DIV/REM by constants should always be expanded into mul/shift/etc.
patterns. Unfortunately the ConstantHoisting pass runs too early at a
point where the pattern isn't expanded yet. However after
ConstantHoisting hoisted some immediate the result may not expand
anymore. Also the hoisting typically doesn't make sense because it
operates on immediates that will change completely during the expansion.
Report DIV/REM as TCC_Free so ConstantHoisting will not touch them.
Differential Revision: https://reviews.llvm.org/D53174
llvm-svn: 344315
On 64-bit targets the generic legalize will use an i64 load and a scalar_to_vector for us. But on 32-bit targets i64 isn't legal and the generic legalizer will end up emitting two 32-bit loads. We have DAG combines that try to put those two loads back together with pretty good success.
This patch instead uses f64 to avoid the splitting entirely. I've made it do the same for 64-bit mode for consistency and to keep the load in the fp domain.
There are a few things in here that look like regressions in 32-bit mode, but I believe they bring us closer to the 64-bit mode codegen. And that the 64-bit mode code could be better. I think those issues should be looked at separately.
Differential Revision: https://reviews.llvm.org/D52528
llvm-svn: 344291
This is an alternative to D53080 since I think using a BEXTR for a shifted mask is definitely an improvement when the shl can be absorbed into addressing mode. The other cases I'm less sure about.
We already have several tricks for handling an and of a shift in address matching. This adds a new case for BEXTR.
I've moved the BEXTR matching code back to X86ISelDAGToDAG to allow it to match. I suppose alternatively we could directly emit a X86ISD::BEXTR node that isel could pattern match. But I'm trying to view BEXTR matching as an isel concern so DAG combine can see 'and' and 'shift' operations that are well understood. We did lose a couple cases from tbm_patterns.ll, but I think there are ways to recover that.
I've also put back the manual load folding code in matchBEXTRFromAnd that I removed a few months ago in r324939. This gives us some more freedom to make decisions based on the ability to fold a load. I haven't done anything with that yet.
Differential Revision: https://reviews.llvm.org/D53126
llvm-svn: 344270
Summary:
As discussed in D48491, we can't really do this in the TableGen,
since we need to produce *two* instructions. This only implements
one single pattern. The other 3 patterns will be in follow-ups.
I'm not sure yet if we want to also fuse shift into here
(i.e `(x >> start) & ...`)
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D52304
llvm-svn: 344224
Remove tryFoldVecLoad since tryFoldLoad would call IsProfitableToFold and pick up the new check.
This saves about 5K out of ~600K on the generated isel table.
llvm-svn: 344189
Summary:
As discussed in [[ https://bugs.llvm.org/show_bug.cgi?id=38938 | PR38938 ]],
we fail to emit `BEXTR` if the mask is shifted.
We can't deal with that in `X86DAGToDAGISel` `before the address mode for the inc is selected`,
and we can't really do it in the normal DAGCombine, because we don't have generic `ISD::BitFieldExtract` node,
and if we simply turn the shifted mask into a normal mask + shift-left, it will be folded back.
So it would seem X86ISelLowering is the place to handle this.
This patch only moves the matchBEXTRFromAnd()
from X86DAGToDAGISel to X86ISelLowering.
It does not add support for the 'shifted mask' pattern.
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52426
llvm-svn: 344179
This is intended to restore horizontal codegen to what it looked like before IR demanded elements improved in:
rL343727
As noted in PR39195:
https://bugs.llvm.org/show_bug.cgi?id=39195
...horizontal ops can be worse for performance than a shuffle+regular binop, so I've added a TODO. Ideally, we'd
solve that in a machine instruction pass, but a quicker solution will be adding a 'HasFastHorizontalOp' feature
bit to deal with it here in the DAG.
Differential Revision: https://reviews.llvm.org/D52997
llvm-svn: 344141
Similar to what already happens in the DAGCombiner wrappers, this patch adds the root nodes back onto the worklist if the DCI wrappers' SimplifyDemandedBits/SimplifyDemandedVectorElts were successful.
Differential Revision: https://reviews.llvm.org/D53026
llvm-svn: 344132
This may give slightly better opportunities for DAG combine to simplify with the operations before the setcc. It also matches the type the xors will eventually be promoted to anyway so it saves a legalization step.
Almost all of the test changes are because our constant pool entry is now v2i64 instead of v4i32 on 64-bit targets. On 32-bit targets getConstant should be emitting a v4i32 build_vector and a v4i32->v2i64 bitcast.
There are a couple test cases where it appears we now combine a bitwise not with one of these xors which caused a new constant vector to be generated. This prevented a constant pool entry from being shared. But if that's an issue we're concerned about, it seems we need to address it another way that just relying a bitcast to hide it.
This came about from experiments I've been trying with pushing the promotion of and/or/xor to vXi64 later than LegalizeVectorOps where it is today. We run LegalizeVectorOps in a bottom up order. So the and/or/xor are promoted before their users are legalized. The bitcasts added for the promotion act as a barrier to computeKnownBits if we try to use it during vector legalization of a later operation. So by moving the promotion out we can hopefully get better results from computeKnownBits/computeNumSignBits like in LowerTruncate on AVX512. I've also looked at running LegalizeVectorOps in a top down order like LegalizeDAG, but thats showing some other issues.
llvm-svn: 344071
As noted in D52747, if we prefer IR to use trunc for bool vectors rather
than and+icmp, we can expose codegen shortcomings as seen here with masked store.
Replace a hard-coded PCMPGT simplification with the more general demanded bits call
to improve things.
Differential Revision: https://reviews.llvm.org/D52964
llvm-svn: 344048
As discussed on D52964, this adds 256-bit *_EXTEND_VECTOR_INREG lowering support for AVX1 targets to help improve SimplifyDemandedBits handling.
Differential Revision: https://reviews.llvm.org/D52980
llvm-svn: 344019
Simple types are a superset of what all in tree targets in LLVM could possibly have a legal type. This means the behavior of using isSimple to check for a supported type for X86 could change over time. For example, this could would change if a v256i1 type was added to MVT in the future.
llvm-svn: 343995
This patch implements a pass that optimizes condition branches on x86 by
taking advantage of the three-way conditional code generated by compare
instructions.
Currently, it tries to hoisting EQ and NE conditional branch to a dominant
conditional branch condition where the same EQ/NE conditional code is
computed. An example:
bb_0:
cmp %0, 19
jg bb_1
jmp bb_2
bb_1:
cmp %0, 40
jg bb_3
jmp bb_4
bb_4:
cmp %0, 20
je bb_5
jmp bb_6
Here we could combine the two compares in bb_0 and bb_4 and have the
following code:
bb_0:
cmp %0, 20
jg bb_1
jl bb_2
jmp bb_5
bb_1:
cmp %0, 40
jg bb_3
jmp bb_6
For the case of %0 == 20 (bb_5), we eliminate two jumps, and the control height
for bb_6 is also reduced. bb_4 is gone after the optimization.
This optimization is motivated by the branch pattern generated by the switch
lowering: we always have pivot-1 compare for the inner nodes and we do a pivot
compare again the leaf (like above pattern).
This pass currently is enabled on Intel's Sandybridge and later arches. Some
reviewers pointed out that on some arches (like AMD Jaguar), this pass may
increase branch density to the point where it hurts the performance of the
branch predictor.
Differential Revision: https://reviews.llvm.org/D46662
llvm-svn: 343993
Some necessary yak shaving before lowering *_EXTEND_VECTOR_INREG 256-bit vectors on AVX1 targets as suggested by D52964.
Differential Revision: https://reviews.llvm.org/D52970
llvm-svn: 343991
The instructions are complicated, so this code will
probably never be very obvious, but hopefully this
makes it better.
As shown in PR39195:
https://bugs.llvm.org/show_bug.cgi?id=39195
...we need to improve the matching to not miss cases
where we're h-opping on 1 source vector, and that
should be a small patch after this rearranging.
llvm-svn: 343989
Support G_UDIV/G_UREM/G_SREM. The instruction selection
code is taken from FastISel with only minor tweaks to adapt
for GlobalISel.
Differential Revision: https://reviews.llvm.org/D49781
llvm-svn: 343966
Prevents missing other simplifications that may occur deep in the operand chain where CommitTargetLoweringOpt won't add the PMULDQ back to the worklist itself
llvm-svn: 343922
Attempt to simplify PSHUFB masks (even non-constant ones) - we should probably be able to simplify other variable shuffles as well as the need arises.
llvm-svn: 343919
This rebases and recommits r343520. hwasan should be fixed now and this
shouldn't break the tests anymore.
Spill/reload instructions are artificially generated by the compiler and
have no relation to the original source code. So the best thing to do is
not attach any debug location to them (instead of just taking the next
debug location we find on following instructions).
Differential Revision: https://reviews.llvm.org/D52125
llvm-svn: 343895
rL343853 didn't limit the number of subinputs, but we don't currently support faux shuffles with more than 2 total inputs, so put a limiter in place until this is fixed.
Found by Artem Dergachev.
llvm-svn: 343891
The comments in this code say we were trying to avoid 16-bit immediates, but if the immediate fits in 8-bits this isn't an issue. This avoids creating a zero extend that probably won't go away.
The movmskb related changes are interesting. The movmskb instruction writes a 32-bit result, but fills the upper bits with 0. So the zero_extend we were previously emitting was free, but we turned a -1 immediate that would fit in 8-bits into a 32-bit immediate so it was still bad.
llvm-svn: 343871
Currently we hardcode instructions with ReadAfterLd if the register operands don't need to be available until the folded load has completed. This doesn't take into account the different load latencies of different memory operands (PR36957).
This patch adds a ReadAfterFold def into X86FoldableSchedWrite to replace ReadAfterLd, allowing us to specify the load latency at a scheduler class level.
I've added ReadAfterVec*Ld classes that match the XMM/Scl, XMM and YMM/ZMM WriteVecLoad classes that we currently use, we can tweak these values in future patches once this infrastructure is in place.
Differential Revision: https://reviews.llvm.org/D52886
llvm-svn: 343868
Decode subvector shuffles from INSERT_SUBVECTOR(SRC0, SHUFFLE(EXTRACT_SUBVECTOR(SRC1))
This was found necessary while investigating PR39161
llvm-svn: 343853
Finally all targets are enabling multiple regalloc hints, so the hook to
disable this can now be removed.
NFC.
Review: Simon Pilgrim
https://reviews.llvm.org/D52316
llvm-svn: 343851
Previously we replaced the chain use ourself and return the data result. LegalizeVectorOps then detected that we'd done this and assumed the chain had already been handled.
This commit instead returns a MERGE_VALUES node with two results joined from nodes. This allows LegalizeVectorOps to do all the replacements for us without any special casing. The MERGE_VALUES will be removed by DAG combine.
llvm-svn: 343817
This can happen if assembling a reference to _GLOBAL_OFFSET_TABLE_.
While it doesn't make sense to try to assemble that for COFF,
the fact that we previously used llvm_unreachable meant that the code
had undefined behaviour if something tried to assemble that.
The configure script of libgmp would try to assemble such a snippet
(which should signal a failure). If llvm is built without assertions,
the undefined behaviour meant a (near) infinite loop.
Differential Revision: https://reviews.llvm.org/D52903
llvm-svn: 343811
The additional patterns needed for this aren't overwhelming and introducing extra bitcasts during lowering limits our ability to do computeNumSignBits. Not that I have a good example of that for select. I'm just becoming increasingly grumpy about promotion of AND/OR/XOR. SELECT was just a lot easier to fix.
llvm-svn: 343723
This patch adds a 'WriteCopy' [WriteLoad, WriteStore] schedule sequence instead to better model the behaviour
Found by @andreadb during llvm-mca testing on btver2 which was crashing on "zero uop" WriteRMW only instructions
llvm-svn: 343708
Fix use of SSE1 registers for f32 ops in no-x87 mode.
Notably, allow use of SSE instructions for f32 operations in 64-bit
mode (but not 32-bit which is disallowed by callign convention).
Also avoid translating memset/memcopy/memmove into SSE registers
without X87 for 32-bit mode.
This fixes PR38738.
Reviewers: nickdesaulniers, craig.topper
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D52555
llvm-svn: 343689
I was expecting this to be a nfc but Silvermont seems to be setup a little differently:
// A folded store needs a cycle on MEC_RSV for the store data, but it does not need an extra port cycle to recompute the address.
def : WriteRes<WriteRMW, [SLM_MEC_RSV]>;
So moving from WriteStore to WriteRMW reduces predicted port pressure, confirmed by @craig.topper that this is correct.
Differential Revision: https://reviews.llvm.org/D52740
llvm-svn: 343670
The 0x63 opcodes in 64-bit mode have a fixed source size of 32-bits, but the destination size is controlled by REX.W and the 0x66 opsize prefix. This instruction is normally used with a REX.W prefix which provides desired behavior. The other encodings are interpretted as valid by the processor, but aren't useful.
This patch makes us recognize them for the disassembler to match objdump.
llvm-svn: 343614
Add the .cv_fpo_stackalign directive so that we can define $T0, or the
VFRAME virtual register, with it. This was overlooked in the initial
implementation because unlike MSVC, we push CSRs before allocating stack
space, so this value is only needed to describe local variable
locations. Variables that the compiler now addresses via ESP are instead
described as being stored at offsets from VFRAME, which for us is ESP
after alignment in the prologue.
This adds tests that show that we use the VFRAME register properly in
our S_DEFRANGE records, and that we emit the correct FPO data to define
it.
Fixes PR38857
llvm-svn: 343603
Consistently try to use APFloat::toString for floating point constant comments to get rid of differences between Constant / ConstantDataSequential values - it should help stop some of the linux-windows buildbot failures matching NaN/INF etc. as well.
Differential Revision: https://reviews.llvm.org/D52702
llvm-svn: 343562
Summary:
Before this change, LLVM would always describe locals on the stack as
being relative to some specific register, RSP, ESP, EBP, ESI, etc.
Variables in stack memory are pretty common, so there is a special
S_DEFRANGE_FRAMEPOINTER_REL symbol for them. This change uses it to
reduce the size of our debug info.
On top of the size savings, there are cases on 32-bit x86 where local
variables are addressed from ESP, but ESP changes across the function.
Unlike in DWARF, there is no FPO data to describe the stack adjustments
made to push arguments onto the stack and pop them off after the call,
which makes it hard for the debugger to find the local variables in
frames further up the stack.
To handle this, CodeView has a special VFRAME register, which
corresponds to the $T0 variable set by our FPO data in 32-bit. Offsets
to local variables are instead relative to this value.
This is part of PR38857.
Reviewers: hans, zturner, javed.absar
Subscribers: aprantl, hiraditya, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D52217
llvm-svn: 343543
This includes a fix to prevent i16 compares with i32/i64 ands from being shrunk if bit 15 of the and is set and the sign bit is used.
Original commit message:
Currently we skip looking through truncates if the sign flag is used. But that's overly restrictive.
It's safe to look through the truncate as long as we ensure one of the 3 things when we shrink. Either the MSB of the mask at the shrunken size isn't set. If the mask bit is set then either the shrunk size needs to be equal to the compare size or the sign
There are still missed opportunities to shrink a load and fold it in here. This will be fixed in a future patch.
llvm-svn: 343539
Spill/reload instructions are artificially generated by the compiler and
have no relation to the original source code. So the best thing to do is
not attach any debug location to them (instead of just taking the next
debug location we find on following instructions).
Differential Revision: https://reviews.llvm.org/D52125
llvm-svn: 343520
There's a subtle bug in the handling of truncate from i32/i64 to i32 without minsize.
I'll be adding more test cases and trying to find a fix.
llvm-svn: 343516
This patch adds load folding support to the test shrinking code. This was noticed missing in the review for D52669
Differential Revision: https://reviews.llvm.org/D52699
llvm-svn: 343499
Currently we skip looking through truncates if the sign flag is used. But that's overly restrictive.
It's safe to look through the truncate as long as we ensure one of the 3 things when we shrink. Either the MSB of the mask at the shrunken size isn't set. If the mask bit is set then either the shrunk size needs to be equal to the compare size or the sign flag needs to be unused.
There are still missed opportunities to shrink a load and fold it in here. This will be fixed in a future patch.
Differential Revision: https://reviews.llvm.org/D52669
llvm-svn: 343498
This patch adds another variant class to identify zero-idiom VPERM2F128rr
instructions.
On Jaguar, a VPERM wih bit 3 and 7 of the mask set, is a zero-idiom.
Differential Revision: https://reviews.llvm.org/D52663
llvm-svn: 343452
Summary:
While looking at PR35606, I found out that the scheduling info is incorrect.
One can check that it's really a P5+P6 and not a 2*P56 with:
echo -e 'vzeroall\nvandps %xmm1, %xmm2, %xmm3' | ./bin/llvm-exegesis -mode=uops -snippets-file=-
(vandps executes on P5 only)
Reviewers: craig.topper, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52541
llvm-svn: 343447
We can only copy between a k-register and a GR32/GR64 register.
This patch detects that the copy will be illegal and prevents the domain reassignment from happening for that closure.
This probably isn't the best fix, and we should probably figure out how to handle this correctly.
Fixes PR38803.
llvm-svn: 343443
There's a conditional report_fatal_error just above this llvm_unreachable. The optimizer when seeing the unreachable removes the conditional and just makes any other error trigger the existing report_fatal_error.
llvm-svn: 343428
Summary:
This function turns (X >> C1) & C2 into a BMI BEXTR or TBM BEXTRI instruction. For BMI BEXTR we have to materialize an immediate into a register to feed to the BEXTR instruction.
The BMI BEXTR instruction is 2 uops on Intel CPUs. It looks like on SKL its one port 0/6 uop and one port 1/5 uop. Despite what Agner's tables say. I know one of the uops is a regular shift uop so it would have to go through the port 0/6 shifter unit. So that's the same or worse execution wise than the shift+and which is one 0/6 uop and one 0/1/5/6 uop. The move immediate into register is an additional 0/1/5/6 uop.
For now I've limited this transform to AMD CPUs which have a single uop BEXTR. If may also might make sense if we can fold a load or if the and immediate is larger than 32-bits and can't be encoded as a sign extended 32-bit value or if LICM or CSE can hoist the move immediate and share it. But we'd need to look more carefully at that. In the regression I looked at it doesn't look load folding or large immediates were occurring so the regression isn't caused by the loss of those. So we could try to be smarter here if we find a compelling case.
Reviewers: RKSimon, spatel, lebedev.ri, andreadb
Reviewed By: RKSimon
Subscribers: llvm-commits, andreadb, RKSimon
Differential Revision: https://reviews.llvm.org/D52570
llvm-svn: 343399
By removing demanded target shuffles that simplify to zero/undef/identity before simplifying its inputs we improve chances of further simplification, as only the immediate parent user of the combined is added back to the work list - this still doesn't help us if its passed through other ops though (bitcasts....).
llvm-svn: 343390
The shift amount might have peeked through a extract_subvector, altering the number of vector elements in the 'Amt' variable - so we were incorrectly calculating the ratio when peeking through bitcasts, resulting in incorrectly detecting splats.
llvm-svn: 343373
Similar to the existing ISD::SRL constant vector shifts from D49562, this patch adds ISD::SRA support with ISD::MULHS.
As we're dealing with signed values, we have to handle shift by zero and shift by one special cases, so XOP+AVX2/AVX512 splitting/extension is still a better solution - really we should still use ISD::MULHS if one of the special cases are used but for now I've just left a TODO and filtered by isKnownNeverZero.
Differential Revision: https://reviews.llvm.org/D52171
llvm-svn: 343093
This removes an int->fp bitcast between the surrounding code and the movmsk. I had already added a hack to combineMOVMSK to try to look through this bitcast to improve the SimplifyDemandedBits there.
But I found an additional issue where the bitcast was preventing combineMOVMSK from being called again after earlier nodes in the DAG are optimized. The bitcast gets revisted, but not the user of the bitcast. By using integer types throughout, the bitcast doesn't get in the way.
llvm-svn: 343046
This is the final (I hope!) problem pattern mentioned in PR37749:
https://bugs.llvm.org/show_bug.cgi?id=37749
We are trying to avoid an AVX1 sinkhole caused by having 256-bit bitwise logic ops but no other 256-bit integer ops.
We've already solved the simple logic ops, but 'andn' is an x86 special. I looked at alternative solutions like
extending the generic DAG combine or trying to wait until the ANDNP node is created, but those are bigger patches
that can over-reach. Ie, splitting to 128-bit does not look like a win in most cases with >1 256-bit op.
The pattern matching is cluttered with bitcasts because of our i64 element canonicalization. For the affected test,
we have this vector-type-legalized sequence:
t29: v8i32 = concat_vectors t27, t28
t30: v4i64 = bitcast t29
t18: v8i32 = BUILD_VECTOR Constant:i32<-1>, Constant:i32<-1>, ...
t31: v4i64 = bitcast t18
t32: v4i64 = xor t30, t31
t9: v8i32 = BUILD_VECTOR Constant:i32<255>, Constant:i32<255>, ...
t34: v4i64 = bitcast t9
t35: v4i64 = and t32, t34
t36: v8i32 = bitcast t35
t37: v4i32 = extract_subvector t36, Constant:i64<0>
t38: v4i32 = extract_subvector t36, Constant:i64<4>
Differential Revision: https://reviews.llvm.org/D52318
llvm-svn: 343008
As suggested by Craig Topper - I'm going to look at cleaning up the RMW sequences instead.
The uops are slightly different to the register variant, so requires a +1uop tweak
llvm-svn: 342969
We're missing quite a bit of data for these instruction, removing the overrides makes this obvious - inconsistent reg/mem variants is a concern as well.
Also, we have Divider resources (HWDivider etc.) but they aren't actually used consistently.
llvm-svn: 342904
Split WriteIMul by size and also by IMUL multiply-by-imm and multiply-by-reg cases.
This removes all the scheduler overrides for gpr multiplies and stops WriteMULH being ignored for BMI2 MULX instructions.
llvm-svn: 342892
Variable Shifts/Rotates using the CL register have different behaviours to the immediate instructions - split accordingly to help remove yet more repeated overrides from the schedule models.
llvm-svn: 342852
Confirmed with Craig Topper - fix a typo that was missing a Port4 uop for ROR*mCL instructions on some Intel models.
Yet another step on the scheduler model cleanup marathon......
llvm-svn: 342846
This is an alternative to https://reviews.llvm.org/D37896. We can't decompose
multiplies generically without a target hook to tell us when it's profitable.
ARM and AArch64 may be able to remove some existing code that overlaps with
this transform.
This extends D52195 and may resolve PR34474:
https://bugs.llvm.org/show_bug.cgi?id=34474
(still an open question about transforming legal vector multiplies, but we
could open another bug report for those)
llvm-svn: 342844
The SandyBridge model was missing schedule values for the RCL/RCR values - instead using the (incredibly optimistic) WriteShift (now WriteRotate) defaults.
I've added overrides with more realistic (slow) values, based on a mixture of Agner/instlatx64 numbers and what later Intel models do as well.
This is necessary to allow WriteRotate to be updated to remove other rotate overrides.
It'd probably be a good idea to investigate a WriteRotateCarry class at some point but its not high priority given the unusualness of these instructions.
llvm-svn: 342842
Despite being rotates, these more modern instructions avoid many of the quirks of the regular x86 rotate instructions and consistently have a schedule closer to shifts.
llvm-svn: 342839
NFCI for now, but it should make it easier to remove a lot of unnecessary overrides in a future commit.
Now that funnel shift intrinsics are coming online we need to get this cleaned up to make vectorization costs from scalar rotate patterns more straightforward.
llvm-svn: 342837
Our lowering that tries to avoid this sign extend can be defeated by the DAG combine folding it with a truncate.
The pattern needs to extend to an v8i32 then truncate back down to v8i16.
llvm-svn: 342830
Summary: Similar to D51893 which was for memcpy
Reviewers: efriedma
Reviewed By: efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52063
llvm-svn: 342796
We don't have a vXi8 shift left so we need to bitcast to a vXi16 vector to perform the shift. If we let lowering legalize the vXi8 shift we get an extra and that we don't need and fail to remove.
llvm-svn: 342795
Previously we used SUBREG_TO_REG+MOV32ri. But regular isel was changed recently to use the MOV32ri64 pseudo. Fast isel now does the same.
llvm-svn: 342788
This patch introduces a SchedWriteVariant to describe zero-idiom VXORP(S|D)Yrr
and VANDNP(S|D)Yrr.
This is a follow-up of r342555.
On Jaguar, a VXORPSYrr is 2 macro opcodes. Only one opcode is eliminated at
register-renaming stage. The other opcode has to be executed to set the upper
half of the destination YMM.
Same for VANDNP(S|D)Yrr.
Differential Revision: https://reviews.llvm.org/D52347
llvm-svn: 342728
x86 had 2 versions of peekThroughBitcast. DAGCombiner had 1. Plus, it had a 1-off implementation for the one-use variant.
Move the x86 versions of the code to SelectionDAG, so we don't have different copies of the code.
No functional change intended.
I'm putting this next to isBitwiseNot() because I am planning to use it in there. Another option is next to the
helpers in the ISD namespace (eg, ISD::isConstantSplatVector()). But if there's no good reason for those to be
there, I'd prefer to pull other helpers over to SelectionDAG in follow-up steps.
Differential Revision: https://reviews.llvm.org/D52285
llvm-svn: 342669
Enable enableMultipleCopyHints() on X86.
Original Patch by @jonpa:
While enabling the mischeduler for SystemZ, it was discovered that for some reason a test needed one extra seemingly needless COPY (test/CodeGen/SystemZ/call-03.ll). The handling for that is resulted in this patch, which improves the register coalescing by providing not just one copy hint, but a sorted list of copy hints. On SystemZ, this gives ~12500 less register moves on SPEC, as well as marginally less spilling.
Instead of improving just the SystemZ backend, the improvement has been implemented in common-code (calculateSpillWeightAndHint(). This gives a lot of test failures, but since this should be a general improvement I hope that the involved targets will help and review the test updates.
Differential Revision: https://reviews.llvm.org/D38128
llvm-svn: 342578
As the code comments suggest, these are about splitting, and they
are not necessarily limited to lowering, so that misled me.
There's nothing that's actually x86-specific in these either, so
they might be better placed in a common header so any target can
use them.
llvm-svn: 342575
This patch adds an initial x86 SimplifyDemandedVectorEltsForTargetNode implementation to handle target shuffles.
Currently the patch only decodes a target shuffle, calls SimplifyDemandedVectorElts on its input operands and removes any shuffle that reduces to undef/zero/identity.
Future work will need to integrate this with combineX86ShufflesRecursively, add support for other x86 ops, etc.
NOTE: There is a minor regression that appears to be affecting further (extractelement?) combines which I haven't been able to solve yet - possibly something to do with how nodes are added to the worklist after simplification.
Differential Revision: https://reviews.llvm.org/D52140
llvm-svn: 342564
This patch adds the ability for processor models to describe dependency breaking
instructions.
Different processors may specify a different set of dependency-breaking
instructions.
That means, we cannot assume that all processors of the same target would use
the same rules to classify dependency breaking instructions.
The main goal of this patch is to provide the means to describe dependency
breaking instructions directly via tablegen, and have the following
TargetSubtargetInfo hooks redefined in overrides by tabegen'd
XXXGenSubtargetInfo classes (here, XXX is a Target name).
```
virtual bool isZeroIdiom(const MachineInstr *MI, APInt &Mask) const {
return false;
}
virtual bool isDependencyBreaking(const MachineInstr *MI, APInt &Mask) const {
return isZeroIdiom(MI);
}
```
An instruction MI is a dependency-breaking instruction if a call to method
isDependencyBreaking(MI) on the STI (TargetSubtargetInfo object) evaluates to
true. Similarly, an instruction MI is a special case of zero-idiom dependency
breaking instruction if a call to STI.isZeroIdiom(MI) returns true.
The extra APInt is used for those targets that may want to select which machine
operands have their dependency broken (see comments in code).
Note that by default, subtargets don't know about the existence of
dependency-breaking. In the absence of external information, those method calls
would always return false.
A new tablegen class named STIPredicate has been added by this patch to let
processor models classify instructions that have properties in common. The idea
is that, a MCInstrPredicate definition can be used to "generate" an instruction
equivalence class, with the idea that instructions of a same class all have a
property in common.
STIPredicate definitions are essentially a collection of instruction equivalence
classes.
Also, different processor models can specify a different variant of the same
STIPredicate with different rules (i.e. predicates) to classify instructions.
Tablegen backends (in this particular case, the SubtargetEmitter) will be able
to process STIPredicate definitions, and automatically generate functions in
XXXGenSubtargetInfo.
This patch introduces two special kind of STIPredicate classes named
IsZeroIdiomFunction and IsDepBreakingFunction in tablegen. It also adds a
definition for those in the BtVer2 scheduling model only.
This patch supersedes the one committed at r338372 (phabricator review: D49310).
The main advantages are:
- We can describe subtarget predicates via tablegen using STIPredicates.
- We can describe zero-idioms / dep-breaking instructions directly via
tablegen in the scheduling models.
In future, the STIPredicates framework can be used for solving other problems.
Examples of future developments are:
- Teach how to identify optimizable register-register moves
- Teach how to identify slow LEA instructions (each subtarget defining its own
concept of "slow" LEA).
- Teach how to identify instructions that have undocumented false dependencies
on the output registers on some processors only.
It is also (in my opinion) an elegant way to expose knowledge to both external
tools like llvm-mca, and codegen passes.
For example, machine schedulers in LLVM could reuse that information when
internally constructing the data dependency graph for a code region.
This new design feature is also an "opt-in" feature. Processor models don't have
to use the new STIPredicates. It has all been designed to be as unintrusive as
possible.
Differential Revision: https://reviews.llvm.org/D52174
llvm-svn: 342555
This is an alternative to D37896. I don't see a way to decompose multiplies
generically without a target hook to tell us when it's profitable.
ARM and AArch64 may be able to remove some duplicate code that overlaps with
this transform.
As a first step, we're only getting the most clear wins on the vector examples
requested in PR34474:
https://bugs.llvm.org/show_bug.cgi?id=34474
As noted in the code comment, it's likely that the x86 constraints are tighter
than necessary, but it may not always be a win to replace a pmullw/pmulld.
Differential Revision: https://reviews.llvm.org/D52195
llvm-svn: 342554
The 0x800 bit in @feat.00 needs to be set in order to make LLD pick up
the .gfid$y table. I believe this is fine to set even if we don't emit
the instrumentation.
We haven't emitted @feat.00 on 64-bit before. I see that MSVC does emit
it, but I'm not entirely sure what the default value should be. I went
with zero since that seems as safe as not emitting the symbol in the
first place.
Differential Revision: https://reviews.llvm.org/D52235
llvm-svn: 342532
Summary:
The IR reference for the `byval` attribute states:
```
This indicates that the pointer parameter should really be passed by value
to the function. The attribute implies that a hidden copy of the pointee is
made between the caller and the callee, so the callee is unable to modify
the value in the caller. This attribute is only valid on LLVM pointer arguments.
```
However, on Win64, this attribute is unimplemented and the raw pointer is
passed to the callee instead. This is problematic, because frontend authors
relying on the implicit hidden copy (as happens for every other calling
convention) will see the passed value silently (if mutable memory) or
loudly (by means of a crash) modified because the callee treats the
location as scratch memory space it is allowed to mutate.
At this point, it's worth taking a step back to understand the context.
In most calling conventions, aggregates that are too large to be passed
in registers, instead get *copied* to the stack at a fixed (computable
from the signature) offset of the stack pointer. At the LLVM, we hide
this hidden copy behind the byval attribute. The caller passes a pointer
to the desired data and the callee receives a pointer, but these pointers
are not the same. In particular, the pointer that the callee receives
points to temporary stack memory allocated as part of the call lowering.
In most calling conventions, this pointer is never realized in registers
or memory. The temporary memory is simply defined by an implicit
offset from the stack pointer at function entry.
Win64, uniquely, works differently. The structure is still passed in
memory, but instead of being stored at an implicit memory offset, the
caller computes a pointer to the temporary memory and passes it to
the callee as a regular pointer (taking up a register, or if all
registers are taken up, an additional stack slot). Presumably, this
was done to allow eliding the copy when passing aggregates through
several functions on the stack.
This explains why ignoring the `byval` attribute mostly works on Win64.
The argument simply gets passed as a pointer and as long as we're ok
with the callee trampling all over that memory, there are no ill effects.
However, it does contradict the documentation of the `byval` attribute
which specifies that there is to be an implicit copy.
Frontends can of course work around this by never emitting the `byval`
attribute for Win64 and creating `alloca`s for the requisite temporary
stack slots (and that does appear to be what frontends are doing).
However, the presence of the `byval` attribute is not a trap for
frontend authors, since it seems to work, but silently modifies the
passed memory contrary to documentation.
I see two solutions:
- Disallow the `byval` attribute in the verifier if using the Win64
calling convention.
- Make it work by simply emitting a temporary stack copy as we would
with any other calling convention (frontends can of course always
not use the attribute if they want to elide the copy).
This patch implements the second option (make it work), though I would
be fine with the first also.
Ref: https://github.com/JuliaLang/julia/issues/28338
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51842
llvm-svn: 342402
For constant non-uniform cases we'll never introduce more and/andn/or selects than already occur in generic pre-SSE41 ISD::SRL lowering.
llvm-svn: 342352
https://bugs.llvm.org/show_bug.cgi?id=38949
It's not clear to me that we even need a one-use check in this fold.
Ie, 2 independent loads might be better than a load+dependent shuffle.
Note that the existing re-use tests are not affected. We actually do form a
broadcast node in those tests now because there's no extra use of the
insert_subvector node in those cases. But something later in isel pattern
matching decides that it is not worth using a broadcast for the full load in
those tests:
Legalized selection DAG: %bb.0 'test_broadcast_2f64_4f64_reuse:'
t7: v2f64,ch = load<(load 16 from %ir.p0)> t0, t2, undef:i64
t4: i64,ch = CopyFromReg t0, Register:i64 %1
t10: ch = store<(store 16 into %ir.p1)> t7:1, t7, t4, undef:i64
t18: v4f64 = insert_subvector undef:v4f64, t7, Constant:i64<0>
t20: v4f64 = insert_subvector t18, t7, Constant:i64<2>
Becomes:
t7: v2f64,ch = load<(load 16 from %ir.p0)> t0, t2, undef:i64
t4: i64,ch = CopyFromReg t0, Register:i64 %1
t10: ch = store<(store 16 into %ir.p1)> t7:1, t7, t4, undef:i64
t21: v4f64 = X86ISD::SUBV_BROADCAST t7
ISEL: Starting selection on root node: t21: v4f64 = X86ISD::SUBV_BROADCAST t7
...
Created node: t27: v4f64 = INSERT_SUBREG IMPLICIT_DEF:v4f64, t7, TargetConstant:i32<7>
Morphed node: t21: v4f64 = VINSERTF128rr t27, t7, TargetConstant:i8<1>
llvm-svn: 342347
Summary: This unfortunately adds a move, but isn't that better than going to the int domain and back?
Reviewers: RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52134
llvm-svn: 342327
Summary:
MOVMSK only care about the sign bit so we don't need the setcc to fill the whole element with 0s/1s. We can just shift the bit we're looking for into the sign bit. This saves a constant pool load.
Inspired by PR38840.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: lebedev.ri, llvm-commits
Differential Revision: https://reviews.llvm.org/D52121
llvm-svn: 342326
Attempt to lower a shuffle as an unpack of elements from two inputs followed by a single-input (wider) permutation.
As long as the permutation is wider this is a win - there may be some circumstances where same size permutations would also be useful but I've left that for future work.
Differential Revision: https://reviews.llvm.org/D52043
llvm-svn: 342257
When replacing a named register input to the appropriately sized
sub/super-register. In the case of a 64-bit value being assigned to a
register in 32-bit mode, match GCC's assignment.
Reviewers: eli.friedman, craig.topper
Subscribers: nickdesaulniers, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D51502
llvm-svn: 342175
Summary:
Previously we type legalized v2i32 div/rem by promoting to v2i64. But we don't support div/rem of vectors so op legalization would then scalarize it using i64 scalar ops since it doesn't know about the original promotion. 64-bit scalar divides on Intel hardware are known to be slow and in 32-bit mode they require a libcall.
This patch switches type legalization to do the scalarizing itself using i32.
It looks like the division by power of 2 optimization is still kicking in and leaving the code as a vector. The division by other constant optimization doesn't kick in pre type legalization since it ignores illegal types. And previously, after type legalization we scalarized the v2i64 since we don't have v2i64 MULHS/MULHU support.
Another option might be to widen v2i32 to v4i32 so we could do division by constant optimizations, but we'd have to be careful to only do that for constant divisors or we risk scalaring to 4 scalar divides.
Reviewers: RKSimon, spatel
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51325
llvm-svn: 342114
There's no advantage to this instruction unless you need to avoid touching other flag bits. It's encoding is longer, it can't fold an immediate, it doesn't write all the flags.
I don't think gcc will generate this instruction either.
Fixes PR38852.
Differential Revision: https://reviews.llvm.org/D51754
llvm-svn: 342059
Summary:
In GNUX23, is64BitMode returns true, but pointers are 32-bits. So we shouldn't copy pointer values into RSI/RDI since the widths don't match.
Fixes PR38865 despite what the title says. I think the llvm_unreachable in the copyPhysReg code tricked the optimizer and made the fatal error trigger.
Reviewers: rnk, efriedma, MatzeB, echristo
Reviewed By: efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51893
llvm-svn: 342015
In r337348, I changed lowering to prefer X86ISD::UNPCKL/UNPCKH opcodes over MOVLHPS/MOVHLPS for v2f64 {0,0} and {1,1} shuffles when we have SSE2. This enabled the removal of a bunch of weirdly bitcasted isel patterns in r337349. To avoid changing the tests I placed a gross hack in isel to still emit movhlps instructions for fake unary unpckh nodes. A similar hack was not needed for unpckl and movlhps because we do execution domain switching for those. But unpckh and movhlps have swapped operand order.
This patch removes the hack.
This is a code size increase since unpckhpd requires a 0x66 prefix and movhlps does not. But if that's a big concern we should be using movhlps for all unpckhpd opcodes and let commuteInstruction turnit into unpckhpd when its an advantage.
Differential Revision: https://reviews.llvm.org/D49499
llvm-svn: 341973
GNUX32 uses 32-bit pointers despite is64BitMode being true. So we should use EAX to return the value.
Fixes ones of the failures from PR38865.
Differential Revision: https://reviews.llvm.org/D51940
llvm-svn: 341972
MOVMSKPS and MOVMSKPD both take FP types, but likely the operations before it are on integer types with just a int->fp bitcast between them. If the bitcast isn't used by anything else and doesn't change the element width we can look through it to simplify the integer ops.
llvm-svn: 341915
I'm having a hard time finding a test case for this, but we should be consistent here. The fact that we canonicalize all zeros and all ones constants to vXi32 and all other constants to loads makes this hard to hit the easy DAG combine infinite loop we get for some of the other types.
llvm-svn: 341859
We have isel patterns for v4i32/v4f64 that artificially widen to v8i32/v8f64 so just use that.
If x86-experimental-vector-widening-legalization is enabled, we don't need any custom legalization and can just return. I've modified the test RUN lines to cover this case.
llvm-svn: 341765
Summary:
This patch allows vectors with a power of 2 number of elements and i8/i16 element type to select paddus/psubus instructions. ReplaceNodeResults has been updated to custom widen these operations up to 128 bits like we already do for PAVG.
Another step towards fixing PR38691
Reviewers: RKSimon, spatel
Reviewed By: RKSimon, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51818
llvm-svn: 341753
The generic type legalizer will scalarize vXi1 instructions getting rid of the vector entirely. Creating wider vector instructions is just going to prevent that.
llvm-svn: 341705
The type legalizer will try to scalarize this and fail.
It looks like there's some other v1iX oddities out there too since we still generated some vector instructions.
llvm-svn: 341704
Similar to what was recently done for addcarry/subborrow and has been done for rdrand/rdseed for a while. It's better to use two results and an explicit store in IR when the store isn't part of the semantics of the instruction. This allows store->load forwarding to happen in the middle end. Or the store to be removed if its never loaded.
Differential Revision: https://reviews.llvm.org/D51803
llvm-svn: 341698
We should represent the store directly in IR instead. This gives the middle end a chance to remove it if it can see a load from the same address.
Differential Revision: https://reviews.llvm.org/D51769
llvm-svn: 341677
Previously we only handled loads in operand 0, but nothing guarantees the load will be operand 0 for commutable operations.
Differential Revision: https://reviews.llvm.org/D51768
llvm-svn: 341675
ADC is commutable and the load could be in either operand, but we were only checking operand 0.
Ideally we'd mark X86adc_flag as commutable and tablegen would automatically do this, but the EFLAGS register mention is preventing it.
llvm-svn: 341606
The peephole pass likely gets this normally, but we should be doing it during isel.
Ideally we'd just make the X86adc_flag pattern SDNPCommutable, but the tablegen doesn't handle that when one of the operands is a register reference.
llvm-svn: 341596
This basically reverts a change made in r336217, but improves the text of the error message for not allowing IP-relative addressing in 32-bit mode.
Fixes PR38826.
Patch by Iain Sandoe.
llvm-svn: 341512
This removes the FrameAccess struct that was added to the interface
in D51537, since the PseudoValue from the MachineMemoryOperand
can be safely casted to a FixedStackPseudoSourceValue.
Reviewers: MatzeB, thegameg, javed.absar
Reviewed By: thegameg
Differential Revision: https://reviews.llvm.org/D51617
llvm-svn: 341454
On Windows, if shouldAssumeDSOLocal returns false, it's either a
dllimport reference, or a reference that we should treat as non-local
and create a stub for.
Clean up AArch64Subtarget::ClassifyGlobalReference a little while
touching the flag handling relating to dllimport.
Differential Revision: https://reviews.llvm.org/D51590
llvm-svn: 341402
Load Hardening.
Wires up the existing pass to work with a proper IR attribute rather
than just a hidden/internal flag. The internal flag continues to work
for now, but I'll likely remove it soon.
Most of the churn here is adding the IR attribute. I talked about this
Kristof Beyls and he seemed at least initially OK with this direction.
The idea of using a full attribute here is that we *do* expect at least
some forms of this for other architectures. There isn't anything
*inherently* x86-specific about this technique, just that we only have
an implementation for x86 at the moment.
While we could potentially expose this as a Clang-level attribute as
well, that seems like a good question to defer for the moment as it
isn't 100% clear whether that or some other programmer interface (or
both?) would be best. We'll defer the programmer interface side of this
for now, but at least get to the point where the feature can be enabled
without relying on implementation details.
This also allows us to do something that was really hard before: we can
enable *just* the indirect call retpolines when using SLH. For x86, we
don't have any other way to mitigate indirect calls. Other architectures
may take a different approach of course, and none of this is surfaced to
user-level flags.
Differential Revision: https://reviews.llvm.org/D51157
llvm-svn: 341363
implementing the proposed mitigation technique described in the original
design document.
The idea is to check after calls that the return address used to arrive
at that location is in fact the correct address. In the event of
a mis-predicted return which reaches a *valid* return but not the
*correct* return, this will detect the mismatch much like it would
a mispredicted conditional branch.
This is the last published attack vector that I am aware of in the
Spectre v1 space which is not mitigated by SLH+retpolines. However,
don't read *too* much into that: this is an area of ongoing research
where we expect more issues to be discovered in the future, and it also
makes no attempt to mitigate Spectre v4. Still, this is an important
completeness bar for SLH.
The change here is of course delightfully simple. It was predicated on
cutting support for post-instruction symbols into LLVM which was not at
all simple. Many thanks to Hal Finkel, Reid Kleckner, and Justin Bogner
who helped me figure out how to do a bunch of the complex changes
involved there.
Differential Revision: https://reviews.llvm.org/D50837
llvm-svn: 341358
retpolines.
This implements the core design of tracing the intended target into the
target, checking it, and using that to update the predicate state. It
takes advantage of a few interesting aspects of SLH to make it a bit
easier to implement:
- We already split critical edges with conditional branches, so we can
assume those are gone.
- We already unfolded any memory access in the indirect branch
instruction itself.
I've left hard errors in place to catch if any of these somewhat subtle
invariants get violated.
There is some code that I can factor out and share with D50837 when it
lands, but I didn't want to couple landing the two patches, so I'll do
that in a follow-up cleanup commit if alright.
Factoring out the code to handle different scenarios of materializing an
address remains frustratingly hard. In a bunch of cases you want to fold
one of the cases into an immediate operand of some other instruction,
and you also have both symbols and basic blocks being used which require
different methods on the MI builder (and different operand kinds).
Still, I'll take a stab at sharing at least some of this code in
a follow-up if I can figure out how.
Differential Revision: https://reviews.llvm.org/D51083
llvm-svn: 341356
A ReadAdvance was incorrectly added to the SchedReadWrite list associated with
the following SSE instructions:
sqrtss
sqrtsd
rsqrtss
rcpss
As a consequence, a wrong operand latency was computed for the register operand
used as the base address of the folded load operand.
This patch removes the wrong ReadAdvance, and updates the llvm-mca test cases.
There is still a problem with correctly modeling partial register writes on XMM
registers This other problem is currently tracked here:
https://bugs.llvm.org/show_bug.cgi?id=38813
Differential Revision: https://reviews.llvm.org/D51542
llvm-svn: 341326
Also adjust some of dsymutil's headers to put the header guards at the top,
otherwise the compiler will not recognize them as header guards.
llvm-svn: 341323
For instructions that spill/fill to and from multiple frame-indices
in a single instruction, hasStoreToStackSlot and hasLoadFromStackSlot
should return an array of accesses, rather than just the first encounter
of such an access.
This better describes FI accesses for AArch64 (paired) LDP/STP
instructions.
Reviewers: t.p.northover, gberry, thegameg, rengolin, javed.absar, MatzeB
Reviewed By: MatzeB
Differential Revision: https://reviews.llvm.org/D51537
llvm-svn: 341301
These intrinsics use the same implementation as PTEST intrinsics, but use vXi1 vectors.
New clang builtins will be accompanying them shortly.
llvm-svn: 341259
This patch recognizes shuffles that shift elements and fill with zeros. I've copied and modified the shift matching code we use for normal vector registers to do this. I'm not sure if there's a good way to share more of this code without making the existing function more complex than it already is.
This will be used to enable kshift intrinsics in clang.
Differential Revision: https://reviews.llvm.org/D51401
llvm-svn: 341227
The presence of a ReadAdvance for input operand #0 is problematic
because it changes the input latency of the register used as the base address
for the folded load.
A broadcast cannot start executing if the load address hasn't been computed yet.
In the llvm-mca example, the VBROADCASTSS is dependent on the address generated
by the LEAQ. That means, it cannot start until LEAQ reaches the write-back
stage. If we apply ReadAdvance, then we wrongly assume that the load can start 3
cycles in advance.
Differential Revision: https://reviews.llvm.org/D51534
llvm-svn: 341222
This patch fixes the number of micro opcodes, and processor resource cycles for
the following AVX instructions:
vinsertf128rr/rm
vperm2f128rr/rm
vbroadcastf128
Tests have been regenerated using the usual scripts in the llvm/utils directory.
Differential Revision: https://reviews.llvm.org/D51492
llvm-svn: 341185
These stubs should never be emitted for internal symbols, and
nothing in AsmPrinter ever actually use this value when producing
the stubs for COFF anyway.
llvm-svn: 341177
This assert tried to check that AND constants are only on the RHS. But its possible for both operands to be constants if one is opaque which will prevent the AND from being constant folded.
Fixes PR38771
llvm-svn: 341102
..Move all target-dependent checks into new isCopyInstrImpl method.
This change allows us to treat MoveReg-type instructions and generic
COPY instruction in the same way
Differential Revision: https://reviews.llvm.org/D49913
llvm-svn: 341072
We now only add +64bit to the CPU string for "generic" CPU. All other CPU names are assumed to have the feature flag already set if they support 64-bit. I've remove the implies from CMPXCHG8 so that Feature64Bit only comes in via CPUs or user passing -mattr=+64bit.
I've changed the assert to a report_fatal_error so it's not lost in Release builds.
The test updates are to fix things that tripped the new error.
Differential Revision: https://reviews.llvm.org/D51231
llvm-svn: 341022
Variables declared with the dllimport attribute are accessed via a
stub variable named __imp_<var>. In MinGW configurations, variables that
aren't declared with a dllimport attribute might still end up imported
from another DLL with runtime pseudo relocs.
For x86_64, this avoids the risk that the target is out of range
for a 32 bit PC relative reference, in case the target DLL is loaded
further than 4 GB from the reference. It also avoids having to make the
text section writable at runtime when doing the runtime fixups, which
makes it worthwhile to do for i386 as well.
Add stub variables for all dso local data references where a definition
of the variable isn't visible within the module, since the DLL data
autoimporting might make them imported even though they are marked as
dso local within LLVM.
Don't do this for variables that actually are defined within the same
module, since we then know for sure that it actually is dso local.
Don't do this for references to functions, since there's no need for
runtime pseudo relocations for autoimporting them; if a function from
a different DLL is called without the appropriate dllimport attribute,
the call just gets routed via a thunk instead.
GCC does something similar since 4.9 (when compiling with -mcmodel=medium
or large; from that version, medium is the default code model for x86_64
mingw), but only for x86_64.
Differential Revision: https://reviews.llvm.org/D51288
llvm-svn: 340942
Noticed while looking at D49562 codegen - we can avoid a large constant mask load and a slow VPBLENDVB select op by using VPBLENDW+VPBLENDD instead.
TODO: As discussed on the patch, we should investigate adding VPBLENDVB handling to target shuffle combining as well, that will allow us to extend this to VPBLENDW+VPBLENDW+VPBLENDD.
Differential Revision: https://reviews.llvm.org/D50074
llvm-svn: 340913
These are intrinsics for supporting kadd builtins in clang. These builtins are already in gcc to implement intrinsics from icc. Though they are missing from the Intel Intrinsics Guide.
This instruction adds two mask registers together as if they were scalar rather than a vXi1. We might be able to get away with a bitcast to scalar and a normal add instruction, but that would require DAG combine smarts in the backend to recoqnize add+bitcast. For now I'd prefer to go with the easiest implementation so we can get these builtins in to clang with good codegen.
Differential Revision: https://reviews.llvm.org/D51370
llvm-svn: 340869
These instructions were added on the PentiumPro along with CMOV.
This was already comprehended by the lowering process which should emit an alternate sequence using FCOM and FNSTW. This just makes it an explicit error if that doesn't work for some reason.
llvm-svn: 340844
This patch creates the shift mask and actual shift using the vXi16 vector shift ops.
Differential Revision: https://reviews.llvm.org/D51263
llvm-svn: 340813
We're using a 256-bit PACKUS to do the truncation, but that instruction operates on 128-bit lanes. So previously we shuffled first to rearrange the lanes. But that requires 2 shuffles. Instead we can shuffle after the PACKUS using a single VPERMQ. This matches what our normal LowerTRUNCATE code does when it uses PACKUS.
Differential Revision: https://reviews.llvm.org/D51284
llvm-svn: 340757
InstCombine mucks these up a bit. So we need to do some additional pattern matching to fix it. There are a still a few special cases not handled, but this covers the general case.
Differential Revision: https://reviews.llvm.org/D50952
llvm-svn: 340756
vXi32 support was recently moved from LowerMUL_LOHI to LowerMULH.
This commit shares the getOperand calls, switches both to use common IsSigned flag, and hoists the NumElems/NumElts variable.
llvm-svn: 340720
Summary: This was inheriting the cost from the AVX table, but should be legal under AVX512.
Reviewers: RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51267
llvm-svn: 340708
Summary:
Previously most CPUs inherited cmov support through Feature64Bit(or FeatureCMPXCHG16HB implying Feature64Bit) or FeatureSSE1.
This has the surprising side effect that -mattr=-cmov causes an assert to fire in 64-bit mode because it clears the Feature64Bit. Or in 32-bit mode, -mattr=-cmov disables any sse/avx features which seems surprising.
This patch removes the implication and instead updates hasCMOV in X86Subtarget to check SSE1 or is64Bit in addition to the regular cmov flag. This should keep most things working the way they did before. I don't believe there is a way to specific "-cmov" directly from clang so this should only effect our lower level tools.
This does stop -mattr=cx16(cmpxchg16b) from implying cmov is enabled via the 64bit flag as you can see from one of the changed tests. But that was a 32-bit test so I don't know why it enabled cx16 anyway.
For the other test I had to add -sse to override the new sse check in hasCMOV.
Reviewers: RKSimon, DavidKreitzer, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits, jfb
Differential Revision: https://reviews.llvm.org/D51228
llvm-svn: 340707
Summary: This matches gcc and one cpuid dump I found online. Given that these are considered 7th generation x86 CPU it seems likely they support cmov since cmov was added by Intel in their 6th generation.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51264
llvm-svn: 340706
I noticed this along with the patterns in D51125, but when the index is variable,
we don't convert insertelement into a build_vector.
For x86, that means these get expanded at legalization time into the loading/spilling
code that we see in the tests. I think it's always better to avoid going to memory on
these, and we get the optimal 'broadcast' if it's available.
I suspect other targets may want to look at enabling the hook. AArch64 and AMDGPU have
regression tests that would be affected (although I did not check what would happen in
those cases). In the most basic cases shown here, AArch64 would probably do much
better with a splat.
Differential Revision: https://reviews.llvm.org/D51186
llvm-svn: 340705
Summary:
The only time vector SMUL_LOHI/UMUL_LOHI nodes are created is during division/remainder lowering. If its created before op legalization, generic DAGCombine immediately turns that SMUL_LOHI/UMUL_LOHI into a MULHS/MULHU since only the upper half is used. That node will stick around through vector op legalization and will be turned back into UMUL_LOHI/SMUL_LOHI during op legalization. It will then be custom lowered by the X86 backend. Due to this two step lowering the vector shuffles created by the custom lowering get legalized after their inputs rather than before. This prevents the shuffles from being combined with any build_vector of constants.
This patch uses changes vXi32 to use MULHS/MULHU instead. This is what the later DAG combine did anyway. But by skipping the change back to UMUL_LOHI/SMUL_LOHI we lower it before any constant BUILD_VECTORS. This allows the vector_shuffle creation to constant fold with the build_vectors. This accounts for the test changes here.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51254
llvm-svn: 340690
Summary:
Previously the value being stored is the last operand in SDNode. This causes the type legalizer to visit the mask operand before the value operand. The type legalizer was more complicated because of this since we want the type of the value to drive the decisions.
This patch moves the value to be the first operand so we visit it first during type legalization. It also simplifies the type legalization code accordingly.
X86 is currently the only in tree target that uses this SDNode. Not sure if there are any users out of tree.
Reviewers: RKSimon, delena, hfinkel, eli.friedman
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50402
llvm-svn: 340689
This is a preliminary step for a preliminary step for D50992.
I noticed that x86 often misses chances to load a scalar directly
into a vector register.
So this patch is just allowing more of those cases to match a
broadcast op in lowerBuildVectorAsBroadcast(). The old code comment
said it doesn't make sense to use a broadcast when we're loading a
single element and everything else is undef, but I think that's the
best case in the improved tests in insert-loaded-scalar.ll. We avoid
scalar-to-vector-register move and/or less efficient shuffling.
Note that there are some existing types that were already producing
a broadcast, but that happens semi-accidentally. Ie, it's not
happening as part of lowerBuildVectorAsBroadcast(). The build vector
gets expanded into load + shuffle, and then shuffle lowering produces
the broadcast.
Description of the other test diffs:
1. avx-basic.ll - replacing load+shufle is a win.
2. sse3-avx-addsub-2.ll - vmovddup vs. vbroadcastss is neutral
3. sse41.ll - don't care - we convert that intrinsic to generic IR now, so this test is deprecated
4. vector-shuffle-128-v8.ll / vector-shuffle-256-v16.ll - pshufb alternatives with an extra instruction are not obviously bad
Differential Revision: https://reviews.llvm.org/D51125
llvm-svn: 340685
This adds a new method to ELFObjectFileBase that returns the symbols and addresses of PLT entries.
This design was suggested by pcc and eugenis in https://reviews.llvm.org/D49383.
Differential Revision: https://reviews.llvm.org/D50203
llvm-svn: 340610
The commit that added this functionality:
rL322957
may be causing/exposing a miscompile in PR38648:
https://bugs.llvm.org/show_bug.cgi?id=38648
so allow enabling/disabling to make debugging easier.
llvm-svn: 340540
subtarget features for indirect calls and indirect branches.
This is in preparation for enabling *only* the call retpolines when
using speculative load hardening.
I've continued to use subtarget features for now as they continue to
seem the best fit given the lack of other retpoline like constructs so
far.
The LLVM side is pretty simple. I'd like to eventually get rid of the
old feature, but not sure what backwards compatibility issues that will
cause.
This does remove the "implies" from requesting an external thunk. This
always seemed somewhat questionable and is now clearly not desirable --
you specify a thunk the same way no matter which set of things are
getting retpolines.
I really want to keep this nicely isolated from end users and just an
LLVM implementation detail, so I've moved the `-mretpoline` flag in
Clang to no longer rely on a specific subtarget feature by that name and
instead to be directly handled. In some ways this is simpler, but in
order to preserve existing behavior I've had to add some fallback code
so that users who relied on merely passing -mretpoline-external-thunk
continue to get the same behavior. We should eventually remove this
I suspect (we have never tested that it works!) but I've not done that
in this patch.
Differential Revision: https://reviews.llvm.org/D51150
llvm-svn: 340515
Previously we asumed a vector reduction add is part of a loop and one of the input is a phi. But the code in SelectionDAGBuilder that sets vector reduction flag handles more cases than that. It just requires that the use chain ends in a horizontal reduction. And there are no other uses. This means it can handle unrolled reduction loops.
If the initial value of the reduction was 0, an unrolled loop would begin with a vector reduction add that has two sad inputs. Previously we would only transform one side of the add, but for this case we need to transform both sides.
I've created a lambda to reuse some of the code for both sides. And fixed the variables names to remove reference to "phi".
Differential Revision: https://reviews.llvm.org/D50817
llvm-svn: 340478
Inspired by what AArch64 does for shifts, this patch attempts to replace shift amounts with neg if we can.
This is done directly as part of isel so its as late as possible to avoid breaking some BZHI patterns since those patterns need an unmasked (32-n) to be correct.
To avoid manual load folding and custom instruction selection for the negate. I've inserted new nodes in the DAG above the shift node in topological order.
Differential Revision: https://reviews.llvm.org/D48789
llvm-svn: 340441
When the key is not already in the map, the access operator[] creates an empty value and grows the map.
Resizing a map is very slow, so this needs to be avoided.
Found with csmith + asserts.
May help with
https://bugs.llvm.org/show_bug.cgi?id=25843
Patch by Tom Rix.
Differential Revision: https://reviews.llvm.org/D50780
llvm-svn: 340434
This adds the plumbing for the Tiny code model for the AArch64 backend. This,
instead of loading addresses through the normal ADRP;ADD pair used in the Small
model, uses a single ADR. The 21 bit range of an ADR means that the code and
its statically defined symbols need to be within 1MB of each other.
This makes it mostly interesting for embedded applications where we want to fit
as much as we can in as small a space as possible.
Differential Revision: https://reviews.llvm.org/D49673
llvm-svn: 340397
Summary:
So far, `isReturn` property is used to mean both a return instruction
from a functon and the end of an EH scope, a scope that starts with a EH
scope entry BB and ends with a catchret or a cleanupret instruction.
Because WinEH uses funclets, all EH-scope-ending instructions are also
real return instruction from a function. But for wasm, they only serve
as the end marker of an EH scope but not a return instruction that
exits a function. This mismatch caused incorrect prolog and epilog
generation in wasm EH scopes. This patch fixes this.
This patch is in the same vein with rL333045, which splits
`MachineBasicBlock::isEHFuncletEntry` into `isEHFuncletEntry` and
`isEHScopeEntry`.
Reviewers: dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D50653
llvm-svn: 340325
Most of these shifts are extended to vXi16 so we don't gain anything from forcing another round of generic shift lowering - we know these extended cases are legal constant splat shifts.
llvm-svn: 340307
Due to some splat handling code in getVectorShuffle, its possible for NewV1/NewV2 to have their mask modified from what is requested. This can lead to cycles being created in the DAG.
This patch examines the returned mask and makes sure its different. Long term we may need to look closer at that splat code in getVectorShuffle, or add more splat awareness to getVectorShuffle.
Fixes PR38639
Differential Revision: https://reviews.llvm.org/D50981
llvm-svn: 340214
We can safely avoid interfering with the subus combine if both inputs are freely truncatable. Either both extends, or an extend and a constant vector.
Differential Revision: https://reviews.llvm.org/D50878
llvm-svn: 340212
We were basically assuming only one operand of the compare could be an ADD node and using that to swap operands. But we can have a normal add followed by a saturing add.
This rewrites the canonicalization to just be based on the condition code.
llvm-svn: 340134
The code already support 128 and 256 and even knows to split 256 for AVX1. So we really just needed to stop looking for specific VTs and subtarget features and just look for legal VTs with i8/i16 elements.
While there, add some curly braces around outer if statement bodies that contain only another if. It makes all the closing curly braces look more regular.
llvm-svn: 340128
Extending the concept introduced in D49562, this patch lowers constant vXi8 ISD::SRL/ISD::SRA by zero/sign extending to vXi16 and using PMULLW and then truncating the high 8 bits of the result.
Differential Revision: https://reviews.llvm.org/D50781
llvm-svn: 340062
isOnlyUserOf is a little heavier because it allows the node to be used multiple times by the other node. In this case we are looking at a truncate which only has one operand so we know it can only use it once. Thus hasOneUse is better.
llvm-svn: 340059
test/CodeGen/X86/shadow-stack.ll has the following machine verifier
errors:
```
*** Bad machine code: Using a killed virtual register ***
- function: bar
- basic block: %bb.6 entry (0x7fdc81857818)
- instruction: %3:gr64 = MOV64rm killed %2:gr64, 1, $noreg, 8, $noreg
- operand 1: killed %2:gr64
*** Bad machine code: Using a killed virtual register ***
- function: bar
- basic block: %bb.6 entry (0x7fdc81857818)
- instruction: $rsp = MOV64rm killed %2:gr64, 1, $noreg, 16, $noreg
- operand 1: killed %2:gr64
*** Bad machine code: Virtual register killed in block, but needed live out. ***
- function: bar
- basic block: %bb.2 entry (0x7fdc818574f8)
Virtual register %2 is used after the block.
```
The fix here is to only copy the machine operand's register without the
kill flags for all the instructions except the very last one of the
sequence.
I had to insert dummy PHIs in the test case to force the NoPHI function
property to be set to false. More on this here: https://llvm.org/PR38439
Differential Revision: https://reviews.llvm.org/D50260
llvm-svn: 340033
Normally the peephole pass converts EXTRACT_SUBREG to COPY instructions. But we're after peephole so we can't rely on it to clean these up.
To fix this, the eflags pass now emits a COPY with a subreg input.
I also noticed that in 32-bit mode we need to constrain the input to the copy to ensure the subreg is valid. Otherwise we'll fail verify-machineinstrs
Differential Revision: https://reviews.llvm.org/D50656
llvm-svn: 339945
a generically extensible collection of extra info attached to
a `MachineInstr`.
The primary change here is cleaning up the APIs used for setting and
manipulating the `MachineMemOperand` pointer arrays so chat we can
change how they are allocated.
Then we introduce an extra info object that using the trailing object
pattern to attach some number of MMOs but also other extra info. The
design of this is specifically so that this extra info has a fixed
necessary cost (the header tracking what extra info is included) and
everything else can be tail allocated. This pattern works especially
well with a `BumpPtrAllocator` which we use here.
I've also added the basic scaffolding for putting interesting pointers
into this, namely pre- and post-instruction symbols. These aren't used
anywhere yet, they're just there to ensure I've actually gotten the data
structure types correct. I'll flesh out support for these in
a subsequent patch (MIR dumping, parsing, the works).
Finally, I've included an optimization where we store any single pointer
inline in the `MachineInstr` to avoid the allocation overhead. This is
expected to be the overwhelmingly most common case and so should avoid
any memory usage growth due to slightly less clever / dense allocation
when dealing with >1 MMO. This did require several ergonomic
improvements to the `PointerSumType` to reasonably support the various
usage models.
This also has a side effect of freeing up 8 bits within the
`MachineInstr` which could be repurposed for something else.
The suggested direction here came largely from Hal Finkel. I hope it was
worth it. ;] It does hopefully clear a path for subsequent extensions
w/o nearly as much leg work. Lots of thanks to Reid and Justin for
careful reviews and ideas about how to do all of this.
Differential Revision: https://reviews.llvm.org/D50701
llvm-svn: 339940
Summary:
This prefix was added in r333421, and it changed our dumper output to
say things like "CVRegEAX" instead of just "EAX". That's a functional
change that I'd rather avoid.
I tested GCC, Clang, and MSVC, and all of them support #pragma
push_macro. They don't issue warnings whem the macro is not defined
either.
I don't have a Mac so I can't test the real termios.h header, but I
looked at the termios.h sources online and looked for other conflicts.
I saw only the CR* macros, so those are the ones we work around.
Reviewers: zturner, JDevlieghere
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D50851
llvm-svn: 339907
Allow the comparison of x86 registers in the evaluation of assembler
directives. This generalizes and simplifies the extension from r334022
to catch another case found in the Linux kernel.
Reviewers: rnk, void
Reviewed By: rnk
Subscribers: hiraditya, nickdesaulniers, llvm-commits
Differential Revision: https://reviews.llvm.org/D50795
llvm-svn: 339895
When compiling with /arch:AVX512 and optimizations turned on,
we could crash while emitting debug info because we did not
have CodeView register constants for the AVX 512 register
set defined. This patch defines them.
Differential Revision: https://reviews.llvm.org/D50819
llvm-svn: 339893
a shorter name ('x86-slh') for the internal flags and pass name.
Without this, you can't use the -stop-after or -stop-before
infrastructure. I seem to have just missed this when originally adding
the pass.
The shorter name solves two problems. First, the flag names were ...
really long and hard to type/manage. Second, the pass name can't be the
exact same as the flag name used to enable this, and there are already
some users of that flag name so I'm avoiding changing it unnecessarily.
llvm-svn: 339836
To lower this we now create a new V1 containing the low half of both sources and a new V2 containing the upper half of both sources. Then we created a repeated lane shuffle of those new sources to create the final result.
This fixes PR35833
Differential Revison: https://reviews.llvm.org/D41794
llvm-svn: 339818
AVX512 added new versions of these intrinsics that take a rounding mode. If the rounding mode is 4 the new intrinsics are equivalent to the old intrinsics.
The AVX512 intrinsics were being lowered to ISD opcodes, but the legacy SSE intrinsics were left as intrinsics. This resulted in the AVX512 instructions needing separate patterns for the ISD opcodes and the legacy SSE intrinsics.
Now we convert SSE intrinsics and AVX512 intrinsics with rounding mode 4 to the same ISD opcode so we can share the isel patterns.
llvm-svn: 339749
`MachineMemOperand` pointers attached to `MachineSDNodes` and instead
have the `SelectionDAG` fully manage the memory for this array.
Prior to this change, the memory management was deeply confusing here --
The way the MI was built relied on the `SelectionDAG` allocating memory
for these arrays of pointers using the `MachineFunction`'s allocator so
that the raw pointer to the array could be blindly copied into an
eventual `MachineInstr`. This creates a hard coupling between how
`MachineInstr`s allocate their array of `MachineMemOperand` pointers and
how the `MachineSDNode` does.
This change is motivated in large part by a change I am making to how
`MachineFunction` allocates these pointers, but it seems like a layering
improvement as well.
This would run the risk of increasing allocations overall, but I've
implemented an optimization that should avoid that by storing a single
`MachineMemOperand` pointer directly instead of allocating anything.
This is expected to be a net win because the vast majority of uses of
these only need a single pointer.
As a side-effect, this makes the API for updating a `MachineSDNode` and
a `MachineInstr` reasonably different which seems nice to avoid
unexpected coupling of these two layers. We can map between them, but we
shouldn't be *surprised* at where that occurs. =]
Differential Revision: https://reviews.llvm.org/D50680
llvm-svn: 339740
This patch removes redundant template argument `TargetName` from TIIPredicate.
Tablegen can always infer the target name from the context. So we don't need to
force users of TIIPredicate to always specify it.
This allows us to better modularize the tablegen class hierarchy for the
so-called "function predicates". class FunctionPredicateBase has been added; it
is currently used as a building block for TIIPredicates. However, I plan to
reuse that class to model other function predicate classes too (i.e. not just
TIIPredicates). For example, this can be a first step towards implementing
proper support for dependency breaking instructions in tablegen.
This patch also adds a verification step on TIIPredicates in tablegen.
We cannot have multiple TIIPredicates with the same name. Otherwise, this will
cause build errors later on, when tablegen'd .inc files are included by cpp
files and then compiled.
Differential Revision: https://reviews.llvm.org/D50708
llvm-svn: 339706
rL339686 added the case where a faux shuffle might have repeated shuffle inputs coming from either side of the OR().
This patch improves the insertion of the inputs into the source ops lists to account for this, as well as making it trivial to add support for shuffles with more than 2 inputs in the future.
llvm-svn: 339696
Summary: This revision improves previous version (rL330322) which has been reverted due to crashes.
This is the patch that lowers x86 intrinsics to native IR
in order to enable optimizations. The patch also includes folding
of previously missing saturation patterns so that IR emits the same
machine instructions as the intrinsics.
Reviewers: craig.topper, spatel, RKSimon
Reviewed By: craig.topper
Subscribers: mike.dvoretsky, DavidKreitzer, sroland, llvm-commits
Differential Revision: https://reviews.llvm.org/D46179
llvm-svn: 339650
The behavior in 64-bit mode is different between Intel and AMD CPUs. Intel ignores the 0x66 prefix. AMD does not. objump doesn't ignore the 0x66 prefix. Since LLVM aims to match objdump behavior, we should do the same.
While I was trying to fix this I had change brtarget16/32 to use ENCODING_IW/ID instead of ENCODING_Iv to get the 0x66+REX.W case to act sort of sanely. It's still wrong, but that's a problem for another day.
The change in encoding exposed the fact that 16-bit mode disassembly of relative jumps was creating JMP_4 with a 2 byte immediate. It should have been JMP_2. From just printing you can't tell the difference, but if you dumped the encoding it wouldn't have matched what we started with.
While fixing that, it exposed that jo/jno opcodes were missing from the switch that this patch deleted and there were no test cases for them.
Fixes PR38537.
llvm-svn: 339622
Unlike the other arithmetic instructions the mem-reg form of compare is just a load and not a RMW operation. According to the Intel optimization manual, this form is also supported by macro fusion.
llvm-svn: 339498
Now we switch to the subregister in expandPostRAPseudos where we already switched the opcode.
This simplifies a few isel patterns that used the pseudo directly. And magically seems to have improved our ability to CSE it in the undef-label.ll test.
llvm-svn: 339496
This patch introduces tablegen class MCStatement.
Currently, an MCStatement can be either a return statement, or a switch
statement.
```
MCStatement:
MCReturnStatement
MCOpcodeSwitchStatement
```
A MCReturnStatement expands to a return statement, and the boolean expression
associated with the return statement is described by a MCInstPredicate.
An MCOpcodeSwitchStatement is a switch statement where the condition is a check
on the machine opcode. It allows the definition of multiple checks, as well as a
default case. More details on the grammar implemented by these two new
constructs can be found in the diff for TargetInstrPredicates.td.
This patch makes it easier to read the body of auto-generated TargetInstrInfo
predicates.
In future, I plan to reuse/extend the MCStatement grammar to describe more
complex target hooks. For now, this is just a first step (mostly a minor
cosmetic change to polish the new predicates framework).
Differential Revision: https://reviews.llvm.org/D50457
llvm-svn: 339352
As discussed on D41794, we have many cases where we fail to combine shuffles as the input operands have other uses.
This patch permits these shuffles to be combined as long as they don't introduce additional variable shuffle masks, which should reduce instruction dependencies and allow the total number of shuffles to still drop without increasing the constant pool.
However, this may mean that some memory folds may no longer occur, and on pre-AVX require the occasional extra register move.
This also exposes some poor PMULDQ/PMULUDQ codegen which was doing unnecessary upper/lower calculations which will in fact fold to zero/undef - the fix will be added in a followup commit.
Differential Revision: https://reviews.llvm.org/D50328
llvm-svn: 339335
Src0 doesn't really convey any meaning to what the operand is. Passthru matches what's used in the documentation for the intrinsic this comes from.
llvm-svn: 339101
Summary:
Expand isFNEG so that we generate the appropriate F(N)M(ADD|SUB)
instructions in more cases. For example, the following sequence
a = _mm256_broadcast_ss(f)
d = _mm256_fnmadd_ps(a, b, c)
generates an fsub and fma without this patch and an fnma with this
change.
Reviewers: craig.topper
Subscribers: llvm-commits, davidxl, wmi
Differential Revision: https://reviews.llvm.org/D48467
llvm-svn: 339043
If the store is volatile this might be a memory mapped IO access. In that case we shouldn't generate a load that didn't exist in the source
Differential Revision: https://reviews.llvm.org/D50270
llvm-svn: 339041
At one point in time acquire implied mayLoad and mayStore as did release. Thus we needed separate pseudos that also carried that property. This appears to no longer be the case. I believe it was changed in 2012 with a comment saying that atomic memory accesses are marked volatile which preserves the ordering.
So from what I can tell we shouldn't need additional pseudos since they aren't carry any flags that are different from the normal instructions. The only thing I can think of is that we may consider them for load folding candidates in the peephole pass now where we didn't before. If that's important hopefully there's something in the memory operand we can check to prevent the folding without relying on pseudo instructions.
Differential Revision: https://reviews.llvm.org/D50212
llvm-svn: 338925
Clang uses "ctpop & 1" to implement __builtin_parity. If the popcnt instruction isn't supported this generates a large amount of code to calculate the population count. Instead we can bisect the data down to a single byte using xor and then check the parity flag.
Even when popcnt is supported, its still a good idea to split 64-bit data on 32-bit targets using an xor in front of a single popcnt. Otherwise we get two popcnts and an add before the and.
I've specifically targeted this at the sizes supported by clang builtins, but we could generalize this if we think that's useful.
Differential Revision: https://reviews.llvm.org/D50165
llvm-svn: 338907
There are a lot of permutations of types here generating a lot of patterns in the isel table. It's more efficient to just ReplaceUses and RemoveDeadNode from the Select function.
The test changes are because we have a some shuffle patterns that have a bitcast as their root node. But the behavior is identical to another instruction whose pattern doesn't start with a bitcast. So this isn't a functional change.
llvm-svn: 338824
Move all the patterns to X86InstrVecCompiler.td so we can keep SSE/AVX/AVX512 all in one place.
To save some patterns we'll use an existing DAG combine to convert f128 fand/for/fxor to integer when sse2 is enabled. This allows use to reuse all the existing patterns for v2i64.
I believe this now makes SHA instructions the only case where VEX/EVEX and legacy encoded instructions could be generated simultaneously.
llvm-svn: 338821
If the producing instruction is legacy encoded it doesn't implicitly zero the upper bits. This is important for the SHA instructions which don't have a VEX encoded version. We might also be able to hit this with the incomplete f128 support that hasn't been ported to VEX.
llvm-svn: 338812
I'm assuming the R13 restriction extends to R13D. Guessing this restriction is related to the funny encoding of this register as base always requiring a displacement to be encoded.
llvm-svn: 338806
These instructions perform the same operation, but the semantic of which operand is destroyed is reversed. If the same register is used as both operands we can change the execution domain without worrying about this difference.
Unfortunately, this really only works in cases where the input register is killed by the instruction. If its not killed, the two address isntruction pass inserts a copy that will become a move instruction. This makes the instruction use different physical registers that contain the same data at the time the unpck/movhlps executes. I've considered using a unary pseudo instruction with tied operand to trick the two address instruction pass. We could then expand the pseudo post regalloc to get the same physical register on both inputs.
Differential Revision: https://reviews.llvm.org/D50157
llvm-svn: 338735
We now emit a move of -1 before the cmov and do the addition after the cmov just like the case with an extra addition.
This may be slightly worse for code size, but is more consistent with other compilers. And we might be able to hoist the mov -1 outside of loops.
llvm-svn: 338613
Summary:
D25878, which added support for !absolute_symbol for normal X86 ISel,
did not add support for materializing references to absolute symbols for
X86 FastISel. This causes build failures because FastISel generates
PC-relative relocations for absolute symbols. Fall back to normal ISel
for references to !absolute_symbol GVs. Fix for PR38200.
Reviewers: pcc, craig.topper
Reviewed By: pcc
Subscribers: hiraditya, llvm-commits, kcc
Differential Revision: https://reviews.llvm.org/D50116
llvm-svn: 338599
There is nothing x86-specific about this code, so it'd be nice to make this available for other targets to use in the future (and get it out of X86ISelLowering!).
Differential Revision: https://reviews.llvm.org/D50083
llvm-svn: 338586
It's not strictly required by the transform of the cmov and the add, but it makes sure we restrict it to the cases we know we want to match.
While there canonicalize the operand order of the cmov to simplify the matching and emitting code.
llvm-svn: 338492
EFLAGS copy lowering.
If you have a branch of LLVM, you may want to cherrypick this. It is
extremely unlikely to hit this case empirically, but it will likely
manifest as an "impossible" branch being taken somewhere, and will be
... very hard to debug.
Hitting this requires complex conditions living across complex control
flow combined with some interesting memory (non-stack) initialized with
the results of a comparison. Also, because you have to arrange for an
EFLAGS copy to be in *just* the right place, almost anything you do to
the code will hide the bug. I was unable to reduce anything remotely
resembling a "good" test case from the place where I hit it, and so
instead I have constructed synthetic MIR testing that directly exercises
the bug in question (as well as the good behavior for completeness).
The issue is that we would mistakenly assume any SETcc with a valid
condition and an initial operand that was a register and a virtual
register at that to be a register *defining* SETcc...
It isn't though....
This would in turn cause us to test some other bizarre register,
typically the base pointer of some memory. Now, testing this register
and using that to branch on doesn't make any sense. It even fails the
machine verifier (if you are running it) due to the wrong register
class. But it will make it through LLVM, assemble, and it *looks*
fine... But wow do you get a very unsual and surprising branch taken in
your actual code.
The fix is to actually check what kind of SETcc instruction we're
dealing with. Because there are a bunch of them, I just test the
may-store bit in the instruction. I've also added an assert for sanity
that ensure we are, in fact, *defining* the register operand. =D
llvm-svn: 338481
Don't declare them as X86SchedWritePair when the folded class will never be used.
Note: MOVBE (load/store endian conversion) instructions tend to have a very different behaviour to BSWAP.
llvm-svn: 338412
As was done for vector rotations, we can efficiently use ISD::MULHU for vXi8/vXi16 ISD::SRL lowering.
Shift-by-zero cases are still problematic (mainly on v32i8 due to extra AND/ANDN/OR or VPBLENDVB blend masks but v8i16/v16i16 aren't great either if PBLENDW fails) so I've limited this first patch to known non-zero cases if we can't easily use PBLENDW.
Differential Revision: https://reviews.llvm.org/D49562
llvm-svn: 338407
Summary:
Similar to D49636, but for PMADDUBSW. This instruction has the additional complexity that the addition of the two products saturates to 16-bits rather than wrapping around. And one operand is treated as signed and the other as unsigned.
A C example that triggers this pattern
```
static const int N = 128;
int8_t A[2*N];
uint8_t B[2*N];
int16_t C[N];
void foo() {
for (int i = 0; i != N; ++i)
C[i] = MIN(MAX((int16_t)A[2*i]*(int16_t)B[2*i] + (int16_t)A[2*i+1]*(int16_t)B[2*i+1], -32768), 32767);
}
```
Reviewers: RKSimon, spatel, zvi
Reviewed By: RKSimon, zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49829
llvm-svn: 338402
This commit fixes two issues with the liveness information after the
call:
1) The code always spills RCX and RDX if InProlog == true, which results
in an use of undefined phys reg.
2) FinalReg, JoinReg, RoundedReg, SizeReg are not added as live-ins to
the basic blocks that use them, therefore they are seen undefined.
https://llvm.org/PR38376
Differential Revision: https://reviews.llvm.org/D50020
llvm-svn: 338400
This patch teaches llvm-mca how to identify dependency breaking instructions on
btver2.
An example of dependency breaking instructions is the zero-idiom XOR (example:
`XOR %eax, %eax`), which always generates zero regardless of the actual value of
the input register operands.
Dependency breaking instructions don't have to wait on their input register
operands before executing. This is because the computation is not dependent on
the inputs.
Not all dependency breaking idioms are also zero-latency instructions. For
example, `CMPEQ %xmm1, %xmm1` is independent on
the value of XMM1, and it generates a vector of all-ones.
That instruction is not eliminated at register renaming stage, and its opcode is
issued to a pipeline for execution. So, the latency is not zero.
This patch adds a new method named isDependencyBreaking() to the MCInstrAnalysis
interface. That method takes as input an instruction (i.e. MCInst) and a
MCSubtargetInfo.
The default implementation of isDependencyBreaking() conservatively returns
false for all instructions. Targets may override the default behavior for
specific CPUs, and return a value which better matches the subtarget behavior.
In future, we should teach to Tablegen how to automatically generate the body of
isDependencyBreaking from scheduling predicate definitions. This would allow us
to expose the knowledge about dependency breaking instructions to the machine
schedulers (and, potentially, other codegen passes).
Differential Revision: https://reviews.llvm.org/D49310
llvm-svn: 338372
isFNEG was duplicating much of what was done by getTargetConstantBitsFromNode in its own calls to getTargetConstantFromNode.
Noticed while reviewing D48467.
llvm-svn: 338358
In one place we checked X86Subtarget.slowLEA() to decide if the pass should run. But to decide what the pass should we only check isSLM. This resulted in Goldmont going down the Bonnell path.
llvm-svn: 338342
The machine verifier asserts with:
Assertion failed: (isMBB() && "Wrong MachineOperand accessor"), function getMBB, file ../include/llvm/CodeGen/MachineOperand.h, line 542.
It calls analyzeBranch which tries to call getMBB if the opcode is
JMP_1, but in this case we do:
JMP_1 @OUTLINED_FUNCTION
I believe we have to use TAILJMPd64 instead of JMP_1 since JMP_1 is used
with brtarget8.
Differential Revision: https://reviews.llvm.org/D49299
llvm-svn: 338237
X86 normally requires immediates to be a signed 32-bit value which would exclude i64 0x80000000. But for add/sub we can negate the constant and use the opposite instruction.
llvm-svn: 338204
Not sure why they were being explicitly excluded, but I believe all the math inside the if works. I changed the absolute value to be uint64_t instead of int64_t so INT64_MIN+1 wouldn't be signed wrap.
llvm-svn: 338101
Summary:
This is the pattern you get from the loop vectorizer for something like this
int16_t A[1024];
int16_t B[1024];
int32_t C[512];
void pmaddwd() {
for (int i = 0; i != 512; ++i)
C[i] = (A[2*i]*B[2*i]) + (A[2*i+1]*B[2*i+1]);
}
In this case we will have (add (mul (build_vector), (build_vector)), (mul (build_vector), (build_vector))). This is different than the pattern we currently match which has the build_vectors between an add and a single multiply. I'm not sure what C code would get you that pattern.
Reviewers: RKSimon, spatel, zvi
Reviewed By: zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49636
llvm-svn: 338097
If this happens the operands aren't updated and the existing node is returned. Make sure we pass this existing node up to the DAG combiner so that a proper replacement happens. Otherwise we get stuck in an infinite loop with an unoptimized node.
llvm-svn: 338090
a helper function with a nice overview comment. NFC.
This is a preperatory refactoring to implementing another component of
mitigation here that was descibed in the design document but hadn't been
implemented yet.
llvm-svn: 338016
I'm not sure if this was trying to avoid optimizing the new nodes further or what. Or maybe to prevent a cycle if something tried to reform the multiply? But I don't think its a reliable way to do that. If the user of the expanded multiply is visited by the DAGCombiner after this conversion happens, the DAGCombiner will check its operands, see that they haven't been visited by the DAGCombiner before and it will then add the first node to the worklist. This process will repeat until all the new nodes are visited.
So this seems like an unreliable prevention at best. So this patch just returns the new nodes like any other combine. If this starts causing problems we can try to add target specific nodes or something to more directly prevent optimizations.
Now that we handle the combine normally, we can combine any negates the mul expansion creates into their users since those will be visited now.
llvm-svn: 338007
These calls were making sure some newly created nodes were added to worklist, but the DAGCombiner has internal support for ensuring it has visited all nodes. Any time it visits a node it ensures the operands have been queued to be visited as well. This means if we only need to return the last new node. The DAGCombiner will take care of adding its inputs thus walking backwards through all the new nodes.
llvm-svn: 337996
- Avoid duplication of regmask size calculation.
- Simplify allocateRegisterMask() call.
- Rename allocateRegisterMask() to allocateRegMask() to be consistent
with naming in MachineOperand.
llvm-svn: 337986
In SVN r334523, the first half of comdat constant pool handling was
hoisted from X86WindowsTargetObjectFile (which despite the name only
was used for msvc targets) into the arch independent
TargetLoweringObjectFileCOFF, but the other half of the handling was
left behind in X86AsmPrinter::GetCPISymbol.
With only half of the handling in place, inconsistent comdat
sections/symbols are created, causing issues with both GNU binutils
(avoided for X86 in SVN r335918) and with the MS linker, which
would complain like this:
fatal error LNK1143: invalid or corrupt file: no symbol for COMDAT section 0x4
Differential Revision: https://reviews.llvm.org/D49644
llvm-svn: 337950
code.
This consolidates all our hardening calls, and simplifies the code
a bit. It seems much more clear to handle all of these together.
No functionality changed here.
llvm-svn: 337895
This function actually does two things: it traces the predicate state
through each of the basic blocks in the function (as that isn't directly
handled by the SSA updater) *and* it hardens everything necessary in the
block as it goes. These need to be done together so that we have the
currently active predicate state to use at each point of the hardening.
However, this also made obvious that the flag to disable actual
hardening of loads was flawed -- it also disabled tracing the predicate
state across function calls within the body of each block. So this patch
sinks this debugging flag test to correctly guard just the hardening of
loads.
Unless load hardening was disabled, no functionality should change with
tis patch.
llvm-svn: 337894
against v1.2 BCBS attacks directly.
Attacks using spectre v1.2 (a subset of BCBS) are described in the paper
here:
https://people.csail.mit.edu/vlk/spectre11.pdf
The core idea is to speculatively store over the address in a vtable,
jumptable, or other target of indirect control flow that will be
subsequently loaded. Speculative execution after such a store can
forward the stored value to subsequent loads, and if called or jumped
to, the speculative execution will be steered to this potentially
attacker controlled address.
Up until now, this could be mitigated by enableing retpolines. However,
that is a relatively expensive technique to mitigate this particular
flavor. Especially because in most cases SLH will have already mitigated
this. To fully mitigate this with SLH, we need to do two core things:
1) Unfold loads from calls and jumps, allowing the loads to be post-load
hardened.
2) Force hardening of incoming registers even if we didn't end up
needing to harden the load itself.
The reason we need to do these two things is because hardening calls and
jumps from this particular variant is importantly different from
hardening against leak of secret data. Because the "bad" data here isn't
a secret, but in fact speculatively stored by the attacker, it may be
loaded from any address, regardless of whether it is read-only memory,
mapped memory, or a "hardened" address. The only 100% effective way to
harden these instructions is to harden the their operand itself. But to
the extent possible, we'd like to take advantage of all the other
hardening going on, we just need a fallback in case none of that
happened to cover the particular input to the control transfer
instruction.
For users of SLH, currently they are paing 2% to 6% performance overhead
for retpolines, but this mechanism is expected to be substantially
cheaper. However, it is worth reminding folks that this does not
mitigate all of the things retpolines do -- most notably, variant #2 is
not in *any way* mitigated by this technique. So users of SLH may still
want to enable retpolines, and the implementation is carefuly designed to
gracefully leverage retpolines to avoid the need for further hardening
here when they are enabled.
Differential Revision: https://reviews.llvm.org/D49663
llvm-svn: 337878
We generated a subtract for the power of 2 minus one then negated the result. The negate can be optimized away by swapping the subtract operands, but DAG combine doesn't know how to do that and we don't add any of the new nodes to the worklist anyway.
This patch makes use explicitly emit the swapped subtract.
llvm-svn: 337858
Use a left shift and 2 subtracts like we do for 30. Move this out from behind the slow lea check since it doesn't even use an LEA.
Use this for multiply by 14 as well.
llvm-svn: 337856
Just some gardening here.
Similar to how we moved call information into Candidates, this moves outlined
frame information into OutlinedFunction. This allows us to remove
TargetCostInfo entirely.
Anywhere where we returned a TargetCostInfo struct, we now return an
OutlinedFunction. This establishes OutlinedFunctions as more of a general
repeated sequence, and Candidates as occurrences of those repeated sequences.
llvm-svn: 337848
Summary:
Enabling this fully exposes a latent bug in the instruction folding: we
never update the register constraints for the register operands when
fusing a load into another operation. The fused form could, in theory,
have different register constraints on its operands. And in fact,
TCRETURNm* needs its memory operands to use tailcall compatible
registers.
I've updated the folding code to re-constrain all the registers after
they are mapped onto their new instruction.
However, we still can't enable folding in the general case from
TCRETURNr* to TCRETURNm* because doing so may require more registers to
be available during the tail call. If the call itself uses all but one
register, and the folded load would require both a base and index
register, there will not be enough registers to allocate the tail call.
It would be better, IMO, to teach the register allocator to *unfold*
TCRETURNm* when it runs out of registers (or specifically check the
number of registers available during the TCRETURNr*) but I'm not going
to try and solve that for now. Instead, I've just blocked the forward
folding from r -> m, leaving LLVM free to unfold from m -> r as that
doesn't introduce new register pressure constraints.
The down side is that I don't have anything that will directly exercise
this. Instead, I will be immediately using this it my SLH patch. =/
Still worse, without allowing the TCRETURNr* -> TCRETURNm* fold, I don't
have any tests that demonstrate the failure to update the memory operand
register constraints. This patch still seems correct, but I'm nervous
about the degree of testing due to this.
Suggestions?
Reviewers: craig.topper
Subscribers: sanjoy, mcrosier, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D49717
llvm-svn: 337845
Before this, TCI contained all the call information for each Candidate.
This moves that information onto the Candidates. As a result, each Candidate
can now supply how it ought to be called. Thus, Candidates will be able to,
say, call the same function in cheaper ways when possible. This also removes
that information from TCI, since it's no longer used there.
A follow-up patch for the AArch64 outliner will demonstrate this.
llvm-svn: 337840
helper and restructure the post-load hardening to use this.
This isn't as trivial as I would have liked because the post-load
hardening used a trick that only works for it where it swapped in
a temporary register to the load rather than replacing anything.
However, there is a simple way to do this without that trick that allows
this to easily reuse a friendly API for hardening a value in a register.
That API will in turn be usable in subsequent patcehs.
This also techincally changes the position at which we insert the subreg
extraction for the predicate state, but that never resulted in an actual
instruction and so tests don't change at all.
llvm-svn: 337825
This code was really nasty, had several bugs in it originally, and
wasn't carrying its weight. While on Zen we have all 4 ports available
for SHRX, on all of the Intel parts with Agner's tables, SHRX can only
execute on 2 ports, giving it 1/2 the throughput of OR.
Worse, all too often this pattern required two SHRX instructions in
a chain, hurting the critical path by a lot.
Even if we end up needing to safe/restore EFLAGS, that is no longer so
bad. We pay for a uop to save the flag, but we very likely get fusion
when it is used by forming a test/jCC pair or something similar. In
practice, I don't expect the SHRX to be a significant savings here, so
I'd like to avoid the complex code required. We can always resurrect
this if/when someone has a specific performance issue addressed by it.
llvm-svn: 337781
Don't try to generate large PIC code for non-ELF targets. Neither COFF
nor MachO have relocations for large position independent code, and
users have been using "large PIC" code models to JIT 64-bit code for a
while now. With this change, if they are generating ELF code, their
JITed code will truly be PIC, but if they target MachO or COFF, it will
contain 64-bit immediates that directly reference external symbols. For
a JIT, that's perfectly fine.
llvm-svn: 337740
Summary:
Pretty mechanical follow-up for D49196.
As microarchitecture.pdf notes, "20 AMD Ryzen pipeline",
"20.8 Register renaming and out-of-order schedulers":
The integer register file has 168 physical registers of 64 bits each.
The floating point register file has 160 registers of 128 bits each.
"20.14 Partial register access":
The processor always keeps the different parts of an integer register together.
...
An instruction that writes to part of a register will therefore have a false dependence
on any previous write to the same register or any part of it.
Reviewers: andreadb, courbet, RKSimon, craig.topper, GGanesh
Reviewed By: GGanesh
Subscribers: gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D49393
llvm-svn: 337676
a call, and then again as a return.
Also added a comment to try and explain better why we would be doing
what we're doing when hardening the (non-call) returns.
llvm-svn: 337673
This provides an overview of the algorithm used to harden specific
loads. It also brings this our terminology further in line with
hardening rather than checking.
Differential Revision: https://reviews.llvm.org/D49583
llvm-svn: 337667
This seems to be a net improvement. There's still an issue under avx512f where we have a 512-bit vpaddd, but not vpmaddwd so we end up doing two 256-bit vpmaddwds and inserting the results before a 512-bit vpaddd. It might be better to do two 512-bits paddds with zeros in the upper half. Same number of instructions, but breaks a dependency.
llvm-svn: 337656
Ideally our ISD node types going into the isel table would have types consistent with their instruction domain. This prevents us having to duplicate patterns with different types for the same instruction.
Unfortunately, it seems our shuffle combining is currently relying on this a little remove some bitcasts. This seems to enable some switching between shufps and shufd. Hopefully there's some way we can address this in the combining.
Differential Revision: https://reviews.llvm.org/D49280
llvm-svn: 337590
CombineTo is most useful when you need to replace multiple results, avoid the worklist management, or you need to something else after the combine, etc. Otherwise you should be able to just return the new node and let DAGCombiner go through its usual worklist code.
All of the places changed in this patch look to be standard cases where we should be able to use the more stand behavior of just returning the new node.
Differential Revision: https://reviews.llvm.org/D49569
llvm-svn: 337589
We can safely use getConstant here as we're still lowering, which allows constant folding to kick in and simplify the vector shift codegen.
Noticed while working on D49562.
llvm-svn: 337578
This is an early step towards using SimplifyDemandedVectorElts for target shuffle combining - this merely moves the existing X86ISD::VBROADCAST simplification code to use the SimplifyDemandedVectorElts mechanism.
Adds X86TargetLowering::SimplifyDemandedVectorEltsForTargetNode to handle X86ISD::VBROADCAST - in time we can support all target shuffles (and other ops) here.
llvm-svn: 337547
remove dead declaration of a call instruction handling helper.
This moves to the 'harden' terminology that I've been trying to settle
on for returns. It also adds a really detailed comment explaining what
all we're trying to accomplish with return instructions and why.
Hopefully this makes it much more clear what exactly is being
"hardened".
Differential Revision: https://reviews.llvm.org/D49571
llvm-svn: 337510
We have a number of cases where we fail to reduce vector op widths, performing the op in a larger vector and then extracting a subvector. This is often because by default it would create illegal types.
This peephole patch attempts to handle a few common cases detailed in PR36761, which typically involved extension+conversion to vX2f64 types.
Differential Revision: https://reviews.llvm.org/D49556
llvm-svn: 337500
Returning SDValue() means nothing was changed. Returning the result of CombineTo returns the first argument of CombineTo. This is specially detected by DAGCombiner as meaning that something changed, but worklist management was already taken care of.
I think the only real effect of this change is that we now properly update the Statistic the counts the number of combines performed. That's the only thing between the check for null and the check for N in the DAGCombiner.
llvm-svn: 337491
This patch fixes the latency/throughput of LEA instructions in the BtVer2
scheduling model.
On Jaguar, A 3-operands LEA has a latency of 2cy, and a reciprocal throughput of
1. That is because it uses one cycle of SAGU followed by 1cy of ALU1. An LEA
with a "Scale" operand is also slow, and it has the same latency profile as the
3-operands LEA. An LEA16r has a latency of 3cy, and a throughput of 0.5 (i.e.
RThrouhgput of 2.0).
This patch adds a new TIIPredicate named IsThreeOperandsLEAFn to X86Schedule.td.
The tablegen backend (for instruction-info) expands that definition into this
(file X86GenInstrInfo.inc):
```
static bool isThreeOperandsLEA(const MachineInstr &MI) {
return (
(
MI.getOpcode() == X86::LEA32r
|| MI.getOpcode() == X86::LEA64r
|| MI.getOpcode() == X86::LEA64_32r
|| MI.getOpcode() == X86::LEA16r
)
&& MI.getOperand(1).isReg()
&& MI.getOperand(1).getReg() != 0
&& MI.getOperand(3).isReg()
&& MI.getOperand(3).getReg() != 0
&& (
(
MI.getOperand(4).isImm()
&& MI.getOperand(4).getImm() != 0
)
|| (MI.getOperand(4).isGlobal())
)
);
}
```
A similar method is generated in the X86_MC namespace, and included into
X86MCTargetDesc.cpp (the declaration lives in X86MCTargetDesc.h).
Back to the BtVer2 scheduling model:
A new scheduling predicate named JSlowLEAPredicate now checks if either the
instruction is a three-operands LEA, or it is an LEA with a Scale value
different than 1.
A variant scheduling class uses that new predicate to correctly select the
appropriate latency profile.
Differential Revision: https://reviews.llvm.org/D49436
llvm-svn: 337469
changes that are intertwined here:
1) Extracting the tracing of predicate state through the CFG to its own
function.
2) Creating a struct to manage the predicate state used throughout the
pass.
Doing #1 necessitates and motivates the particular approach for #2 as
now the predicate management is spread across different functions
focused on different aspects of it. A number of simplifications then
fell out as a direct consequence.
I went with an Optional to make it more natural to construct the
MachineSSAUpdater object.
This is probably the single largest outstanding refactoring step I have.
Things get a bit more surgical from here. My current goal, beyond
generally making this maintainable long-term, is to implement several
improvements to how we do interprocedural tracking of predicate state.
But I don't want to do that until the predicate state management and
tracing is in reasonably clear state.
Differential Revision: https://reviews.llvm.org/D49427
llvm-svn: 337446
As discussed on PR38197, this canonicalizes MOVS*(N0, OP(N0, N1)) --> MOVS*(N0, SCALAR_TO_VECTOR(OP(N0[0], N1[0])))
This returns the scalar-fp codegen lost by rL336971.
Additionally it handles the OP(N1, N0)) case for commutable (FADD/FMUL) ops.
Differential Revision: https://reviews.llvm.org/D49474
llvm-svn: 337419
When rL336971 removed the scalar-fp isel patterns, we lost the need for this canonicalization - commutation/folding can handle everything else.
llvm-svn: 337387
The X86ISD::MOVLHPS/MOVHLPS should now only be emitted in SSE1 only. This means that the v2i64/v2f64 types would be illegal thus we don't need these patterns.
llvm-svn: 337349
I'm trying to restrict the MOVLHPS/MOVHLPS ISD nodes to SSE1 only. With SSE2 we can use unpcks. I believe this will allow some patterns to be cleaned up to require fewer bitcasts.
I've put in an odd isel hack to still select MOVHLPS instruction from the unpckh node to avoid changing tests and because movhlps is a shorter encoding. Ideally we'd do execution domain switching on this, but the operands are in the wrong order and are tied. We might be able to try a commute in the domain switching using custom code.
We already support domain switching for UNPCKLPD and MOVLHPS.
llvm-svn: 337348
Summary:
The only thing he suggested that I've skipped here is the double-wide
multiply instructions. Multiply is an area I'm nervous about there being
some hidden data-dependent behavior, and it doesn't seem important for
any benchmarks I have, so skipping it and sticking with the minimal
multiply support that matches what I know is widely used in existing
crypto libraries. We can always add double-wide multiply when we have
clarity from vendors about its behavior and guarantees.
I've tried to at least cover the fundamentals here with tests, although
I've not tried to cover every width or permutation. I can add more tests
where folks think it would be helpful.
Reviewers: craig.topper
Subscribers: sanjoy, mcrosier, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D49413
llvm-svn: 337308
Previously we passed 'null_frag' into the instruction definition. The multiclass is shared with MOVHPD which doesn't use null_frag. It turns out by passing X86Movsd it produces patterns equivalent to some standalone patterns.
llvm-svn: 337299
This amounts to pretty ridiculous number of patterns. Ideally we'd canonicalize the X86ISD::VRNDSCALE earlier to reuse those patterns. I briefly looked into doing that, but some strict FP operations could still get converted to rint and nearbyint during isel. It's probably still worthwhile to look into. This patch is meant as a starting point to work from.
llvm-svn: 337234
This allows us to use 231 form to fold an insertelement on the add input to the fma. There is technically no software intrinsic that can use this until AVX512F, but it can be manually built up from other intrinsics.
llvm-svn: 337223
invariant instructions to be both more correct and much more powerful.
While testing, I continued to find issues with sinking post-load
hardening. Unfortunately, it was amazingly hard to create any useful
tests of this because we were mostly sinking across copies and other
loading instructions. The fact that we couldn't sink past normal
arithmetic was really a big oversight.
So first, I've ported roughly the same set of instructions from the data
invariant loads to also have their non-loading varieties understood to
be data invariant. I've also added a few instructions that came up so
often it again made testing complicated: inc, dec, and lea.
With this, I was able to shake out a few nasty bugs in the validity
checking. We need to restrict to hardening single-def instructions with
defined registers that match a particular form: GPRs that don't have
a NOREX constraint directly attached to their register class.
The (tiny!) test case included catches all of the issues I was seeing
(once we can sink the hardening at all) except for the NOREX issue. The
only test I have there is horrible. It is large, inexplicable, and
doesn't even produce an error unless you try to emit encodings. I can
keep looking for a way to test it, but I'm out of ideas really.
Thanks to Ben for giving me at least a sanity-check review. I'll follow
up with Craig to go over this more thoroughly post-commit, but without
it SLH crashes everywhere so landing it for now.
Differential Revision: https://reviews.llvm.org/D49378
llvm-svn: 337177
Summary:
[[ https://bugs.llvm.org/show_bug.cgi?id=38149 | PR38149 ]]
As discussed in https://reviews.llvm.org/D49179#1158957 and later,
the IR for 'check for [no] signed truncation' pattern can be improved:
https://rise4fun.com/Alive/gBf
^ that pattern will be produced by Implicit Integer Truncation sanitizer,
https://reviews.llvm.org/D48958https://bugs.llvm.org/show_bug.cgi?id=21530
in signed case, therefore it is probably a good idea to improve it.
But the IR-optimal patter does not lower efficiently, so we want to undo it..
This handles the simple pattern.
There is a second pattern with predicate and constants inverted.
NOTE: we do not check uses here. we always do the transform.
Reviewers: spatel, craig.topper, RKSimon, javed.absar
Reviewed By: spatel
Subscribers: kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D49266
llvm-svn: 337166
Found cases that hit the assert I added. This patch factors the validity
checking into a nice helper routine and calls it when deciding to harden
post-load, and asserts it when doing so later.
I've added tests for the various ways of loading a floating point type,
as well as loading all vector permutations. Even though many of these go
to identical instructions, it seems good to somewhat comprehensively
test them.
I'm confident there will be more fixes needed here, I'll try to add
tests each time as I get this predicate adjusted.
llvm-svn: 337160
This unfortunately requires a bunch of bitcasts to be added added to SUBREG_TO_REG, COPY_TO_REGCLASS, and instructions in output patterns. Otherwise tablegen seems to default to picking f128 and then we fail when something tries to get the register class for f128 which isn't always valid.
The test changes are because we were previously mixing fr128 and vr128 due to contrainRegClass finding FR128 first and passes like live range shrinking weren't handling that well.
llvm-svn: 337147
indices used by AVX2 and AVX-512 gather instructions.
The index vector is hardened by broadcasting the predicate state
into a vector register and then or-ing. We don't even have to worry
about EFLAGS here.
I've added a test for all of the gather intrinsics to make sure that we
don't miss one. A particularly interesting creation is the gather
prefetch, which needs to be marked as potentially "loading" to get the
correct behavior. It's a memory access in many ways, and is actually
relevant for SLH. Based on discussion with Craig in review, I've moved
it to be `mayLoad` and `mayStore` rather than generic side effects. This
matches how we model other prefetch instructions.
Many thanks to Craig for the review here.
Differential Revision: https://reviews.llvm.org/D49336
llvm-svn: 337144
AVX512F only has integer domain logic instructions. AVX512DQ added FP domain logic instructions.
Execution domain fixing runs before EVEX->VEX. So if we have AVX512F and not AVX512DQ we fail to do execution domain switching of the logic operations. This leads to mismatches in execution domain and more test differences.
This patch adds custom domain fixing that switches EVEX integer logic operations to VEX fp logic operations if XMM16-31 are not used.
llvm-svn: 337137
128-bit ops implicitly zero the upper bits. This should address the comment about domain crossing for the integer version without AVX2 since we can use a 128-bit VBLENDW without AVX2.
The only bad thing I see here is that we failed to reuse an vxorps in some of the tests, but I think that's already known issue.
llvm-svn: 337134
registers.
The goal of this patch is to improve the throughput analysis in llvm-mca for the
case where instructions perform partial register writes.
On x86, partial register writes are quite difficult to model, mainly because
different processors tend to implement different register merging schemes in
hardware.
When the code contains partial register writes, the IPC (instructions per
cycles) estimated by llvm-mca tends to diverge quite significantly from the
observed IPC (using perf).
Modern AMD processors (at least, from Bulldozer onwards) don't rename partial
registers. Quoting Agner Fog's microarchitecture.pdf:
" The processor always keeps the different parts of an integer register together.
For example, AL and AH are not treated as independent by the out-of-order
execution mechanism. An instruction that writes to part of a register will
therefore have a false dependence on any previous write to the same register or
any part of it."
This patch is a first important step towards improving the analysis of partial
register updates. It changes the semantic of RegisterFile descriptors in
tablegen, and teaches llvm-mca how to identify false dependences in the presence
of partial register writes (for more details: see the new code comments in
include/Target/TargetSchedule.h - class RegisterFile).
This patch doesn't address the case where a write to a part of a register is
followed by a read from the whole register. On Intel chips, high8 registers
(AH/BH/CH/DH)) can be stored in separate physical registers. However, a later
(dirty) read of the full register (example: AX/EAX) triggers a merge uOp, which
adds extra latency (and potentially affects the pipe usage).
This is a very interesting article on the subject with a very informative answer
from Peter Cordes:
https://stackoverflow.com/questions/45660139/how-exactly-do-partial-registers-on-haswell-skylake-perform-writing-al-seems-to
In future, the definition of RegisterFile can be extended with extra information
that may be used to identify delays caused by merge opcodes triggered by a dirty
read of a partial write.
Differential Revision: https://reviews.llvm.org/D49196
llvm-svn: 337123
no conditions.
This is only valid to do if we're hardening calls and rets with LFENCE
which results in an LFENCE guarding the entire entry block for us.
llvm-svn: 337089
The code tried to find the immediate by using getNumOperands() on the MachineInstr, but there might be implicit-defs after the immediate that get counted.
Instead use getNumOperands() from the instruction description which will only count the operands that are defined in the td file.
llvm-svn: 337088
AVX512 doesn't have an immediate controlled blend instruction. But blend throughput is still better than movss/sd on SKX.
This commit changes AVX512 to use the AVX blend instructions instead of MOVSS/MOVSD. This constrains the register allocation since it won't be able to use XMM16-31, but hopefully the increased throughput and reduced port 5 pressure makes up for that.
llvm-svn: 337083
Ryzen has something like an 18 cycle latency on these based on Agner's data. AMD's own xls is blank. So it seems like there might be something tricky here.
Agner's data for Intel CPUs indicates these are a single uop there.
Probably safest to remove them. We never generate them without an intrinsic so this should be ok.
Differential Revision: https://reviews.llvm.org/D49315
llvm-svn: 337067
-Drop the intrinsic versions of conversion instructions. These should be handled when we do vectors. They shouldn't show up in scalar code.
-Add the float<->double conversions which were missing.
-Add the AVX512 and AVX version of the conversion instructions including the unsigned integer conversions unique to AVX512
Differential Revision: https://reviews.llvm.org/D49313
llvm-svn: 337066
-Move BSF/BSR to the same group as TZCNT/LZCNT/POPCNT.
-Split some of the bit manipulation instructions away from TZCNT/LZCNT/POPCNT. These are things like 'x & (x - 1)' which are composed of a few simple arithmetic operations. These aren't nearly as complicated/surprising as counting bits.
-Move BEXTR/BZHI into their own group. They aren't like a simple arithmethic op or the bit manipulation instructions. They're more like a shift+and.
Differential Revision: https://reviews.llvm.org/D49312
llvm-svn: 337065
These were supposed to be integer types since we are selecting integer instructions.
Found while preparing to remove these patterns for another patch.
llvm-svn: 337057
This patch adds support for AArch64 to cfi-verify.
This required three changes to cfi-verify. First, it generalizes checking if an instruction is a trap by adding a new isTrap flag to TableGen (and defining it for x86 and AArch64). Second, the code that ensures that the operand register is not clobbered between the CFI check and the indirect call needs to allow a single dereference (in x86 this happens as part of the jump instruction). Third, we needed to ensure that return instructions are not counted as indirect branches. Technically, returns are indirect branches and can be covered by CFI, but LLVM's forward-edge CFI does not protect them, and x86 does not consider them, so we keep that behavior.
In addition, we had to improve AArch64's code to evaluate the branch target of a MCInst to handle calls where the destination is not the first operand (which it often is not).
Differential Revision: https://reviews.llvm.org/D48836
llvm-svn: 337007
Spectre variant #1 for x86.
There is a lengthy, detailed RFC thread on llvm-dev which discusses the
high level issues. High level discussion is probably best there.
I've split the design document out of this patch and will land it
separately once I update it to reflect the latest edits and updates to
the Google doc used in the RFC thread.
This patch is really just an initial step. It isn't quite ready for
prime time and is only exposed via debugging flags. It has two major
limitations currently:
1) It only supports x86-64, and only certain ABIs. Many assumptions are
currently hard-coded and need to be factored out of the code here.
2) It doesn't include any options for more fine-grained control, either
of which control flow edges are significant or which loads are
important to be hardened.
3) The code is still quite rough and the testing lighter than I'd like.
However, this is enough for people to begin using. I have had numerous
requests from people to be able to experiment with this patch to
understand the trade-offs it presents and how to use it. We would also
like to encourage work to similar effect in other toolchains.
The ARM folks are actively developing a system based on this for
AArch64. We hope to merge this with their efforts when both are far
enough along. But we also don't want to block making this available on
that effort.
Many thanks to the *numerous* people who helped along the way here. For
this patch in particular, both Eric and Craig did a ton of review to
even have confidence in it as an early, rough cut at this functionality.
Differential Revision: https://reviews.llvm.org/D44824
llvm-svn: 336990
flow patterns including forks, merges, and even cyles.
This tries to cover a reasonably comprehensive set of patterns that
still don't require PHIs or PHI placement. The coverage was inspired by
the amazing variety of patterns produced when copy EFLAGS and restoring
it to implement Speculative Load Hardening. Without this patch, we
simply cannot make such complex and invasive changes to x86 instruction
sequences due to EFLAGS.
I've added "just" one test, but this test covers many different
complexities and corner cases of this approach. It is actually more
comprehensive, as far as I can tell, than anything that I have
encountered in the wild on SLH.
Because the test is so complex, I've tried to give somewhat thorough
comments and an ASCII-art diagram of the control flows to make it a bit
easier to read and maintain long-term.
Differential Revision: https://reviews.llvm.org/D49220
llvm-svn: 336985
Previously we iseled to blend, commuted to another blend, and then commuted back to movss/movsd or blend depending on optsize. Now we do it directly.
llvm-svn: 336976
This is not an optimization we should be doing in isel. This is more suitable for a DAG combine.
My main concern is a future time when we support more FPENV. Changing a packed op to a scalar op could cause us to miss some exceptions that should have occured if we had done a packed op. A DAG combine would be better able to manage this.
llvm-svn: 336971
We were accidentally connecting it to result 0 instead of result 1. This was caught by the machine verifier that noticed the flags were dead, but we were using them somehow. I'm still not clear what actually happened downstream.
llvm-svn: 336925
canWidenShuffleElements can do a better job if given a mask with ZeroableElements info. Apparently, ZeroableElements was being only used to identify AllZero candidates, but possibly we could plug it into more shuffle matchers.
Original Patch by Zvi Rackover @zvi
Differential Revision: https://reviews.llvm.org/D42044
llvm-svn: 336903
Noticed while updating D42044, lowerV2X128VectorShuffle can improve the shuffle mask with the zeroable data to create a target shuffle mask to recognise more 'zero upper 128' patterns.
NOTE: lowerV4X128VectorShuffle could benefit as well but the code needs refactoring first to discriminate between SM_SentinelUndef and SM_SentinelZero for negative shuffle indices.
Differential Revision: https://reviews.llvm.org/D49092
llvm-svn: 336900
We now use llvm.fma.f32/f64 or llvm.x86.fmadd.f32/f64 intrinsics that use scalar types rather than vector types. So we don't these special ISD nodes that operate on the lowest element of a vector.
llvm-svn: 336883
there for a long time.
The boolean tracking whether we saw a kill of the flags was supposed to
be per-block we are scanning and instead was outside that loop and never
cleared. It requires a quite contrived test case to hit this as you have
to have multiple levels of successors and interleave them with kills.
I've included such a test case here.
This is another bug found testing SLH and extracted to its own focused
patch.
llvm-svn: 336876
multiple successors where some of the uses end up killing the EFLAGS
register.
There was a bug where rather than skipping to the next basic block
queued up with uses once we saw a kill, we stopped processing the blocks
entirely. =/
Test case produces completely nonsensical code w/o this tiny fix.
This was found testing Speculative Load Hardening and split out of that
work.
Differential Revision: https://reviews.llvm.org/D49211
llvm-svn: 336874
This converts them to what clang is now using for codegen. Unfortunately, there seem to be a few kinks to work out still. I'll try to address with follow up patches.
llvm-svn: 336871
We can instead block the load folding isProfitableToFold. Then isel will emit a register->register move for the zeroing part and a separate load. The PostProcessISelDAG should be able to remove the register->register move.
This saves us patterns and fixes the fact that we only had unaligned load patterns. The test changes show places where we should have been using an aligned load.
llvm-svn: 336828
Before revision 336728, the "mayLoad" flag for instruction (V)MOVLPSrm was
inferred directly from the "default" pattern associated with the instruction
definition.
r336728 removed special node X86Movlps, and all the patterns associated to it.
Now instruction (V)MOVLPSrm doesn't have a pattern associated to it, and the
'mayLoad/hasSideEffects' flags are left unset.
When the instruction info is emitted by tablegen, method
CodeGenDAGPatterns::InferInstructionFlags() sees that (V)MOVLPSrm doesn't have a
pattern, and flags are undefined. So, it conservatively sets the
"hasSideEffects" flag for it.
As a consequence, we were losing the 'mayLoad' flag, and we were gaining a
'hasSideEffect' flag in its place.
This patch fixes the issue (originally reported by Michael Holmen).
The mca tests show the differences in the instruction info flags. Instructions
that were affected by this problem were: MOVLPSrm/VMOVLPSrm/VMOVLPSZ128rm.
Differential Revision: https://reviews.llvm.org/D49182
llvm-svn: 336818
Summary:
These changes cover the PR#31399.
Now the ffs(x) function is lowered to (x != 0) ? llvm.cttz(x) + 1 : 0
and it corresponds to the following llvm code:
%cnt = tail call i32 @llvm.cttz.i32(i32 %v, i1 true)
%tobool = icmp eq i32 %v, 0
%.op = add nuw nsw i32 %cnt, 1
%add = select i1 %tobool, i32 0, i32 %.op
and x86 asm code:
bsfl %edi, %ecx
addl $1, %ecx
testl %edi, %edi
movl $0, %eax
cmovnel %ecx, %eax
In this case the 'test' instruction can't be eliminated because
the 'add' instruction modifies the EFLAGS, namely, ZF flag
that is set by the 'bsf' instruction when 'x' is zero.
We now produce the following code:
bsfl %edi, %ecx
movl $-1, %eax
cmovnel %ecx, %eax
addl $1, %eax
Patch by Ivan Kulagin
Reviewers: davide, craig.topper, spatel, RKSimon
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48765
llvm-svn: 336768
These patterns looked for a MOVSS/SD followed by a scalar_to_vector. Or a scalar_to_vector followed by a load.
In both cases we emitted a MOVSS/SD for the MOVSS/SD part, a REG_CLASS for the scalar_to_vector, and a MOVSS/SD for the load.
But we have patterns that do each of those 3 things individually so there's no reason to build large patterns.
Most of the test changes are just reorderings. The one test that had a meaningful change is pr30430.ll and it appears to be a regression. But its doing -O0 so I think it missed a lot of opportunities and was just getting lucky before.
llvm-svn: 336762
Some added 20 and some added 15. Its unclear when to use which value and whether they are required at all.
This patch removes them all. If we start finding real world issues we may need to add them back with proper tests.
llvm-svn: 336735
Isel currently emits movss/movsd a lot of the time and an accidental double commute turns it into a blend.
Ideally we'd select blend directly in isel under optspeed and not rely on the double commute to create blend.
llvm-svn: 336731
These ISD nodes try to select the MOVLPS and MOVLPD instructions which are special load only instructions. They load data and merge it into the lower 64-bits of an XMM register. They are logically equivalent to our MOVSD node plus a load.
There was only one place in X86ISelLowering that used MOVLPD and no places that selected MOVLPS. The one place that selected MOVLPD had to choose between it and MOVSD based on whether there was a load. But lowering is too early to tell if the load can really be folded. So in isel we have patterns that use MOVSD for MOVLPD if we can't find a load.
We also had patterns that select the MOVLPD instruction for a MOVSD if we can find a load, but didn't choose the MOVLPD ISD opcode for some reason.
So it seems better to just standardize on MOVSD ISD opcode and manage MOVSD vs MOVLPD instruction with isel patterns.
llvm-svn: 336728
I believe isProfitableToFold will stop the load folding that this was intended to overcome.
Given an (xor load, -1), isProfitableToFold will see that the immediate can be folded with the xor using a one byte immediate since it can be sign extended. It doesn't know about NOT, but the one byte immediate check is enough to stop the fold.
llvm-svn: 336712
Now that rL336250 has landed, we should prefer 2 immediate shifts + a shuffle blend over performing a multiply. Despite the increase in instructions, this is quicker (especially for slow v4i32 multiplies), avoid loads and constant pool usage. It does mean however that we increase register pressure. The code size will go up a little but by less than what we save on the constant pool data.
This patch also adds support for v16i16 to the BLEND(SHIFT(v,c1),SHIFT(v,c2)) combine, and also prevents blending on pre-SSE41 shifts if it would introduce extra blend masks/constant pool usage.
Differential Revision: https://reviews.llvm.org/D48936
llvm-svn: 336642
We're missing the EVEX equivalents of these patterns and seem to get along fine.
I think we end up with X86vzload for the obvious IR cases that would produce this DAG.
llvm-svn: 336638
Summary:
This adds a reverse transform for the instcombine canonicalizations
that were added in D47980, D47981.
As discussed later, that was worse at least for the code size,
and potentially for the performance, too.
https://rise4fun.com/Alive/Zmpl
Reviewers: craig.topper, RKSimon, spatel
Reviewed By: spatel
Subscribers: reames, llvm-commits
Differential Revision: https://reviews.llvm.org/D48768
llvm-svn: 336585
These patterns mapped (v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64:$src)))) to a MOVSD and an zeroing XOR. But the complexity of a pattern for (v2f64 (X86vzmovl (v2f64))) that selects MOVQ is artificially and hides this MOVSD pattern.
Weirder still, the SSE version of the pattern was explicitly blocked on SSE41, but yet we had copied it to AVX and AVX512.
llvm-svn: 336556
This replaces some asserts in lowerV2F64VectorShuffle with the similar asserts from lowerVIF64VectorShuffle which are more readable. The original asserts mentioned a blend, but there's no guarantee that it is a blend.
Also remove an if that the asserts prove is always true. Mask[0] is always less than 2 and Mask[1] is always at least 2. Therefore (Mask[0] >= 2) + (Mask[1] >= 2) == 1 must wlays be true.
llvm-svn: 336517
It only existed on SSE and AVX version. AVX512 version didn't have it.
I checked the generated table and this didn't seem necessary to creat a match preference.
llvm-svn: 336516
Summary:
{F6603964}
While there is still some discrepancies within that new group,
it is clearly separate from the other shifts.
And Agner's tables agree, these double shifts are clearly
different from the normal shifts/rotates.
I'm guessing `FeatureSlowSHLD` is related.
Indeed, a basic sched pair is *not* the /best/ match.
But keeping it in the WriteShift is /clearly/ not ideal either.
This can and likely will be fine-tuned later.
This is purely mechanical change, it does not change any numbers,
as the [lack of the change of] mca tests show.
Reviewers: craig.topper, RKSimon, andreadb
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49015
llvm-svn: 336515
Pre-AVX512 (which can perform a quick extend/shift/truncate), extending to 2 v8i16 for the PMULLW and then truncating is more performant than relying on the generic PBLENDVB vXi8 shift path and uses a similar amount of mask constant pool data.
Differential Revision: https://reviews.llvm.org/D48963
llvm-svn: 336513
Summary:
Motivation: {F6597954}
This only does the mechanical splitting, does not actually change
any numbers, as the tests added in previous revision show.
Reviewers: craig.topper, RKSimon, courbet
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48998
llvm-svn: 336511
This allows us to handle masking in a very similar way to the default rounding version that uses llvm.fma.
I had to add new rounding mode CodeGenOnly instructions to support isel when we can't find a movss to grab the upper bits from to use the b_Int instruction.
Fast-isel tests have been updated to match new clang codegen.
We are currently having trouble folding fneg into the new intrinsic. I'm going to correct that in a follow up patch to keep the size of this one down.
A future patch will also remove the old intrinsics.
llvm-svn: 336506
Splits off isKnownNeverZeroFloat to handle +/- 0 float cases.
This will make it easier to be more aggressive with the integer isKnownNeverZero tests (similar to ValueTracking), use computeKnownBits etc.
Differential Revision: https://reviews.llvm.org/D48969
llvm-svn: 336492
We penalize general SDIV/UDIV costs but don't do the same for SREM/UREM.
This patch makes general vector SREM/UREM x20 as costly as scalar, the same approach as we do for SDIV/UDIV. The patch also extends the existing SDIV/UDIV constant costs for SREM/UREM - at the moment this means the additional cost of a MUL+SUB (see D48975).
Differential Revision: https://reviews.llvm.org/D48980
llvm-svn: 336486
It's a bit neater to write T.isIntOrPtrTy() over `T.isIntegerTy() ||
T.isPointerTy()`.
I used Python's re.sub with this regex to update users:
r'([\w.\->()]+)isIntegerTy\(\)\s*\|\|\s*\1isPointerTy\(\)'
llvm-svn: 336462
We've removed the legacy FMA3 intrinsics and are now using llvm.fma and extractelement/insertelement. So we don't need patterns for the nodes that could only be created by the old intrinscis. Those ISD opcodes still exist because we haven't dropped the AVX512 intrinsics yet, but those should go to EVEX instructions.
llvm-svn: 336457
The intrinsics can be implemented with a f32/f64 llvm.fma intrinsic and an insert into a zero vector.
There are a couple regressions here due to SelectionDAG not being able to pull an fneg through an extract_vector_elt. I'm not super worried about this though as InstCombine should be able to do it before we get to SelectionDAG.
llvm-svn: 336416
This upgrades all of the intrinsics to use fneg instructions to convert fma into fmsub/fnmsub/fnmadd/fmsubadd. And uses a select instruction for masking.
This matches how clang uses the intrinsics these days.
llvm-svn: 336409
Summary:
If LOCK prefix is not the first prefix in an instruction, LLVM
disassembler silently drops the prefix.
The fix is to select a proper instruction with a builtin LOCK prefix if
one exists.
Reviewers: craig.topper
Reviewed By: craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49001
llvm-svn: 336400
We have patterns for SELECTS that top at v1i1 and we have a pattern for (v1i1 (scalar_to_vector GR8)). The patterns being removed here do the same thing as the two other patterns combined so there is no need for them.
llvm-svn: 336305
Previously we could only negate the FMADD opcodes. This used to be mostly ok when we lowered FMA intrinsics during lowering. But with the move to llvm.fma from target specific intrinsics, we can combine (fneg (fma)) to (fmsub) earlier. So if we start with (fneg (fma (fneg))) we would get stuck at (fmsub (fneg)).
This patch fixes that so we can also combine things like (fmsub (fneg)).
llvm-svn: 336304
There's a regression in here due to inability to combine fneg inputs of X86ISD::FMSUB/FNMSUB/FNMADD nodes.
More removals to come, but I wanted to stop and fix the regression that showed up in this first.
llvm-svn: 336303
We were only doing this for basic blends, despite shuffle lowering now being good enough to handle more complex blends. This means that the two v8i16 splat shifts are performed in parallel instead of serially as the general shift case.
Reapplied with a fixed (extra null tests) version of rL336113 after reversion in rL336189 - extra test case added at rL336247.
llvm-svn: 336250
This patch adds a new token type specifically for (%dx). We will now always create this token when we parse (%dx). After all operands have been parsed, if the mnemonic is in/out we'll morph this token to a regular register token. Otherwise we keep it as the special DX token which won't match any instructions.
This removes the need for passing Mnemonic through the parsing functions. It also seems closer to gas where when its used on the wrong instruction it just gets diagnosed as an invalid operand rather than a bad memory address.
llvm-svn: 336218
This might make the error message added in r335668 unneeded, but I'm not sure yet.
The check for RIP is technically unnecessary since RIP is in GR64, but that fact is kind of surprising so be explicit.
llvm-svn: 336217
Add registers still missing after r328016 (D43353):
- for bits 15-8 of SI, DI, BP, SP (*H), and R8-R15 (*BH),
- for bits 31-16 of R8-R15 (*WH).
Thanks to Craig Topper for pointing it out.
llvm-svn: 336134
Similarily, don't fold fp128 loads into SSE instructions if the load isn't aligned. Unless we're targeting an AMD CPU that doesn't check alignment on arithmetic instructions.
Should fix PR38001
llvm-svn: 336121
We were only doing this for basic blends, despite shuffle lowering now being good enough to handle more complex blends. This means that the two v8i16 splat shifts are performed in parallel instead of serially as the general shift case.
llvm-svn: 336113
The X86 asm parser currently has custom parsing logic for .word. Rather than
use this custom logic, we can just use addAliasForDirective to enable the
reuse of AsmParser::parseDirectiveValue.
See also similar changes to Sparc (rL333078), AArch64 (rL333077), and Hexagon
(rL332607) backends.
Differential Revision: https://reviews.llvm.org/D47004
This is a fixed reland of rL336100. This should have been caught in
pre-commit testing so apologies for the noise.
llvm-svn: 336104
The X86 asm parser currently has custom parsing logic for .word. Rather than
use this custom logic, we can just use addAliasForDirective to enable the
reuse of AsmParser::parseDirectiveValue.
See also similar changes to Sparc (rL333078), AArch64 (rL333077), and Hexagon
(rL332607) backends.
Differential Revision: https://reviews.llvm.org/D47004
llvm-svn: 336100
We don't have PMCs to cover many of the Jaguar resources but we can at least monitor the FPU issue pipes which give an indication of the fpu uop count, just not the execution resources.
llvm-svn: 336089
It looks like someone ran clang-format over this entire file which reformatted these switches into a multiline form. But I think the single line form is more useful here.
llvm-svn: 336077
I separated out the rounding and broadcast groups into their own tables because it made the ordering in the main table easier.
Further splitting of the tables might make it possible to directly index using bits from the TSFlags, but its probably not worth it right now.
llvm-svn: 336075
findCommutedOpIndices does the pre-checking for whether commuting is possible. There should be no reason left to fail in commuteInstructionImpl. There was a missing pre-check that I've added there and changed the check to an assert in commuteInstructionImpl.
llvm-svn: 336070
I've check the disassembler tables and this shouldn't be reachable. Which is good since if it was reachable there should have been a 'return' after the addOperand line.
llvm-svn: 336066
Also move the static folding tables, their search functions and the new class into new cpp/h files.
The unfolding table is effectively static data. It's just a different ordering and a subset of the static folding tables.
By putting it in a separate ManagedStatic we ensure we only have one copy instead of one per X86InstrInfo object. This way also makes it only get initialized when really needed.
llvm-svn: 336056
The class only exists to hold a DenseMap and is only created as a ManagedStatic. It used to expose a single static method that outside code was expected to use.
This patch moves that static function out of the class and moves it implementation into the cpp file. It can now access the ManagedStatic directly by name without the need for the other static method that accessed the ManagedStatic.
llvm-svn: 336055
There are no instructions that use them so they weren't causing any bad matches. But they weren't being diagnosed as "invalid register name" if they were used and would instead trigger some form of invalid operand.
llvm-svn: 336054
I believe all of these are constants so legalizing them should be pretty trivial, but this saves a step.
In one case it looks like we may have been creating a shift amount larger than the shift input itself.
llvm-svn: 336052
This combine runs pretty late and causes us to introduce a shift after the op legalization phase has run. We need to be sure we create the shift with the proper type for the shift amount. If we don't do this, we will still re-legalize the operation properly, but we won't get a chance to fully optimize the truncate that gets inserted.
So this patch adds the necessary truncate when the shift is created. I've also narrowed the subtract that gets created to always be an i32 type. The truncate would have trigered SimplifyDemandedBits to optimize it anyway. But using a more appropriate VT here is free and saves an optimization step.
llvm-svn: 336051
The important part is the creation of the SHLD/SHRD nodes. The compare and the conditional move can use target independent nodes that can be legalized on their own. This gives some opportunities to trigger the optimizations present in the lowering for those things. And its just better to limit the number of places we emit target specific nodes.
The changed test cases still aren't optimal.
Differential Revision: https://reviews.llvm.org/D48619
llvm-svn: 335998
Previously we used a DenseMap which is costly to set up due to multiple full table rehashes as the size increases and causes the table to be reallocated.
This patch changes the table to a vector of structs. We now walk the reg->mem tables and push new entries in the mem->reg table for each row not marked TB_NO_REVERSE. Once all the table entries have been created, we sort the vector. Then we can use a binary search for lookups.
Differential Revision: https://reviews.llvm.org/D48585
llvm-svn: 335994
This uses the same technique as for shifts - split the rotation into 4/2/1-bit partial rotations and select those partials based on the amount bit, making use of PBLENDVB if available. This halves the use of PBLENDVB compared to expanding to shifts, which can be a slow op.
Unfortunately I haven't found a decent way to share much of this code with the shift equivalent.
Differential Revision: https://reviews.llvm.org/D48655
llvm-svn: 335957
This is a follow up to r335753. At the time I forgot about isProfitableToFold which makes this pretty easy.
Differential Revision: https://reviews.llvm.org/D48706
llvm-svn: 335895
Reverting because this is causing failures in the LLDB test suite on
GreenDragon.
LLVM ERROR: unsupported relocation with subtraction expression, symbol
'__GLOBAL_OFFSET_TABLE_' can not be undefined in a subtraction
expression
llvm-svn: 335894
Targets should be able to define whether or not they support the outliner
without the outliner being added to the pass pipeline. Before this, the
outliner pass would be added, and ask the target whether or not it supports the
outliner.
After this, it's possible to query the target in TargetPassConfig, before the
outliner pass is created. This ensures that passing -enable-machine-outliner
will not modify the pass pipeline of any target that does not support it.
https://reviews.llvm.org/D48683
llvm-svn: 335887
Add NoTrapAfterNoreturn target option which skips emission of traps
behind noreturn calls even if TrapUnreachable is enabled.
Enable the feature on Mach-O to save code size; Comments suggest it is
not possible to enable it for the other users of TrapUnreachable.
rdar://41530228
DifferentialRevision: https://reviews.llvm.org/D48674
llvm-svn: 335877
These are all benign races and only visible in !NDEBUG. tsan complains
about it, but a simple atomic bool is sufficient to make it happy.
llvm-svn: 335823
This more efficient for the isel table generator since we can use CheckChildInteger instead of MoveChild, CheckPredicate, MoveParent. This reduced the table size by 1-2K.
I wish there was a way to share the values with X86BaseInfo.h and still use a PatFrag like this. These numbers are fixed by the X86 intrinsic spec going back many years and we should never need to change them. So we shouldn't waste table bytes to support sharing.
llvm-svn: 335806
BMI2 added new shift by register instructions that have the ability to fold a load.
Normally without doing anything special isel would prefer folding a load over folding an immediate because the load folding pattern has higher "complexity". This would require an instruction to move the immediate into a register. We would rather fold the immediate instead and have a separate instruction for the load.
We used to enforce this priority by artificially lowering the complexity of the load pattern.
This patch changes this to instead reject the load fold in isProfitableToFoldLoad if there is an immediate. This is more consistent with other binops and feels less hacky.
llvm-svn: 335804
If we turn X86ISD::AND into ISD::AND, we delete N. But we were continuing onto the next block of code even though N no longer existed.
Just happened to notice it. I assume asan didn't notice it because we explicitly unpoison deleted nodes and give them a DELETE_NODE opcode.
llvm-svn: 335787
The %eiz/%riz are dummy registers that force the encoder to emit a SIB byte when it normally wouldn't. By emitting them in the disassembly output we ensure that assembling the disassembler output would also produce a SIB byte.
This should match the behavior of objdump from binutils.
llvm-svn: 335768
If we are just modifying a single bit at a variable bit position we can use the BT* instructions to make the change instead of shifting a 1(or rotating a -1) and doing a binop. These instruction also ignore the upper bits of their index input so we can also remove an and if one is present on the index.
Fixes PR37938.
llvm-svn: 335754
I think the intrinsics named 'avx512.mask.' should refer to the previous behavior of taking a mask argument in the intrinsic instead of using a 'select' or 'and' instruction in IR to accomplish the masking. This is more consistent with the goal that eventually we will have no intrinsics that have masking builtin. When we reach that goal, we should have no intrinsics named "avx512.mask".
llvm-svn: 335744
Nothing was using this relationship. By splitting them we no longer need to worry about register or memory entries being empty in a group.
The memory folding tables in X86InstrInfo.cpp can be used to access this relationship if needed.
llvm-svn: 335694
Right now, when we use RIP-relative instructions in 32-bit mode, we'll just
assert and crash.
This adds an error message which tells the user that they can't do that in
32-bit mode, so that we don't crash (and also can see the issue outside of
assert builds).
llvm-svn: 335658
Summary:
If a routine with no stack frame makes a sibling call, we need to
preserve the stack space check even if the local stack frame is empty,
since the call target could be a "no-split" function (in which case
the linker needs to be able to fix up the prolog sequence in order to
switch to a larger stack).
This fixes PR37807.
Reviewers: cherry, javed.absar
Subscribers: srhines, llvm-commits
Differential Revision: https://reviews.llvm.org/D48444
llvm-svn: 335604
These opcodes have a fixed type of i8 for their immediate and shouldn't have anything to do with the scalar shift amount used by target independent shift nodes.
llvm-svn: 335578
Summary:
Same idea as D48529, but restricted to X86 and done very late to avoid any surprises where subtract might be better for DAG combining.
This seems like the safest way to do this trick. And we consider doing it as a DAG combine later.
Reviewers: spatel, RKSimon
Reviewed By: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D48557
llvm-svn: 335575
This recommits r335562 and 335563 as a single commit.
The frontend will surround the intrinsic with the appropriate marshalling to/from a scalar type to match the sigature of the builtin that software expects.
By exposing the vXi1 type directly in the llvm intrinsic we make it available to optimizers much earlier. This can enable the scalar marshalling code to be optimized away.
llvm-svn: 335568
std::lower_bound doesn't require the thing to search for to be the same type as the table entries. We just need to define an appropriate comparison function that can take an table entry and an intrinsic number.
llvm-svn: 335518
The large code model allows code and data segments to exceed 2GB, which
means that some symbol references may require a displacement that cannot
be encoded as a displacement from RIP. The large PIC model even relaxes
the assumption that the GOT itself is within 2GB of all code. Therefore,
we need a special code sequence to materialize it:
.LtmpN:
leaq .LtmpN(%rip), %rbx
movabsq $_GLOBAL_OFFSET_TABLE_-.LtmpN, %rax # Scratch
addq %rax, %rbx # GOT base reg
From that, non-local references go through the GOT base register instead
of being PC-relative loads. Local references typically use GOTOFF
symbols, like this:
movq extern_gv@GOT(%rbx), %rax
movq local_gv@GOTOFF(%rbx), %rax
All calls end up being indirect:
movabsq $local_fn@GOTOFF, %rax
addq %rbx, %rax
callq *%rax
The medium code model retains the assumption that the code segment is
less than 2GB, so calls are once again direct, and the RIP-relative
loads can be used to access the GOT. Materializing the GOT is easy:
leaq _GLOBAL_OFFSET_TABLE_(%rip), %rbx # GOT base reg
DSO local data accesses will use it:
movq local_gv@GOTOFF(%rbx), %rax
Non-local data accesses will use RIP-relative addressing, which means we
may not always need to materialize the GOT base:
movq extern_gv@GOTPCREL(%rip), %rax
Direct calls are basically the same as they are in the small code model:
They use direct, PC-relative addressing, and the PLT is used for calls
to non-local functions.
This patch adds reasonably comprehensive testing of LEA, but there are
lots of interesting folding opportunities that are unimplemented.
I restricted the MCJIT/eh-lg-pic.ll test to Linux, since the large PIC
code model is not implemented for MachO yet.
Differential Revision: https://reviews.llvm.org/D47211
llvm-svn: 335508
With the static tables sorted we can binary search them directly for reg->mem lookups. This removes 6 DenseMaps that had to be created when X86InstrInfo is constructed.
We still have one Mem->Reg DenseMap for the reverse direction. This is created just as before by walking the reg->mem arrays to populate it.
Differential Revision: https://reviews.llvm.org/D48527
llvm-svn: 335501
We should be blocking the operand while we are in the routine that tries to find commutable operand indices. Doing it later means we might have missed out on another valid set of operands we could have commuted.
The intrinsic case was the only case that could really prevent commuting in getFMA3OpcodeToCommuteOperands. All the other cases in getThreeSrcCommuteCase were not reachable conditions as they were protected by findThreeSrcCommutedOpIndices.
With that abort case pushed earlier, we can remove all the abort checks and replace with asserts.
llvm-svn: 335446
They appear to be untested other than the test case for p37879.ll and I believe we should be using SimplifyDemandedElts here to handle these cases.
llvm-svn: 335436
For some reason the 64-bit patterns were separated from their 8/16/32-bit friends, but only for add/sub/mul. For and/or/xor they were together.
llvm-svn: 335429
-Ensure EIP isn't used with an index reigster.
-Ensure EIP isn't used as index register.
-Ensure base register isn't a vector register.
-Ensure eiz/riz usage matches the size of their base register.
llvm-svn: 335412
Previously, to support (%dx) we left a wide open hole in our 16-bit memory address checking. This let this address value be used with any instruction without error in the parser. It would later fail in the encoder with an assertion failure on debug builds and who knows what on release builds.
This patch passes the mnemonic down to the memory operand parsing function so we can allow the (%dx) form only on specific instructions.
llvm-svn: 335403
This allows us to check these:
-16-bit addressing doesn't support scale so we should error if we find one there.
-Multiplying ESP/RSP by a scale even if the scale is 1 should be an error because ESP/RSP can't be an index.
llvm-svn: 335398
By default, the second register gets assigned to the index register slot. But ESP can't be an index register so we need to swap it with the other register.
There's still a slight bug that we allow [EAX+ESP*1]. The existence of the multiply even though its with 1 should force ESP to the index register and trigger an error, but it doesn't currently.
llvm-svn: 335394
The second register is the index register and should only be %si or %di if used with a base register. And in that case the base register should be %bp or %bx.
This makes us compatible with gas.
We do still need to support both orders with Intel syntax which uses [bp+si] and [si+bp]
llvm-svn: 335384
(%bp) can't be encoded without a displacement. The encoding is instead used for displacement alone. So a 1 byte displacement of 0 must be used. But if there is an index register we can encode without a displacement.
llvm-svn: 335379
Changing the logic of scalar mask folding to check for valid input types rather
than against invalid ones, making it more robust and fixing PR37879.
Differential Revision: https://reviews.llvm.org/D48366
llvm-svn: 335323
Summary:
The large code model allows code and data segments to exceed 2GB, which
means that some symbol references may require a displacement that cannot
be encoded as a displacement from RIP. The large PIC model even relaxes
the assumption that the GOT itself is within 2GB of all code. Therefore,
we need a special code sequence to materialize it:
.LtmpN:
leaq .LtmpN(%rip), %rbx
movabsq $_GLOBAL_OFFSET_TABLE_-.LtmpN, %rax # Scratch
addq %rax, %rbx # GOT base reg
From that, non-local references go through the GOT base register instead
of being PC-relative loads. Local references typically use GOTOFF
symbols, like this:
movq extern_gv@GOT(%rbx), %rax
movq local_gv@GOTOFF(%rbx), %rax
All calls end up being indirect:
movabsq $local_fn@GOTOFF, %rax
addq %rbx, %rax
callq *%rax
The medium code model retains the assumption that the code segment is
less than 2GB, so calls are once again direct, and the RIP-relative
loads can be used to access the GOT. Materializing the GOT is easy:
leaq _GLOBAL_OFFSET_TABLE_(%rip), %rbx # GOT base reg
DSO local data accesses will use it:
movq local_gv@GOTOFF(%rbx), %rax
Non-local data accesses will use RIP-relative addressing, which means we
may not always need to materialize the GOT base:
movq extern_gv@GOTPCREL(%rip), %rax
Direct calls are basically the same as they are in the small code model:
They use direct, PC-relative addressing, and the PLT is used for calls
to non-local functions.
This patch adds reasonably comprehensive testing of LEA, but there are
lots of interesting folding opportunities that are unimplemented.
Reviewers: chandlerc, echristo
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D47211
llvm-svn: 335297
This should help in lowering the following four intrinsics:
_mm256_cvtepi32_epi8
_mm256_cvtepi64_epi16
_mm256_cvtepi64_epi8
_mm512_cvtepi64_epi8
Differential Revision: https://reviews.llvm.org/D46957
llvm-svn: 335238