer argument to a pointer-sized
object (unique per inserted call) on AIX.
This is only a partial fix. This patch should fix the `-pg` flag's
behaviour on AIX to work with code you are compiling, but it will not
link against standard libraries with `mcount` instrumentation calls. The
next step is to add profiled libraries to the linker search paths in the
Clang driver for the AIX toolchain when linking with `-pg`.
Differential Review: https://reviews.llvm.org/D135384
Followup to D135962 to rename remaining uses of
FunctionModRefBehavior to MemoryEffects. Does not touch API names
yet, but also updates variables names FMRB/MRB to ME, to match the
new type name.
When SimplifyLibCalls fail to optimize printf and sprintf it add
NoUndef/NonNull/Dereferenceable attributes. This patch add the same attributes
if SimplifyLibCalls optimize printf/sprintf into the integer only
iprintf/siprintf.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D136140
When unrolling, the exit values in LCSSA phis will get updated.
Invalidate cached SCEV values for those phis in case SCEV looked through
a exit phi.
Fixes#58340.
makeLoopInvariant may recursively move its operands to make them
invariant, before moving the passed in instruction. Those recursively
moved instructions are currently missed when invalidating block and loop
dispositions.
To address this, move the invalidation code to Loop::makeLoopInvariant.
Fixes#58314.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D135909
Extend forgetBlockAndLoopDisposition to allow clearing information for a
single value. This can be useful when only a single value is changed,
e.g. because the instruction is moved.
We also need to clear the cached values for all SCEV users, because they
may depend on the starting value's disposition.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D134614
Loop peeling currently requires that a) the latch is exiting
b) a branch and c) other exits are unreachable/deopt. This patch
removes all of these limitations, and adds the necessary branch
weight updating support. It essentially works the same way as
before with latch -> exiting terminator and
loop trip count -> per exit trip count.
It's worth noting that there are still other limitations in
profitability heuristics: This patch enables peeling of loops to
make conditions invariant (which is pretty much always highly
profitable if possible), while peeling to make loads dereferenceable
still checks that non-latch exits are unreachable and PGO-based
peeling has even more conditions. Those checks could be relaxed
later if we consider those cases profitable.
The motivation for this change is that loops using iterator adaptors
in Rust often optimize very badly, and end up with a loop phi of the
form phi(true, false) in the final result. Peeling eliminates that
phi and conditions based on it, which enables a lot of follow-on
simplification.
Differential Revision: https://reviews.llvm.org/D134803
The limitation in LibCallSimplifier::optimizeStringLength to only
optimize when the string is an i8 array was changed already in
commit 50ec0b5dce back in 2017.
We still only simplify when 's' points at an array of 'CharSize', so
the comment is still valid in the sense that we do not support
arbitrary array types.
Differential Revision: https://reviews.llvm.org/D135261
Loop versioning changes the control-flow, which may impact SCEVs cached
by for other loops in LoopAccessInfoManager. Clear the manager after
making changes.
Fixes#57825.
Depends on D134609.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D134611
This currently does not make much of a difference (only one tests is
affected), but it is helpful e.g. for the out-of-tree CHERI target where
Builder.CreateMemCpy() can add attributes other than parameter alignment.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D135075
The helpers in BuildLibCalls normally expect that the Value
arguments already have the correct type (matching the lib call
signature). And exception has been emitFPutC which casted the Char
argument to 'int' using CreateIntCast. This patch moves the cast to
the caller instead of doing it inside emitFPutC.
I think it makes sense to make the BuildLibCall API:s a bit
more consistent this way, despite the need to handle the int cast
in two different places now.
Differential Revision: https://reviews.llvm.org/D135066
Stop assuming that an 'int' is 32 bits in helpers that emit libcalls
to lib functions that had 'int' in the signature. For most targets
this is NFC. For a target with 16 bit 'int' type this could help out
detecting if trying to emit a libcall with incorrect signature.
Similarly we now derive the type mapping to 'size_t' by asking TLI
about the size of 'size_t'. This should be NFC (at least for in-tree
targets) since getSizeTSize(), in TLI, is deriving the size in the
same way as DataLayout::getIntPtrType().
Differential Revision: https://reviews.llvm.org/D135065
Lots of BuildLibCalls helpers are using Builder::getInt32Ty to get
a type matching an 'int', and DataLayout::getIntPtrType to get a
type matching 'size_t'. The former is not true for all targets, since
and 'int' isn't always 32 bits. And the latter is a bit weird as well
as the definition of DataLayout::getIntPtrType isn't clearly mapping
it to 'size_t'.
This patch is not aiming at solving any such problems. It is merely
highlighting when a libcall is expecting to use 'int' and 'size_t'
by naming the types as IntTy and SizeTTy when preparing the type
signatures for the emitted libcalls.
Differential Revision: https://reviews.llvm.org/D135064
Use LoopAccessInfoManager directly instead of various GetLAA lambdas.
Depends on D134608.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D134609
If nonnull is already set, we currently skip setting both nonnull
and dereferenceable. Make these independent, to avoid regressions
when additional nonnull attributes are inferred earlier.
llvm/lib/Transforms/Utils/CodeLayout.cpp uses std::abs() with double argument,
which is provided by cmath header, which is not explicitly included into CodeLayout.cpp.
The implicit include in llvm/include/llvm/Support/MathExtras.h was removed in
commit 16544cbe64
Inserting explicit include of cmath into CodeLayout.cpp in order to fix build on MacOS.
Committed on behalf of alsemenov (Aleksei Semenov)
Reviewed By: thieta
Differential Revision: https://reviews.llvm.org/D135072
Added a helper in TargetLibraryInfo to get size of "size_t" in bits,
given a Module reference. The new getSizeTSize helper is using the
same strategy as for example isValidProtoForLibFunc has been using
in the past, assuming that the size can be derived by asking
DataLayout about the size/type of a pointer to int.
FortifiedLibCallSimplifier::optimizeStrpCpyChk was changed to use
the new getSizeTSize helper instead of assuming that sizeof(size_t)
is equal to sizeof(int*) by itself (that is the assumption used in
TargetLibraryInfoImpl::getSizeTSize so the result will be the same).
Having a common helper for this ensure that we use the same strategy
when deriving the size of "size_t" in different parts of the code.
One bonus with this refactoring (basing it on Module instead of just
DataLayout) is that it makes it easier to override this for a specific
target triple, in case the assumption of using getPointerSizeInBits
wouldn't hold.
Differential Revision: https://reviews.llvm.org/D110585
At the moment, LoopAccessAnalysis is a loop analysis for the new pass
manager. The issue with that is that LAI caches SCEV expressions and
modifications in a loop may impact SCEV expressions in other loops, but
we do not have a convenient way to invalidate LAI for other loops
withing a loop pipeline.
To avoid this issue, turn it into a function analysis which returns a
manager object that keeps track of the individual LAI objects per loop.
Fixes#50940.
Fixes#51669.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D134606
Update both memprof and callsite metadata to reflect inlined functions.
For callsite metadata this is simply a concatenation of each cloned
call's call stack with that of the inlined callsite's.
For memprof metadata, each profiled memory info block (MIB) is either
moved to the cloned allocation call or left on the original allocation
call depending on whether its context matches the newly refined call
stack context on the cloned call. We also reapply context trimming
optimizations based on the refined set of contexts on each of the calls
(cloned and original).
Depends on D128142.
Reviewed By: snehasish
Differential Revision: https://reviews.llvm.org/D128143
This reverts commit 0d7f3464ce and
commit f9403ca41e. The latter was
"Profile matching and IR annotation for memprof profiles." and was left
from a bad rebase from a commit already pushed upstream.
Update both memprof and callsite metadata to reflect inlined functions.
For callsite metadata this is simply a concatenation of each cloned
call's call stack with that of the inlined callsite's.
For memprof metadata, each profiled memory info block (MIB) is either
moved to the cloned allocation call or left on the original allocation
call depending on whether its context matches the newly refined call
stack context on the cloned call. We also reapply context trimming
optimizations based on the refined set of contexts on each of the calls
(cloned and original), via utilities in MemoryProfileInfo.
Depends on D128142.
Differential Revision: https://reviews.llvm.org/D128143
breakLoopBackedge may remove blocks and loops. Also clear block &
loop disposition to avoid the cache containing invalid blocks and loops.
The coverage for the change is provided when using an ASAN build of opt
to run the LoopDeletion unit tests; without the fix, pointers to invalid
objects would be used.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D134663
Move LCSSA fixup from ::expandCodeForImpl to ::expand(). This has
the advantage that we directly preserve LCSSA nodes here instead of
relying on doing so in rememberInstruction. It also ensures that we
don't add the non-LCSSA-safe value to InsertedExpressions.
Alternative to D132704.
Fixes#57000.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D134739
Debugify in OriginalDebugInfo mode (verify-each-debuginfo-preserve), when used
in parallel builds of large projects, can produce incorrect report. More
precisely, simultaneous writes to JSON report file, could form incorrect JSON
objects, which describe found Debug Info bugs.
This patch uses the lock/unlock mechanism to protect JSON report file and also
makes script llvm/utils/llvm-original-di-preservation.py resilient to corrupted
lines in the report file. So, it ensures the creation of HTML report.
Differential Revision: https://reviews.llvm.org/D115616
Simplify the code by using CastInst::CreateBitOrPointerCast directly. By
not going through the builder, the temporary instruction also won't get
registered in InsertedValues & co, which means less work overall and
simplifies the clean-up.
Interestingly, MathExtras.h doesn't use <cmath> declaration, so move it out of
that header and include it when needed.
No functional change intended, but there's no longer a transitive include
fromMathExtras.h to cmath.
- Before this patch, loop metadata (if exists) will override the metadata of each predecessor; if the predecessor block already has loop metadata, the orignal loop metadata won't be preserved and could cause missed loop transformations (see 'test2' in llvm/test/Transforms/SimplifyCFG/preserve-llvm-loop-metadata.ll).
To illustrate how inner-loop metadata might be dropped before this patch:
CFG Before
entry
|
v
---> while.cond -------------> while.end
| |
| v
| while.body
| |
| v
| for.body <---- (md1)
| | |______|
| v
| while.cond.exit (md2)
| |
|_______|
CFG After
entry
|
v
---> while.cond.rewrite -------------> while.end
| |
| v
| while.body
| |
| v
| for.body <---- (md2)
|_______| |______|
Basically, when 'while.cond.exit' is folded into 'while.cond', 'md2' overrides 'md1' and 'md1' is dropped from the CFG.
Differential Revision: https://reviews.llvm.org/D134152
After deleting a loop, the block and loop dispositions need to be
cleared. As we don't know which SCEVs in the loop/blocks may be
impacted, completely clear the cache. This should also fix some cases
where deleted loops remained in the LoopDispositions cache.
This fixes a verification failure surfaced by D134531.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D134613
After unrolling a loop, the block and loop dispositions need to be
cleared. As we don't know which SCEVs in the loop/blocks may be
impacted, completely clear the cache. This should also fix some cases
where deleted loops remained in the LoopDispositions cache.
This fixes a verification failure surfaced by D134531.
I am planning on reviewing/updating the existing uses of
forgetLoopDispositions to check if they should be replaced by
forgetBlockAndLoopDispositions.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D134612
After 20d798bd47, SCEV looks through PHIs with a single incoming
value. This means adding a new incoming value may change the SCEV for a
phi. Add missing invalidation when an existing PHI is reused during
LoopVersioning. New incoming values will be added later from the
versioned loop.
Similar issues have been fixed by also adding missing invalidation.
Fixes#57825.
Note that the test case unfortunately requires running loop-vectorize
followed by loop-load-elimination, which does the actual versioning. I
don't think it is possible to reproduce the failure without that
combination.
With the recent addition of new parameter MergeAttributes (D134117),
callers need to specify several default parameters before getting to
specify the new parameter.
This patch reorders the parameters so that callers do not have to
specify as many default parameters.
Differential Revision: https://reviews.llvm.org/D134125
This is required because if there is a pure loop-invariant instruction, Loop Rotation
may decide to not clone it and just hoist it instead. If SCEV has previously cached
that it was loop-variant (not being smart enough to prove invariance), we may end
up with inconsistent cache state (which may later trigger false-negative assertion
failures checking that something was invariant).
This is a conservative fix that unconditionally drops the dispositions. We could
only drop it if the hoisting has actually happened, but it should take some time
understanding whether it's safe with all other things this function does.
Differential Revision: https://reviews.llvm.org/D134167
Reviewed By: fhahn
SimplifyCFG folds
bool foo() {
if (cond1) return false;
if (cond2) return false;
return true;
}
as
bool foo() {
if (cond1 | cond2) return false
return true;
}
'cond2' is called 'bonus insts' in branch folding since they introduce overhead
since the original CFG could do early exit but the folded CFG always executes
them. SimplifyCFG calculates the costs of 'bonus insts' of a folding a BB into
its predecessor BB which shares the destination. If it is below bonus-inst-threshold,
SimplifyCFG will fold that BB into its predecessor and cond2 will always be executed.
When SimplifyCFG calculates the cost of 'bonus insts', it only consider 'bonus' insts
in the current BB to be considered for folding. This causes issue for unrolled loops
which share destinations, e.g.
bool foo(int *a) {
for (int i = 0; i < 32; i++)
if (a[i] > 0) return false;
return true;
}
After unrolling, it becomes
bool foo(int *a) {
if(a[0]>0) return false
if(a[1]>0) return false;
//...
if(a[31]>0) return false;
return true;
}
SimplifyCFG will merge each BB with its predecessor BB,
and ends up with 32 'bonus insts' which are always executed, which
is much slower than the original CFG.
The root cause is that SimplifyCFG does not consider the
accumulated cost of 'bonus insts' which are folded from
different BB's.
This patch fixes that by introducing a ValueMap to track
costs of 'bonus insts' coming from different BB's into
the same BB, and cuts off if the accumulated cost
exceeds a threshold.
Reviewed by: Artem Belevich, Florian Hahn, Nikita Popov, Matt Arsenault
Differential Revision: https://reviews.llvm.org/D132408
In the past, we've had a bug resulting in a compiler crash after
forgetting to merge function attributes (D105729).
This patch teaches InlineFunction to merge function attributes. This
way, we minimize the "time" when the IR is valid, but the function
attributes are not.
Differential Revision: https://reviews.llvm.org/D134117
There are two ctlz intrinsics here with the zero_is_poison flag
set. There are also two comparisons that check if either of the
inputs the ctlzs are zero. We need to use a logical or to block
the poison from the ctlz if either of the inputs is zero.
Reviewed By: arsenm, aqjune
Differential Revision: https://reviews.llvm.org/D130680
Currently, FunctionModRefBehavior tracks whether the function reads
or writes memory (ModRefInfo) and which locations it can access
(argmem, inaccessiblemem and other). This patch changes it to track
ModRef information per-location instead.
To give two examples of why this is useful:
* D117095 highlights a weakness of ModRef modelling in the presence
of operand bundles. For a memcpy call with deopt operand bundle,
we want to say that it can read any memory, but only write argument
memory. This would allow them to be treated like any other calls.
However, we currently can't express this and have to say that it
can read or write any memory.
* D127383 would ideally be modelled as a separate threadid location,
where threadid Refs outside pre-split coroutines can be ignored
(like other accesses to constant memory). The current representation
does not allow modelling this precisely.
The patch as implemented is intended to be NFC, but there are some
obvious opportunities for improvements and simplification. To fully
capitalize on this we would also want to change the way we represent
memory attributes on functions, but that's a larger change, and I
think it makes sense to separate out the FunctionModRefBehavior
refactoring.
Differential Revision: https://reviews.llvm.org/D130896
D129370 started hoisting allocas across stacksave/stackrestore
boundaries which is wrong.
Reviewed By: chill, rnk
Differential Revision: https://reviews.llvm.org/D133730
Instruction being hoisted could have nuw/nsw flags inferred from the old
context, and we cannot simply move it to the new location keeping them
because we are going to introduce new uses to them that didn't exist before.
Example in https://github.com/llvm/llvm-project/issues/57187 shows how
this can produce branch by poison from initially well-defined program.
This patch forcefully recomputes poison-generating flag in the new context.
Differential Revision: https://reviews.llvm.org/D132022
Reviewed By: fhahn, nikic
I'm planning to deprecate and eventually remove llvm::empty.
I thought about replacing llvm::empty(x) with std::empty(x), but it
turns out that all uses can be converted to x.empty(). That is, no
use requires the ability of std::empty to accept C arrays and
std::initializer_list.
Differential Revision: https://reviews.llvm.org/D133677
Replacing the following instances of UndefValue with PoisonValue, where the UndefValue is used as an arbitrary value:
- llvm/lib/CodeGen/WinEHPrepare.cpp
`demotePHIsOnFunclets`: RAUW arbitrary value for lingering uses of removed PHI nodes
- llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
`FoldSingleEntryPHINodes`: Removes a self-referential single entry phi node.
- llvm/lib/Transforms/Utils/CallGraphUpdater.cpp
`finalize`: Remove all references to removed functions.
- llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp
`cleanup`: the result is not used then the inserted instructions are removed.
- llvm/tools/bugpoint/CrashDebugger.cpp
`TestInts`: the program is cloned and instructions are removed to narrow down source of crash.
Differential Revision: https://reviews.llvm.org/D133640
LLVM contains a helpful function for getting the size of a C-style
array: `llvm::array_lengthof`. This is useful prior to C++17, but not as
helpful for C++17 or later: `std::size` already has support for C-style
arrays.
Change call sites to use `std::size` instead.
Differential Revision: https://reviews.llvm.org/D133429
SimplifyCFG does some common code hoisting, which is limited
to hoisting a sequence of identical instruction in identical
order and stops at the first non-identical instruction.
This patch allows hoisting instruction pairs over
same-length sequences of non-matching instructions. The
linear asymptotic complexity of the algorithm stays the
same, there's an extra parameter
`simplifycfg-hoist-common-skip-limit` serving to limit
compilation time and/or the size of the hoisted live ranges.
The patch improves SPECv6/525.x264_r by about 10%.
Reviewed By: nikic, dmgreen
Differential Revision: https://reviews.llvm.org/D129370
Users of LCSSA may not expect non-phi uses when checking the uses
outside a loop, which may cause crashes. This is due to the fact that we
do not update uses in unreachable blocks.
To ensure all reachable uses outside the loop are phis, update uses in
unreachable blocks to use poison in dead code.
Fixes#57508.
Since D129288, callbr is allowed to have duplicate successors. This patch removes a limitation which prevents optimizations from actually producing such callbrs.
This is probably the riskiest of all the recent callbr changes, because code with incorrect assumptions might be lurking somewhere. I fixed the one case I encountered ahead of time in 8201e3ef5c.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D129997
Originally landed as
commit 08860f525a ("[Local] Allow creating callbr with duplicate successors")
Reverted in
commit 1cf6b93df1 ("Revert "[Local] Allow creating callbr with duplicate successors"")
This fixes https://github.com/llvm/llvm-project/issues/57336. It was exposed by a recent SCEV change, but appears to have been a long standing issue.
Note that the whole insert into the loop instead of a split exit edge is slightly contrived to begin with; it's there solely because IndVarSimplify preserves the CFG.
Differential Revision: https://reviews.llvm.org/D132571
This patch replaces calls to GreatestCommonDivisor64 with std::gcd
where both arguments are known to be of unsigned types no larger than
64 bits in size.
MisExpect was occasionally crashing under SampleProfiling, due to a division by zero.
We worked around that in D124302 by changing the assert to an early return.
This patch is intended to add a test case for the crashing scenario and
re-enable MisExpect for SampleProfiling.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D124481
Adds a pass ExpandLargeDivRem to expand div/rem instructions
with more than 128 bits into a loop computing that value.
As discussed on https://reviews.llvm.org/D120327, this approach has the advantage
that it is independent of the runtime library. This also helps the clang driver,
which otherwise would need to understand enough about the runtime library
to know whether to allow _BitInts with more than 128 bits.
Targets are still free to disable this pass and instead provide a faster
implementation in a runtime library.
Fixes https://github.com/llvm/llvm-project/issues/44994
Differential Revision: https://reviews.llvm.org/D126644
Fixes https://github.com/llvm/llvm-project/issues/57221.
This limits the tryWidenCondBranchToCondBranch transform making it
work only if the false block of widenable condition branch
has no successors.
If that block has successors, then SimplifyCondBranchToCondBranch
may undo the transform done by tryWidenCondBranchToCondBranch, which
would lead to infinite cycle of transformation and eventually
an assert failing.
Differential Revision: https://reviews.llvm.org/D132356
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Relands 67504c9549 with a fix for
32-bit builds.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
The diff modifies ext-tsp code layout algorithm in the following ways:
(i) fixes merging of cold block chains (this is a port of D129397);
(ii) adjusts the cost model utilized for optimization;
(iii) adjusts some APIs so that the implementation can be used in BOLT; this is
a prerequisite for D129895.
The only non-trivial change is (ii). Here we introduce different weights for
conditional and unconditional branches in the cost model. Based on the new model
it is slightly more important to increase the number of "fall-through
unconditional" jumps, which makes sense, as placing two blocks with an
unconditional jump next to each other reduces the number of jump instructions in
the generated code. Experimentally, this makes a mild impact on the performance;
I've seen up to 0.2%-0.3% perf win on some benchmarks.
Reviewed By: hoy
Differential Revision: https://reviews.llvm.org/D129893