Move LCSSA fixup from ::expandCodeForImpl to ::expand(). This has
the advantage that we directly preserve LCSSA nodes here instead of
relying on doing so in rememberInstruction. It also ensures that we
don't add the non-LCSSA-safe value to InsertedExpressions.
Alternative to D132704.
Fixes#57000.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D134739
Debugify in OriginalDebugInfo mode (verify-each-debuginfo-preserve), when used
in parallel builds of large projects, can produce incorrect report. More
precisely, simultaneous writes to JSON report file, could form incorrect JSON
objects, which describe found Debug Info bugs.
This patch uses the lock/unlock mechanism to protect JSON report file and also
makes script llvm/utils/llvm-original-di-preservation.py resilient to corrupted
lines in the report file. So, it ensures the creation of HTML report.
Differential Revision: https://reviews.llvm.org/D115616
Simplify the code by using CastInst::CreateBitOrPointerCast directly. By
not going through the builder, the temporary instruction also won't get
registered in InsertedValues & co, which means less work overall and
simplifies the clean-up.
Interestingly, MathExtras.h doesn't use <cmath> declaration, so move it out of
that header and include it when needed.
No functional change intended, but there's no longer a transitive include
fromMathExtras.h to cmath.
- Before this patch, loop metadata (if exists) will override the metadata of each predecessor; if the predecessor block already has loop metadata, the orignal loop metadata won't be preserved and could cause missed loop transformations (see 'test2' in llvm/test/Transforms/SimplifyCFG/preserve-llvm-loop-metadata.ll).
To illustrate how inner-loop metadata might be dropped before this patch:
CFG Before
entry
|
v
---> while.cond -------------> while.end
| |
| v
| while.body
| |
| v
| for.body <---- (md1)
| | |______|
| v
| while.cond.exit (md2)
| |
|_______|
CFG After
entry
|
v
---> while.cond.rewrite -------------> while.end
| |
| v
| while.body
| |
| v
| for.body <---- (md2)
|_______| |______|
Basically, when 'while.cond.exit' is folded into 'while.cond', 'md2' overrides 'md1' and 'md1' is dropped from the CFG.
Differential Revision: https://reviews.llvm.org/D134152
After deleting a loop, the block and loop dispositions need to be
cleared. As we don't know which SCEVs in the loop/blocks may be
impacted, completely clear the cache. This should also fix some cases
where deleted loops remained in the LoopDispositions cache.
This fixes a verification failure surfaced by D134531.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D134613
After unrolling a loop, the block and loop dispositions need to be
cleared. As we don't know which SCEVs in the loop/blocks may be
impacted, completely clear the cache. This should also fix some cases
where deleted loops remained in the LoopDispositions cache.
This fixes a verification failure surfaced by D134531.
I am planning on reviewing/updating the existing uses of
forgetLoopDispositions to check if they should be replaced by
forgetBlockAndLoopDispositions.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D134612
After 20d798bd47, SCEV looks through PHIs with a single incoming
value. This means adding a new incoming value may change the SCEV for a
phi. Add missing invalidation when an existing PHI is reused during
LoopVersioning. New incoming values will be added later from the
versioned loop.
Similar issues have been fixed by also adding missing invalidation.
Fixes#57825.
Note that the test case unfortunately requires running loop-vectorize
followed by loop-load-elimination, which does the actual versioning. I
don't think it is possible to reproduce the failure without that
combination.
With the recent addition of new parameter MergeAttributes (D134117),
callers need to specify several default parameters before getting to
specify the new parameter.
This patch reorders the parameters so that callers do not have to
specify as many default parameters.
Differential Revision: https://reviews.llvm.org/D134125
This is required because if there is a pure loop-invariant instruction, Loop Rotation
may decide to not clone it and just hoist it instead. If SCEV has previously cached
that it was loop-variant (not being smart enough to prove invariance), we may end
up with inconsistent cache state (which may later trigger false-negative assertion
failures checking that something was invariant).
This is a conservative fix that unconditionally drops the dispositions. We could
only drop it if the hoisting has actually happened, but it should take some time
understanding whether it's safe with all other things this function does.
Differential Revision: https://reviews.llvm.org/D134167
Reviewed By: fhahn
SimplifyCFG folds
bool foo() {
if (cond1) return false;
if (cond2) return false;
return true;
}
as
bool foo() {
if (cond1 | cond2) return false
return true;
}
'cond2' is called 'bonus insts' in branch folding since they introduce overhead
since the original CFG could do early exit but the folded CFG always executes
them. SimplifyCFG calculates the costs of 'bonus insts' of a folding a BB into
its predecessor BB which shares the destination. If it is below bonus-inst-threshold,
SimplifyCFG will fold that BB into its predecessor and cond2 will always be executed.
When SimplifyCFG calculates the cost of 'bonus insts', it only consider 'bonus' insts
in the current BB to be considered for folding. This causes issue for unrolled loops
which share destinations, e.g.
bool foo(int *a) {
for (int i = 0; i < 32; i++)
if (a[i] > 0) return false;
return true;
}
After unrolling, it becomes
bool foo(int *a) {
if(a[0]>0) return false
if(a[1]>0) return false;
//...
if(a[31]>0) return false;
return true;
}
SimplifyCFG will merge each BB with its predecessor BB,
and ends up with 32 'bonus insts' which are always executed, which
is much slower than the original CFG.
The root cause is that SimplifyCFG does not consider the
accumulated cost of 'bonus insts' which are folded from
different BB's.
This patch fixes that by introducing a ValueMap to track
costs of 'bonus insts' coming from different BB's into
the same BB, and cuts off if the accumulated cost
exceeds a threshold.
Reviewed by: Artem Belevich, Florian Hahn, Nikita Popov, Matt Arsenault
Differential Revision: https://reviews.llvm.org/D132408
In the past, we've had a bug resulting in a compiler crash after
forgetting to merge function attributes (D105729).
This patch teaches InlineFunction to merge function attributes. This
way, we minimize the "time" when the IR is valid, but the function
attributes are not.
Differential Revision: https://reviews.llvm.org/D134117
There are two ctlz intrinsics here with the zero_is_poison flag
set. There are also two comparisons that check if either of the
inputs the ctlzs are zero. We need to use a logical or to block
the poison from the ctlz if either of the inputs is zero.
Reviewed By: arsenm, aqjune
Differential Revision: https://reviews.llvm.org/D130680
Currently, FunctionModRefBehavior tracks whether the function reads
or writes memory (ModRefInfo) and which locations it can access
(argmem, inaccessiblemem and other). This patch changes it to track
ModRef information per-location instead.
To give two examples of why this is useful:
* D117095 highlights a weakness of ModRef modelling in the presence
of operand bundles. For a memcpy call with deopt operand bundle,
we want to say that it can read any memory, but only write argument
memory. This would allow them to be treated like any other calls.
However, we currently can't express this and have to say that it
can read or write any memory.
* D127383 would ideally be modelled as a separate threadid location,
where threadid Refs outside pre-split coroutines can be ignored
(like other accesses to constant memory). The current representation
does not allow modelling this precisely.
The patch as implemented is intended to be NFC, but there are some
obvious opportunities for improvements and simplification. To fully
capitalize on this we would also want to change the way we represent
memory attributes on functions, but that's a larger change, and I
think it makes sense to separate out the FunctionModRefBehavior
refactoring.
Differential Revision: https://reviews.llvm.org/D130896
D129370 started hoisting allocas across stacksave/stackrestore
boundaries which is wrong.
Reviewed By: chill, rnk
Differential Revision: https://reviews.llvm.org/D133730
Instruction being hoisted could have nuw/nsw flags inferred from the old
context, and we cannot simply move it to the new location keeping them
because we are going to introduce new uses to them that didn't exist before.
Example in https://github.com/llvm/llvm-project/issues/57187 shows how
this can produce branch by poison from initially well-defined program.
This patch forcefully recomputes poison-generating flag in the new context.
Differential Revision: https://reviews.llvm.org/D132022
Reviewed By: fhahn, nikic
I'm planning to deprecate and eventually remove llvm::empty.
I thought about replacing llvm::empty(x) with std::empty(x), but it
turns out that all uses can be converted to x.empty(). That is, no
use requires the ability of std::empty to accept C arrays and
std::initializer_list.
Differential Revision: https://reviews.llvm.org/D133677
Replacing the following instances of UndefValue with PoisonValue, where the UndefValue is used as an arbitrary value:
- llvm/lib/CodeGen/WinEHPrepare.cpp
`demotePHIsOnFunclets`: RAUW arbitrary value for lingering uses of removed PHI nodes
- llvm/lib/Transforms/Utils/BasicBlockUtils.cpp
`FoldSingleEntryPHINodes`: Removes a self-referential single entry phi node.
- llvm/lib/Transforms/Utils/CallGraphUpdater.cpp
`finalize`: Remove all references to removed functions.
- llvm/lib/Transforms/Utils/ScalarEvolutionExpander.cpp
`cleanup`: the result is not used then the inserted instructions are removed.
- llvm/tools/bugpoint/CrashDebugger.cpp
`TestInts`: the program is cloned and instructions are removed to narrow down source of crash.
Differential Revision: https://reviews.llvm.org/D133640
LLVM contains a helpful function for getting the size of a C-style
array: `llvm::array_lengthof`. This is useful prior to C++17, but not as
helpful for C++17 or later: `std::size` already has support for C-style
arrays.
Change call sites to use `std::size` instead.
Differential Revision: https://reviews.llvm.org/D133429
SimplifyCFG does some common code hoisting, which is limited
to hoisting a sequence of identical instruction in identical
order and stops at the first non-identical instruction.
This patch allows hoisting instruction pairs over
same-length sequences of non-matching instructions. The
linear asymptotic complexity of the algorithm stays the
same, there's an extra parameter
`simplifycfg-hoist-common-skip-limit` serving to limit
compilation time and/or the size of the hoisted live ranges.
The patch improves SPECv6/525.x264_r by about 10%.
Reviewed By: nikic, dmgreen
Differential Revision: https://reviews.llvm.org/D129370
Users of LCSSA may not expect non-phi uses when checking the uses
outside a loop, which may cause crashes. This is due to the fact that we
do not update uses in unreachable blocks.
To ensure all reachable uses outside the loop are phis, update uses in
unreachable blocks to use poison in dead code.
Fixes#57508.
Since D129288, callbr is allowed to have duplicate successors. This patch removes a limitation which prevents optimizations from actually producing such callbrs.
This is probably the riskiest of all the recent callbr changes, because code with incorrect assumptions might be lurking somewhere. I fixed the one case I encountered ahead of time in 8201e3ef5c.
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D129997
Originally landed as
commit 08860f525a ("[Local] Allow creating callbr with duplicate successors")
Reverted in
commit 1cf6b93df1 ("Revert "[Local] Allow creating callbr with duplicate successors"")
This fixes https://github.com/llvm/llvm-project/issues/57336. It was exposed by a recent SCEV change, but appears to have been a long standing issue.
Note that the whole insert into the loop instead of a split exit edge is slightly contrived to begin with; it's there solely because IndVarSimplify preserves the CFG.
Differential Revision: https://reviews.llvm.org/D132571
This patch replaces calls to GreatestCommonDivisor64 with std::gcd
where both arguments are known to be of unsigned types no larger than
64 bits in size.
MisExpect was occasionally crashing under SampleProfiling, due to a division by zero.
We worked around that in D124302 by changing the assert to an early return.
This patch is intended to add a test case for the crashing scenario and
re-enable MisExpect for SampleProfiling.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D124481
Adds a pass ExpandLargeDivRem to expand div/rem instructions
with more than 128 bits into a loop computing that value.
As discussed on https://reviews.llvm.org/D120327, this approach has the advantage
that it is independent of the runtime library. This also helps the clang driver,
which otherwise would need to understand enough about the runtime library
to know whether to allow _BitInts with more than 128 bits.
Targets are still free to disable this pass and instead provide a faster
implementation in a runtime library.
Fixes https://github.com/llvm/llvm-project/issues/44994
Differential Revision: https://reviews.llvm.org/D126644
Fixes https://github.com/llvm/llvm-project/issues/57221.
This limits the tryWidenCondBranchToCondBranch transform making it
work only if the false block of widenable condition branch
has no successors.
If that block has successors, then SimplifyCondBranchToCondBranch
may undo the transform done by tryWidenCondBranchToCondBranch, which
would lead to infinite cycle of transformation and eventually
an assert failing.
Differential Revision: https://reviews.llvm.org/D132356
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Relands 67504c9549 with a fix for
32-bit builds.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
The KCFI sanitizer, enabled with `-fsanitize=kcfi`, implements a
forward-edge control flow integrity scheme for indirect calls. It
uses a !kcfi_type metadata node to attach a type identifier for each
function and injects verification code before indirect calls.
Unlike the current CFI schemes implemented in LLVM, KCFI does not
require LTO, does not alter function references to point to a jump
table, and never breaks function address equality. KCFI is intended
to be used in low-level code, such as operating system kernels,
where the existing schemes can cause undue complications because
of the aforementioned properties. However, unlike the existing
schemes, KCFI is limited to validating only function pointers and is
not compatible with executable-only memory.
KCFI does not provide runtime support, but always traps when a
type mismatch is encountered. Users of the scheme are expected
to handle the trap. With `-fsanitize=kcfi`, Clang emits a `kcfi`
operand bundle to indirect calls, and LLVM lowers this to a
known architecture-specific sequence of instructions for each
callsite to make runtime patching easier for users who require this
functionality.
A KCFI type identifier is a 32-bit constant produced by taking the
lower half of xxHash64 from a C++ mangled typename. If a program
contains indirect calls to assembly functions, they must be
manually annotated with the expected type identifiers to prevent
errors. To make this easier, Clang generates a weak SHN_ABS
`__kcfi_typeid_<function>` symbol for each address-taken function
declaration, which can be used to annotate functions in assembly
as long as at least one C translation unit linked into the program
takes the function address. For example on AArch64, we might have
the following code:
```
.c:
int f(void);
int (*p)(void) = f;
p();
.s:
.4byte __kcfi_typeid_f
.global f
f:
...
```
Note that X86 uses a different preamble format for compatibility
with Linux kernel tooling. See the comments in
`X86AsmPrinter::emitKCFITypeId` for details.
As users of KCFI may need to locate trap locations for binary
validation and error handling, LLVM can additionally emit the
locations of traps to a `.kcfi_traps` section.
Similarly to other sanitizers, KCFI checking can be disabled for a
function with a `no_sanitize("kcfi")` function attribute.
Reviewed By: nickdesaulniers, kees, joaomoreira, MaskRay
Differential Revision: https://reviews.llvm.org/D119296
The diff modifies ext-tsp code layout algorithm in the following ways:
(i) fixes merging of cold block chains (this is a port of D129397);
(ii) adjusts the cost model utilized for optimization;
(iii) adjusts some APIs so that the implementation can be used in BOLT; this is
a prerequisite for D129895.
The only non-trivial change is (ii). Here we introduce different weights for
conditional and unconditional branches in the cost model. Based on the new model
it is slightly more important to increase the number of "fall-through
unconditional" jumps, which makes sense, as placing two blocks with an
unconditional jump next to each other reduces the number of jump instructions in
the generated code. Experimentally, this makes a mild impact on the performance;
I've seen up to 0.2%-0.3% perf win on some benchmarks.
Reviewed By: hoy
Differential Revision: https://reviews.llvm.org/D129893
Initial implementation had too weak requirements to positive/negative
range crossings. Not crossing zero with nuw is not enough for two reasons:
- If ArLHS has negative step, it may turn from positive to negative
without crossing 0 boundary from left to right (and crossing right to
left doesn't count for unsigned);
- If ArLHS crosses SINT_MAX boundary, it still turns from positive to
negative;
In fact we require that ArLHS always stays non-negative or negative,
which an be enforced by the following set of preconditions:
- both nuw and nsw;
- positive step (looks liftable);
Because of positive step, boundary crossing is only possible from left
part to the right part. And because of no-wrap flags, it is guaranteed
to never happen.
Use `std::clamp` directly from the standard library now that LLVM is built with
C++17 standards mode.
Differential Revision: https://reviews.llvm.org/D131869
* Replace getUserCost with getInstructionCost, covering all cost kinds.
* Remove getInstructionLatency, it's not implemented by any backends, and we should fold the functionality into getUserCost (now getInstructionCost) to make it easier for targets to handle the cost kinds with their existing cost callbacks.
Original Patch by @samparker (Sam Parker)
Differential Revision: https://reviews.llvm.org/D79483
In D131869 we noticed that we jump through some hoops because we parse the
tolerance option used in MisExpect.cpp into a 64-bit integer. This is
unnecessary, since the value can only be in the range [0, 100).
This patch changes the underlying type to be 32-bit from where it is
parsed in Clang through to it's use in LLVM.
Reviewed By: jloser
Differential Revision: https://reviews.llvm.org/D131935
We don't have a dominator tree in this pass, so we
can't bail out sooner by checking for unreachable
code, but this is a minimal fix for the example in
issue #56875.
Contextual knowledge may be used to prove invariance of some conditions.
For example, in this case:
```
; %len >= 0
guard(%iv = {start,+,1}<nuw> <s %len)
guard(%iv = {start,+,1}<nuw> <u %len)
```
the 2nd check always fails if `start` is negative and always passes otherwise.
It looks like there are more opportunities of this kind that are still to be
implemented in the future.
Differential Revision: https://reviews.llvm.org/D129753
Reviewed By: apilipenko
The RelLookupTableConverter pass currently only supports 64-bit
pointers. This is currently enforced using an isArch64Bit() check
on the target triple. However, we consider x32 to be a 64-bit target,
even though the pointers are 32-bit. (And independently of that
specific example, there may be address spaces with different pointer
sizes.)
As such, add an additional guard for the size of the pointers that
are actually part of the lookup table.
Differential Revision: https://reviews.llvm.org/D131399
As discussed in [0], this diff adds the `skipprofile` attribute to
prevent the function from being profiled while allowing profiled
functions to be inlined into it. The `noprofile` attribute remains
unchanged.
The `noprofile` attribute is used for functions where it is
dangerous to add instrumentation to while the `skipprofile` attribute is
used to reduce code size or performance overhead.
[0] https://discourse.llvm.org/t/why-does-the-noprofile-attribute-restrict-inlining/64108
Reviewed By: phosek
Differential Revision: https://reviews.llvm.org/D130807
During LTO a local promoted to a global gets a unique suffix based on
a hash of the module IR. This means that changes in the local's module
can affect the contents in another module that imported it (because the name
of the imported promoted local is changed, but that doesn't reflect a
real change in the importing module). So any tool that's
validating changes to the importing module will see a superficial change.
Instead of using the module hash, we can use the "source_filename" if it
exists to generate a unique identifier that doesn't change due to LTO
shenanigans.
Differential Revision: https://reviews.llvm.org/D128863
In this patch we replace common code patterns with the use of utility
functions for dealing with profiling metadata. There should be no change
in functionality, as the existing checks should be preserved in all
cases.
Reviewed By: bogner, davidxl
Differential Revision: https://reviews.llvm.org/D128860
Reflect in the pointer's offset the length of the leading part
of the consumed string preceding the first converted digit.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D130912
SimplifyCFG does some common code hoisting, which is limited to hoisting a
sequence of identical instruction in identical order and stops at the first
non-identical instruction.
This patch allows hoisting instruction pairs over same-length sequences of
non-matching instructions. The linear asymptotic complexity of the algorithm
stays the same, there's an extra parameter `simplifycfg-hoist-common-skip-limit`
serving to limit compilation time and/or the size of the hoisted live ranges.
The patch improves SPECv6/525.x264_r by about 10%.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D129370
In this patch we replace common code patterns with the use of utility
functions for dealing with profiling metadata. There should be no change
in functionality, as the existing checks should be preserved in all
cases.
Reviewed By: bogner, davidxl
Differential Revision: https://reviews.llvm.org/D128860
WinEHPrepare marks any function call from EH funclets as unreachable, if it's not a nounwind intrinsic or has no proper funclet bundle operand. This
affects ARC intrinsics on Windows, because they are lowered to regular function calls in the PreISelIntrinsicLowering pass. It caused silent binary truncations and crashes during unwinding with the GNUstep ObjC runtime: https://github.com/gnustep/libobjc2/issues/222
This patch adds a new function `llvm::IntrinsicInst::mayLowerToFunctionCall()` that aims to collect all affected intrinsic IDs.
* Clang CodeGen uses it to determine whether or not it must emit a funclet bundle operand.
* PreISelIntrinsicLowering asserts that the function returns true for all ObjC runtime calls it lowers.
* LLVM uses it to determine whether or not a funclet bundle operand must be propagated to inlined call sites.
Reviewed By: theraven
Differential Revision: https://reviews.llvm.org/D128190
This probably should have been part of D123089, but the effects of it
don't show up until we start removing functions from the table in
D130107. Oops.
Differential Revision: https://reviews.llvm.org/D130184
We currently assume in a number of places that free-like functions
free their first argument. This is true for all hardcoded free-like
functions, but with the new attribute-based design, the freed
argument is supposed to be indicated by the allocptr attribute.
To make sure we handle this correctly once allockind(free) is
respected, add a getFreedOperand() helper which returns the freed
argument, rather than just indicating whether the call frees *some*
argument.
This migrates most but not all users of isFreeCall() to the new
API. The remaining users are a bit more tricky.
Put AllocationFn check before I->willReturn can allow CodeGenPrepare to remove useless malloc instruction
Differential Revision: https://reviews.llvm.org/D130126
When F calls G calls H, G is nounwind, and G is inlined into F, then the
inlined call-site to H should be effectively nounwind so as not to lose
information during inlining.
If H itself is nounwind (which often happens when H is an intrinsic), we
no longer mark the callsite explicitly as nounwind. Previously, there
were cases where the inlined call-site of H differs from a pre-existing
call-site of H in F *only* in the explicitly added nounwind attribute,
thus preventing common subexpression elimination.
v2:
- just check CI->doesNotThrow
v3 (resubmit after revert at 3443788087):
- update Clang tests
Differential Revision: https://reviews.llvm.org/D129860
powi() is not a standard math library function; it is specified
with non-strict semantics in the LangRef. We currently require
'afn' to do this transform when it needs a sqrt(), so I just
extended that requirement to the whole-number exponent too.
This bug was introduced with:
b17754bcaa
...where we deferred expansion of pow() to later passes.
Since D129288, callbr is allowed to have duplicate successors. This
patch removes a limitation which prevents optimizations from actually
producing such callbrs.
Differential Revision: https://reviews.llvm.org/D129997
When F calls G calls H, G is nounwind, and G is inlined into F, then the
inlined call-site to H should be effectively nounwind so as not to lose
information during inlining.
If H itself is nounwind (which often happens when H is an intrinsic), we
no longer mark the callsite explicitly as nounwind. Previously, there
were cases where the inlined call-site of H differs from a pre-existing
call-site of H in F *only* in the explicitly added nounwind attribute,
thus preventing common subexpression elimination.
v2:
- just check CI->doesNotThrow
Differential Revision: https://reviews.llvm.org/D129860
If DISubpogram was not cloned (e.g. we are cloning a function that has other
functions inlined into it, and subprograms of the inlined functions are
not supposed to be cloned), it doesn't make sense to clone its DILexicalBlocks
as well. Otherwise we'll get duplicated DILexicalBlocks that may confuse
debug info emission in AsmPrinter.
I believe it also makes no sense cloning any DILocalVariables or maybe
other local entities, if their parent subprogram was not cloned, cause
they will be dangling and will not participate in futher emission.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D127102
As callbr is now allowed to have duplicate destinations, we can
have a callbr with a unique successor. Make sure it doesn't get
dropped, as we still need to preserve the side-effect.
Callbr is no longer an indirect terminator in the sense that is
relevant here (that it's successors cannot be updated). The primary
effect of this change is that callbr no longer prevents formation
of loop simplify form.
I decided to drop the isIndirectTerminator() method entirely and
replace it with isa<IndirectBrInst>() checks. I assume this method
was added to abstract over indirectbr and callbr, but it never
really caught on, and there is nothing left to abstract anymore
at this point.
Differential Revision: https://reviews.llvm.org/D129849
This is a followup to D129630, which switches LSR to the member
isSafeToExpand() variant, and removes the freestanding function.
This is done by creating the SCEVExpander early (already during the
analysis phase). Because the SCEVExpander is now available for the
whole lifetime of LSRInstance, I've also made it into a member
variable, rather than passing it around in even more places.
Differential Revision: https://reviews.llvm.org/D129769
I happened to notice a two places where the enum was being pass
directly to the bool IsSigned argument of createExtendInst. This
was functionally ok since SignExtended in the enum has value
of 1, but the code shouldn't rely on that.
Using an enum class prevents the enum from being convertible to bool,
but does make writing the enum values more verbose. Since we now
have to write ExtendKind:: in front of them, I've shortened the
names of ZeroExtended and SignExtended.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D129733
Motivation here is to unblock LSRs ability to use ICmpZero uses - the major effect of which is to enable count down IVs. The test changes reflect this goal, but the potential impact is much broader since this isn't a change in LSR at all.
SCEVExpander needs(*) to prove that expanding the expression is safe anywhere the SCEV expression is valid. In general, we can't expand any node which might fault (or exhibit UB) unless we can either a) prove it won't fault, or b) guard the faulting case. We'd been allowing non-zero constants here; this change extends it to non-zero values.
vscale is never zero. This is already implemented in ValueTracking, and this change just adds the same logic in SCEV's range computation (which in turn drives isKnownNonZero). We should common up some logic here, but let's do that in separate changes.
(*) As an aside, "needs" is such an interesting word here. First, we don't actually need to guard this at all; we could choose to emit a select for the RHS of ever udiv and remove this code entirely. Secondly, the property being checked here is way too strong. What the client actually needs is to expand the SCEV at some particular point in some particular loop. In the examples, the original urem dominates that loop and yet we completely ignore that information when analyzing legality. I don't plan to actively pursue either direction, just noting it for future reference.
Differential Revision: https://reviews.llvm.org/D129710
As a followup to D129630, this switches a usage of the freestanding
function in LoopPredication to use the member variant instead. This
was the last use of the freestanding function, so drop it entirely.
isSafeToExpand() for addrecs depends on whether the SCEVExpander
will be used in CanonicalMode. At least one caller currently gets
this wrong, resulting in PR50506.
Fix this by a) making the CanonicalMode argument on the freestanding
functions required and b) adding member functions on SCEVExpander
that automatically take the SCEVExpander mode into account. We can
use the latter variant nearly everywhere, and thus make sure that
there is no chance of CanonicalMode mismatch.
Fixes https://github.com/llvm/llvm-project/issues/50506.
Differential Revision: https://reviews.llvm.org/D129630
Make the implementation more similar to other functions, by
explicitly skipping an unknown/undef first, and always falling
back to overdefined at the end. I don't think it makes a difference
now, but could make one once the constant evaluation can fail. In
that case we would directly mark the result as overdefined now,
rather than keeping it unknown (and later making it overdefined
because we think it's undef-based).
The value lattice explicitly represents undef, and markConstant()
internally checks for UndefValue and will create an undef rather
than constant lattice element in that case.
This is mostly a code simplification, it has little practical impact
because we usually get undef results from undef operands, and those
don't get processed.
Only leave the check behind for the CmpInst case, because it
currently goes through this incorrect code in the getCompare()
implementation: f98697642c/llvm/include/llvm/Analysis/ValueLattice.h (L456-L457)
Differential Revision: https://reviews.llvm.org/D128330
It is illegal to merge two `llvm.coro.save` calls unless their
`llvm.coro.suspend` users are also merged. Marks it "nomerge" for
the moment.
This reverts D129025.
Alternative to D129025, which affects other token type users like WinEH.
Reviewed By: ChuanqiXu
Differential Revision: https://reviews.llvm.org/D129530
When performing a !nonnull load from uninitialized memory, we
should preserve the nonnull assume just like in all other cases.
We already do this correctly in the generic mem2reg code, but
don't handle this case when using the optimized single-block
implementation.
Make sure that the optimized implementation exhibits the same
behavior as the generic implementation.
Since the backend's codegen is capable to expand powi into fmul's, it
is not needed anymore to do so in the ::optimizePow() function of
SimplifyLibCalls.cpp. What is sufficient is to always turn pow(x, n)
into powi(x, n) for the cases where n is a constant integer value.
Dropping the current expansion code allowed relaxation of the folding
conditions and now this can also happen at optimization levels below
Ofast.
The added CodeGen/AArch64/powi.ll test case ensures that powi is
actually expanded into fmul's, confirming that this refactor did not
cause any performance degradation.
Following an idea proposed by David Sherwood <david.sherwood@arm.com>.
Differential Revision: https://reviews.llvm.org/D128591
After D129205, we support SplitBlockPredecessors() for predecessors
with callbr terminators. This means that it is now also safe to
invoke critical edge splitting for an edge coming from a callbr
terminator. Remove checks in various passes that were protecting
against that.
Differential Revision: https://reviews.llvm.org/D129256
Enhance memchr and strchr handling to simplify calls to the functions
used in equality expressions with the first argument to at most two
integer comparisons:
- memchr(A, C, N) == A to N && *A == C for either a dereferenceable
A or a nonzero N,
- strchr(S, C) == S to *S == C for any S and C, and
- strchr(S, '\0') == 0 to true for any S
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D128939
Fix bug exposed by https://reviews.llvm.org/D125990
rewriteLoopExitValues calls InductionDescriptor::isInductionPHI which requires
the PHI node to have an incoming edge from the loop preheader. This adds checks
before calling InductionDescriptor::isInductionPHI to see that the loop has a
preheader. Also did some refactoring.
Differential Revision: https://reviews.llvm.org/D129297
This patchs adds a new metadata kind `exclude` which implies that the
global variable should be given the necessary flags during code
generation to not be included in the final executable. This is done
using the ``SHF_EXCLUDE`` flag on ELF for example. This should make it
easier to specify this flag on a variable without needing to explicitly
check the section name in the target backend.
Depends on D129053 D129052
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D129151
Currently we use the `embedBufferInModule` function to store binary
strings containing device offloading data inside the host object to
create a fatbinary. In the case of LTO, we need to extract this object
from the LLVM-IR. This patch adds a metadata node for the embedded
objects containing the embedded pointers and the sections they were
stored at. This should create a cleaner interface for identifying these
values.
In the future it may be worthwhile to also encode an `ID` in the
metadata corresponding to the object's special section type if relevant.
This would allow us to extract the data from an object file and LLVM-IR
using the same ID.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D129033
SplitBlockPredecessors currently asserts if one of the predecessor
terminators is a callbr. This limitation was originally necessary,
because just like with indirectbr, it was not possible to replace
successors of a callbr. However, this is no longer the case since
D67252. As the requirement nowadays is that callbr must reference
all blockaddrs directly in the call arguments, and these get
automatically updated when setSuccessor() is called, we no longer
need this limitation.
The only thing we need to do here is use replaceSuccessorWith()
instead of replaceUsesOfWith(), because only the former does the
necessary blockaddr updating magic.
I believe there's other similar limitations that can be removed,
e.g. related to critical edge splitting.
Differential Revision: https://reviews.llvm.org/D129205
Debugify in OriginalDebugInfo mode, introduced with D82545,
runs only with legacy PassManager.
This patch enables this utility for the NewPM.
Differential Revision: https://reviews.llvm.org/D115351
This patch adds the support for `fmax` and `fmin` operations in `atomicrmw`
instruction. For now (at least in this patch), the instruction will be expanded
to CAS loop. There are already a couple of targets supporting the feature. I'll
create another patch(es) to enable them accordingly.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D127041
This addresses the assertion failure reported in
https://reviews.llvm.org/D124159#3631240.
I believe that this limitation in SplitBlockPredecessors is not
actually necessary (because unlike with indirectbr, callbr is
restricted in a way that does allow updating successors), but for
now fix the assertion failure the same way we do everywhere else,
by also skipping callbr.
As constant expressions can no longer trap, it only makes sense to
call isSafeToSpeculativelyExecute on Instructions, so limit the
API to accept only them, rather than general Operators or Values.
As integer div/rem constant expressions are no longer supported,
constants can no longer trap and are always safe to speculate.
Remove the Constant::canTrap() method and its usages.
By LangRef, hoisting token-returning instructions obsures the origin
so it should be skipped. Found this issue while investigating a
CoroSplit pass crash.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D129025
This reverts commit 4e545bdb35.
The newly added test is the third infinite combine loop caused by
this change. In this case, it's a combination of the branch to
common dest and jump threading folds that keeps peeling off loop
iterations.
The core problem here is that we ideally would not thread over
loop backedges, both because it is potentially non-profitable
(it may break canonical loop structure) and because it may result
in these kinds of loops. Unfortunately, due to the lack of a
dominator tree in SimplifyCFG, there is no good way to prevent
this. While we have LoopHeaders, this is an optional structure and
we don't do a good job of keeping it up to date. It would be fine
for a profitability check, but is not suitable for a correctness
check.
So for now I'm just giving up here, as I don't see a good way to
robustly prevent infinite combine loops.
Fixes https://github.com/llvm/llvm-project/issues/56203.
If there are multiple predecessors that have the same condition
value (and thus same "real destination"), these were previously
handled by copying the threaded block for each predecessor.
Instead, we can reuse one block for all of them. This makes the
behavior of SimplifyCFG's jump threading match that of the
actual JumpThreading pass.
This also avoids the infinite combine loop reported in:
https://reviews.llvm.org/D124159#3624387
These conditions are later checked in the HoistTerminator code
path. Checking them here is somewhat confusing, because this code
only checks the first instruction in the block, which is not
necessarily the terminator.
Add an emitter for the memrchr common extension and simplify the strrchr
call handler to use it. This enables transforming calls with the empty
string to the test C ? S : 0.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D128954
LoopSimplify only requires that the loop predecessor has a single
successor and is safe to hoist into -- it doesn't necessarily have
to be an unconditional BranchInst.
Adjust LoopDeletion to assert conditions closer to what it actually
needs for correctness, namely a single successor and a
side-effect-free terminator (as the terminator is getting dropped).
Fixes https://github.com/llvm/llvm-project/issues/56266.
When converting strchr(p, '\0') to p + strlen(p) we know that
strlen() must return an offset that is inbounds of the allocated
object (otherwise it would be UB), so we can use an inbounds GEP.
An equivalent argument can be made for the other cases.