Commit Graph

18337 Commits

Author SHA1 Message Date
Matthias Braun d6131c9633 X86/TargetTransformInfo: Report div/rem constant immediate costs as TCC_Free
DIV/REM by constants should always be expanded into mul/shift/etc.
patterns. Unfortunately the ConstantHoisting pass runs too early at a
point where the pattern isn't expanded yet. However after
ConstantHoisting hoisted some immediate the result may not expand
anymore. Also the hoisting typically doesn't make sense because it
operates on immediates that will change completely during the expansion.

Report DIV/REM as TCC_Free so ConstantHoisting will not touch them.

Differential Revision: https://reviews.llvm.org/D53174

llvm-svn: 344315
2018-10-11 23:14:35 +00:00
Richard Trieu dfd1760b5f Inline variable into assert to avoid unused variable warning.
llvm-svn: 344308
2018-10-11 22:42:41 +00:00
Craig Topper 35d513c7e4 [X86] Type legalize v2f32 loads by using an f64 load and a scalar_to_vector.
On 64-bit targets the generic legalize will use an i64 load and a scalar_to_vector for us. But on 32-bit targets i64 isn't legal and the generic legalizer will end up emitting two 32-bit loads. We have DAG combines that try to put those two loads back together with pretty good success.

This patch instead uses f64 to avoid the splitting entirely. I've made it do the same for 64-bit mode for consistency and to keep the load in the fp domain.

There are a few things in here that look like regressions in 32-bit mode, but I believe they bring us closer to the 64-bit mode codegen. And that the 64-bit mode code could be better. I think those issues should be looked at separately.

Differential Revision: https://reviews.llvm.org/D52528

llvm-svn: 344291
2018-10-11 20:36:06 +00:00
Craig Topper fb2ac8969e [X86] Restore X86ISelDAGToDAG::matchBEXTRFromAnd. Teach address matching to create a BEXTR pattern from a (shl (and X, mask >> C1) if C1 can be folded into addressing mode.
This is an alternative to D53080 since I think using a BEXTR for a shifted mask is definitely an improvement when the shl can be absorbed into addressing mode. The other cases I'm less sure about.

We already have several tricks for handling an and of a shift in address matching. This adds a new case for BEXTR.

I've moved the BEXTR matching code back to X86ISelDAGToDAG to allow it to match. I suppose alternatively we could directly emit a X86ISD::BEXTR node that isel could pattern match. But I'm trying to view BEXTR matching as an isel concern so DAG combine can see 'and' and 'shift' operations that are well understood. We did lose a couple cases from tbm_patterns.ll, but I think there are ways to recover that.

I've also put back the manual load folding code in matchBEXTRFromAnd that I removed a few months ago in r324939. This gives us some more freedom to make decisions based on the ability to fold a load. I haven't done anything with that yet.

Differential Revision: https://reviews.llvm.org/D53126

llvm-svn: 344270
2018-10-11 18:06:07 +00:00
Roman Lebedev 4225f4adff [X86][BMI1]: X86DAGToDAGISel: select BEXTR from x & ~(-1 << nbits) pattern
Summary:
As discussed in D48491, we can't really do this in the TableGen,
since we need to produce *two* instructions. This only implements
one single pattern. The other 3 patterns will be in follow-ups.

I'm not sure yet if we want to also fuse shift into here
(i.e `(x >> start) & ...`)

Reviewers: RKSimon, craig.topper, spatel

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D52304

llvm-svn: 344224
2018-10-11 07:51:13 +00:00
Craig Topper b5421c498d [X86] Prevent non-temporal loads from folding into instructions by blocking them in X86DAGToDAGISel::IsProfitableToFold rather than with a predicate.
Remove tryFoldVecLoad since tryFoldLoad would call IsProfitableToFold and pick up the new check.

This saves about 5K out of ~600K on the generated isel table.

llvm-svn: 344189
2018-10-10 21:48:34 +00:00
Roman Lebedev 33d84c6dac [X86] Move X86DAGToDAGISel::matchBEXTRFromAnd() into X86ISelLowering
Summary:
As discussed in [[ https://bugs.llvm.org/show_bug.cgi?id=38938 | PR38938 ]],
we fail to emit `BEXTR` if the mask is shifted.
We can't deal with that in `X86DAGToDAGISel` `before the address mode for the inc is selected`,
and we can't really do it in the normal DAGCombine, because we don't have generic `ISD::BitFieldExtract` node,
and if we simply turn the shifted mask into a normal mask + shift-left, it will be folded back.
So it would seem X86ISelLowering is the place to handle this.

This patch only moves the matchBEXTRFromAnd()
from X86DAGToDAGISel to X86ISelLowering.
It does not add support for the 'shifted mask' pattern.

Reviewers: RKSimon, craig.topper, spatel

Reviewed By: RKSimon

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D52426

llvm-svn: 344179
2018-10-10 20:40:12 +00:00
Sanjay Patel 6cca8af227 [x86] allow single source horizontal op matching (PR39195)
This is intended to restore horizontal codegen to what it looked like before IR demanded elements improved in:
rL343727

As noted in PR39195:
https://bugs.llvm.org/show_bug.cgi?id=39195
...horizontal ops can be worse for performance than a shuffle+regular binop, so I've added a TODO. Ideally, we'd 
solve that in a machine instruction pass, but a quicker solution will be adding a 'HasFastHorizontalOp' feature
bit to deal with it here in the DAG.

Differential Revision: https://reviews.llvm.org/D52997

llvm-svn: 344141
2018-10-10 13:39:59 +00:00
Simon Pilgrim 5cb3a82892 [TargetLowering] Add root node back to work list after successful SimplifyDemandedBits/SimplifyDemandedVectorElts
Similar to what already happens in the DAGCombiner wrappers, this patch adds the root nodes back onto the worklist if the DCI wrappers' SimplifyDemandedBits/SimplifyDemandedVectorElts were successful.

Differential Revision: https://reviews.llvm.org/D53026

llvm-svn: 344132
2018-10-10 10:44:15 +00:00
Craig Topper 02c62aa58a [X86] Remove FeatureRTM from Skylake processor list
Summary:
There are a LOT of Skylakes and later without TSX-NI. Examples:
- SKL: https://ark.intel.com/products/136863/Intel-Core-i3-8121U-Processor-4M-Cache-up-to-3-20-GHz-
- KBL: https://ark.intel.com/products/97540/Intel-Core-i7-7560U-Processor-4M-Cache-up-to-3-80-GHz-
- KBL-R: https://ark.intel.com/products/149091/Intel-Core-i7-8565U-Processor-8M-Cache-up-to-4-60-GHz-
- CNL: https://ark.intel.com/products/136863/Intel-Core-i3-8121U-Processor-4M-Cache-up-to-3_20-GHz

This feature seems to be present only on high-end desktop and server
chips (I can't find any SKX without). This commit leaves it disabled
for all processors, but can be re-enabled for specific builds with
-mrtm.

Patch by Thiago Macieira

Reviewers: erichkeane, craig.topper

Reviewed By: craig.topper

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D53041

llvm-svn: 344116
2018-10-10 07:43:35 +00:00
Rong Xu 5c7bf1a756 [X86] Fix sanitizer bot failure from 344085
Fix the memory issue exposed by sanitizer.

llvm-svn: 344092
2018-10-09 23:10:56 +00:00
Rong Xu 3d2efdfdea Recommit r343993: [X86] condition branches folding for three-way conditional codes
Fix the memory issue exposed by sanitizer.

llvm-svn: 344085
2018-10-09 22:03:40 +00:00
Craig Topper f6d8400869 [X86] When lowering unsigned v2i64 setcc without SSE42, flip the sign bits in the v2i64 type then bitcast to v4i32.
This may give slightly better opportunities for DAG combine to simplify with the operations before the setcc. It also matches the type the xors will eventually be promoted to anyway so it saves a legalization step.

Almost all of the test changes are because our constant pool entry is now v2i64 instead of v4i32 on 64-bit targets. On 32-bit targets getConstant should be emitting a v4i32 build_vector and a v4i32->v2i64 bitcast.

There are a couple test cases where it appears we now combine a bitwise not with one of these xors which caused a new constant vector to be generated. This prevented a constant pool entry from being shared. But if that's an issue we're concerned about, it seems we need to address it another way that just relying a bitcast to hide it.

This came about from experiments I've been trying with pushing the promotion of and/or/xor to vXi64 later than LegalizeVectorOps where it is today. We run LegalizeVectorOps in a bottom up order. So the and/or/xor are promoted before their users are legalized. The bitcasts added for the promotion act as a barrier to computeKnownBits if we try to use it during vector legalization of a later operation. So by moving the promotion out we can hopefully get better results from computeKnownBits/computeNumSignBits like in LowerTruncate on AVX512. I've also looked at running LegalizeVectorOps in a top down order like LegalizeDAG, but thats showing some other issues.

llvm-svn: 344071
2018-10-09 19:05:50 +00:00
Sanjay Patel f5fac1826a [x86] use demanded bits to simplify masked store codegen
As noted in D52747, if we prefer IR to use trunc for bool vectors rather 
than and+icmp, we can expose codegen shortcomings as seen here with masked store.

Replace a hard-coded PCMPGT simplification with the more general demanded bits call
to improve things.

Differential Revision: https://reviews.llvm.org/D52964

llvm-svn: 344048
2018-10-09 14:04:14 +00:00
Simon Pilgrim 720db8ed7b [X86][AVX1] Enable *_EXTEND_VECTOR_INREG lowering of 256-bit vectors
As discussed on D52964, this adds 256-bit *_EXTEND_VECTOR_INREG lowering support for AVX1 targets to help improve SimplifyDemandedBits handling.

Differential Revision: https://reviews.llvm.org/D52980

llvm-svn: 344019
2018-10-09 07:42:01 +00:00
Rong Xu 47fd015163 [X86] Revert r343993 condition branches folding for three-way conditional codes
Some buildbots failed.

llvm-svn: 343998
2018-10-08 22:08:43 +00:00
Craig Topper ff9f02580d [X86] Prefer isTypeLegal over checking isSimple in a DAG combine.
Simple types are a superset of what all in tree targets in LLVM could possibly have a legal type. This means the behavior of using isSimple to check for a supported type for X86 could change over time. For example, this could would change if a v256i1 type was added to MVT in the future.

llvm-svn: 343995
2018-10-08 20:02:59 +00:00
Rong Xu 67b1b328f7 [X86] condition branches folding for three-way conditional codes
This patch implements a pass that optimizes condition branches on x86 by
taking advantage of the three-way conditional code generated by compare
instructions.

Currently, it tries to hoisting EQ and NE conditional branch to a dominant
conditional branch condition where the same EQ/NE conditional code is
computed. An example:
bb_0:
  cmp %0, 19
  jg bb_1
  jmp bb_2
bb_1:
  cmp %0, 40
  jg bb_3
  jmp bb_4
bb_4:
  cmp %0, 20
  je bb_5
  jmp bb_6
Here we could combine the two compares in bb_0 and bb_4 and have the
following code:

bb_0:
  cmp %0, 20
  jg bb_1
  jl bb_2
  jmp bb_5
bb_1:
  cmp %0, 40
  jg bb_3
  jmp bb_6

For the case of %0 == 20 (bb_5), we eliminate two jumps, and the control height
for bb_6 is also reduced. bb_4 is gone after the optimization.

This optimization is motivated by the branch pattern generated by the switch
lowering: we always have pivot-1 compare for the inner nodes and we do a pivot
compare again the leaf (like above pattern).

This pass currently is enabled on Intel's Sandybridge and later arches. Some
reviewers pointed out that on some arches (like AMD Jaguar), this pass may
increase branch density to the point where it hurts the performance of the
branch predictor.

Differential Revision: https://reviews.llvm.org/D46662

llvm-svn: 343993
2018-10-08 18:52:39 +00:00
Simon Pilgrim 6fc8d05565 [X86][AVX2] Enable ZERO_EXTEND_VECTOR_INREG lowering of 256-bit vectors
Some necessary yak shaving before lowering *_EXTEND_VECTOR_INREG 256-bit vectors on AVX1 targets as suggested by D52964.

Differential Revision: https://reviews.llvm.org/D52970

llvm-svn: 343991
2018-10-08 18:40:50 +00:00
Sanjay Patel 43bf9917cc [x86] make horizontal binop matching clearer; NFCI
The instructions are complicated, so this code will
probably never be very obvious, but hopefully this
makes it better. 

As shown in PR39195:
https://bugs.llvm.org/show_bug.cgi?id=39195
...we need to improve the matching to not miss cases
where we're h-opping on 1 source vector, and that
should be a small patch after this rearranging.

llvm-svn: 343989
2018-10-08 18:08:02 +00:00
Alexander Ivchenko 1aedf203dd [GlobalIsel][X86] Support G_UDIV/G_UREM/G_SREM
Support G_UDIV/G_UREM/G_SREM. The instruction selection
code is taken from FastISel with only minor tweaks to adapt
for GlobalISel.

Differential Revision: https://reviews.llvm.org/D49781

llvm-svn: 343966
2018-10-08 13:40:34 +00:00
Simon Pilgrim 9fa1c66421 [X86] getFauxShuffleMask - Handle undef + sentinel values in subvector insertion
llvm-svn: 343926
2018-10-06 22:13:44 +00:00
Simon Pilgrim a30e8d23e2 [X86][AVX] Ensure resolveTargetShuffleInputs shuffle masks are the correct width
Don't handle ZERO_EXTEND style shuffles until we support bitcasts. Found by inspection.

llvm-svn: 343924
2018-10-06 17:18:41 +00:00
Simon Pilgrim 62d199f4e5 [X86] combinePMULDQ - add op back to worklist if SimplifyDemandedBits succeeds on either operand
Prevents missing other simplifications that may occur deep in the operand chain where CommitTargetLoweringOpt won't add the PMULDQ back to the worklist itself

llvm-svn: 343922
2018-10-06 14:51:14 +00:00
Simon Pilgrim 0cc0a24b55 [X86][SSE] SimplifyDemandedVectorEltsForTargetNode - simplify PSHUFB masks
Attempt to simplify PSHUFB masks (even non-constant ones) - we should probably be able to simplify other variable shuffles as well as the need arises.

llvm-svn: 343919
2018-10-06 13:49:31 +00:00
Simon Pilgrim ae78d709b4 [X86] Use the SimplifyDemandedBits wrappers where possible. NFCI.
Leave the wrapper to handle TargetLowering::TargetLoweringOpt and CommitTargetLoweringOpt.

llvm-svn: 343918
2018-10-06 13:29:08 +00:00
Matthias Braun 81578e9f77 X86, AArch64, ARM: Do not attach debug location to spill/reload instructions
This rebases and recommits r343520. hwasan should be fixed now and this
shouldn't break the tests anymore.

Spill/reload instructions are artificially generated by the compiler and
have no relation to the original source code. So the best thing to do is
not attach any debug location to them (instead of just taking the next
debug location we find on following instructions).

Differential Revision: https://reviews.llvm.org/D52125

llvm-svn: 343895
2018-10-05 22:00:13 +00:00
Simon Pilgrim dc97118efe [X86][AVX] Limit getFauxShuffleMask INSERT_SUBVECTOR support to 2 inputs
rL343853 didn't limit the number of subinputs, but we don't currently support faux shuffles with more than 2 total inputs, so put a limiter in place until this is fixed.

Found by Artem Dergachev.

llvm-svn: 343891
2018-10-05 21:44:19 +00:00
Craig Topper 0ed892da70 [X86] Don't promote i16 compares to i32 if the immediate will fit in 8 bits.
The comments in this code say we were trying to avoid 16-bit immediates, but if the immediate fits in 8-bits this isn't an issue. This avoids creating a zero extend that probably won't go away.

The movmskb related changes are interesting. The movmskb instruction writes a 32-bit result, but fills the upper bits with 0. So the zero_extend we were previously emitting was free, but we turned a -1 immediate that would fit in 8-bits into a 32-bit immediate so it was still bad.

llvm-svn: 343871
2018-10-05 18:13:36 +00:00
Simon Pilgrim f09fc3bc12 [X86] Move ReadAfterLd functionality into X86FoldableSchedWrite (PR36957)
Currently we hardcode instructions with ReadAfterLd if the register operands don't need to be available until the folded load has completed. This doesn't take into account the different load latencies of different memory operands (PR36957).

This patch adds a ReadAfterFold def into X86FoldableSchedWrite to replace ReadAfterLd, allowing us to specify the load latency at a scheduler class level.

I've added ReadAfterVec*Ld classes that match the XMM/Scl, XMM and YMM/ZMM WriteVecLoad classes that we currently use, we can tweak these values in future patches once this infrastructure is in place.

Differential Revision: https://reviews.llvm.org/D52886

llvm-svn: 343868
2018-10-05 17:57:29 +00:00
Simon Pilgrim 6c5ab48fe7 [X86][AVX] getFauxShuffleMask - add support for INSERT_SUBVECTOR subvector shuffles
Decode subvector shuffles from INSERT_SUBVECTOR(SRC0, SHUFFLE(EXTRACT_SUBVECTOR(SRC1))

This was found necessary while investigating PR39161

llvm-svn: 343853
2018-10-05 14:41:00 +00:00
Jonas Paulsson faad1b3056 [TargetRegisterInfo] Remove temporary hook enableMultipleCopyHints()
Finally all targets are enabling multiple regalloc hints, so the hook to
disable this can now be removed.

NFC.

Review: Simon Pilgrim
https://reviews.llvm.org/D52316

llvm-svn: 343851
2018-10-05 14:23:11 +00:00
Craig Topper 7d2155e3f9 [X86][LegalizeVectorOps] Use MERGE_VALUES to return two results from LowerLoad. Remove special case code in LegalizeVectorOps that allowed us to only return one result.
Previously we replaced the chain use ourself and return the data result. LegalizeVectorOps then detected that we'd done this and assumed the chain had already been handled.

This commit instead returns a MERGE_VALUES node with two results joined from nodes. This allows LegalizeVectorOps to do all the replacements for us without any special casing. The MERGE_VALUES will be removed by DAG combine.

llvm-svn: 343817
2018-10-04 21:24:24 +00:00
Martin Storsjo 37b742e208 [COFF] [X86] Don't use llvm_unreachable for unsupported relocation types
This can happen if assembling a reference to _GLOBAL_OFFSET_TABLE_.

While it doesn't make sense to try to assemble that for COFF,
the fact that we previously used llvm_unreachable meant that the code
had undefined behaviour if something tried to assemble that.

The configure script of libgmp would try to assemble such a snippet
(which should signal a failure). If llvm is built without assertions,
the undefined behaviour meant a (near) infinite loop.

Differential Revision: https://reviews.llvm.org/D52903

llvm-svn: 343811
2018-10-04 20:43:38 +00:00
David Greene 4f916df29e [X86] Set correct MMO offset on scalarized load pieces
When scalarizing a load, be sure to update the offset in the
MachineMemOperand for each scalar load.

llvm-svn: 343776
2018-10-04 14:07:59 +00:00
Craig Topper 8b3c46f0a8 [X86] Merge matchANDXORWithAllOnesAsANDNP into combineANDXORWithAllOnesIntoANDNP. NFCI
It's the only caller and the logic pretty easy to combine.

llvm-svn: 343754
2018-10-04 06:13:27 +00:00
Craig Topper a65c2dbfd6 [X86] Stop promoting vector ISD::SELECT to vXi64.
The additional patterns needed for this aren't overwhelming and introducing extra bitcasts during lowering limits our ability to do computeNumSignBits. Not that I have a good example of that for select. I'm just becoming increasingly grumpy about promotion of AND/OR/XOR. SELECT was just a lot easier to fix.

llvm-svn: 343723
2018-10-03 21:10:29 +00:00
Craig Topper c39dc41b63 [X86] Add CMOV_VK2/VK4 pseudos and remove lowering code that turned v2i1/v4i1 SELECT into v8i1.
llvm-svn: 343713
2018-10-03 20:28:43 +00:00
Craig Topper 703fbde3cb [X86] Add CMOV pseudos for VR128X and VR256X register classes. Use them when AVX512VL is enabled.
This allows the phi nodes to be generated with the correct register class when expanded.

llvm-svn: 343710
2018-10-03 19:48:26 +00:00
Craig Topper 4b62c2dbda [X86] Don't break CMOV pseudo instructions down by type. Just by register class.
The register class is all that's important for the pseudo instructions. We can use patterns to handle the different types.

llvm-svn: 343709
2018-10-03 19:48:23 +00:00
Simon Pilgrim aabd99c27a [X86] PUSH/POP 'mem-mem' instructions are not RMW - these are 2 different addresses
This patch adds a 'WriteCopy' [WriteLoad, WriteStore] schedule sequence instead to better model the behaviour

Found by @andreadb during llvm-mca testing on btver2 which was crashing on "zero uop" WriteRMW only instructions

llvm-svn: 343708
2018-10-03 19:02:38 +00:00
Simon Pilgrim b80d27a916 [X86] Move Atomic binops to use WriteALURMW schedule class
These were being tagged as <WriteALULd, WriteRMW> instead of properly using the RMW sequence

llvm-svn: 343705
2018-10-03 18:38:28 +00:00
Simon Pilgrim 0b451a2983 [X86][Btver2] Fix MMX PSHUFB schedule
Match AMD Fam16h SOG + llvm-exegesis tests

llvm-svn: 343701
2018-10-03 18:18:50 +00:00
Simon Pilgrim a400612aed [X86] Move Atomic CMPXCHG to WriteCMPXCHGRMW schedule class
llvm-svn: 343700
2018-10-03 18:05:01 +00:00
Simon Pilgrim 2c59475c06 [X86] Add SkylakeClient uops counter - same as the other Intel models.
llvm-svn: 343697
2018-10-03 16:45:26 +00:00
Nirav Dave 925b64be64 [X86] Correctly use SSE registers if no-x87 is selected.
Fix use of SSE1 registers for f32 ops in no-x87 mode.

Notably, allow use of SSE instructions for f32 operations in 64-bit
mode (but not 32-bit which is disallowed by callign convention).

Also avoid translating memset/memcopy/memmove into SSE registers
without X87 for 32-bit mode.

This fixes PR38738.

Reviewers: nickdesaulniers, craig.topper

Subscribers: hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D52555

llvm-svn: 343689
2018-10-03 14:13:30 +00:00
Simon Pilgrim c68cc4efbe [X86][Btver2] Most RMW instructions don't require an additional uop
Remove uop on WriteRMW and move it into the few instructions that need it.

Match AMD Fam16h SOG + llvm-exegesis tests

llvm-svn: 343671
2018-10-03 10:28:43 +00:00
Simon Pilgrim d11015861c [X86] ALU/ADC RMW instructions should use the WriteRMW sequence class
I was expecting this to be a nfc but Silvermont seems to be setup a little differently:

// A folded store needs a cycle on MEC_RSV for the store data, but it does not need an extra port cycle to recompute the address.
def : WriteRes<WriteRMW, [SLM_MEC_RSV]>;

So moving from WriteStore to WriteRMW reduces predicted port pressure, confirmed by @craig.topper that this is correct.

Differential Revision: https://reviews.llvm.org/D52740

llvm-svn: 343670
2018-10-03 10:01:13 +00:00
Matt Morehouse 4b1ec17fb0 Revert "X86, AArch64, ARM: Do not attach debug location to spill/reload instructions"
This reverts r343520 due to breakage of HWASan tests on Android.

llvm-svn: 343616
2018-10-02 18:35:44 +00:00
Craig Topper 49225d0915 [X86][Disassembler] Add bizarro versions of the MOVSXD instruction that sign extend from a GR32 to GR32 or GR16.
The 0x63 opcodes in 64-bit mode have a fixed source size of 32-bits, but the destination size is controlled by REX.W and the 0x66 opsize prefix. This instruction is normally used with a REX.W prefix which provides desired behavior. The other encodings are interpretted as valid by the processor, but aren't useful.

This patch makes us recognize them for the disassembler to match objdump.

llvm-svn: 343614
2018-10-02 18:16:19 +00:00
Reid Kleckner d5e4ec74e3 [codeview] Fix 32-bit x86 variable locations in realigned stack frames
Add the .cv_fpo_stackalign directive so that we can define $T0, or the
VFRAME virtual register, with it. This was overlooked in the initial
implementation because unlike MSVC, we push CSRs before allocating stack
space, so this value is only needed to describe local variable
locations. Variables that the compiler now addresses via ESP are instead
described as being stored at offsets from VFRAME, which for us is ESP
after alignment in the prologue.

This adds tests that show that we use the VFRAME register properly in
our S_DEFRANGE records, and that we emit the correct FPO data to define
it.

Fixes PR38857

llvm-svn: 343603
2018-10-02 16:43:52 +00:00
Simon Pilgrim 860cb5c071 [X86][Btver2] Fix BLENDV and AESDEC schedules
Match AMD Fam16h SOG + llvm-exegesis tests

llvm-svn: 343597
2018-10-02 15:13:18 +00:00
Simon Pilgrim 201bbe3993 [X86] Remove unnecessary BT(C/R/S)m(i/r) scheduler overrides
Some SchedAlias remain due to some badly setup RMW tags - but at least the overrides are all removed

llvm-svn: 343586
2018-10-02 13:11:59 +00:00
Simon Pilgrim 271bcb9397 [X86] Add APInt constant assembly printer helper
llvm-svn: 343577
2018-10-02 11:32:33 +00:00
Simon Pilgrim ad23f270db [X86] Standardize floating point assembly comments
Consistently try to use APFloat::toString for floating point constant comments to get rid of differences between Constant / ConstantDataSequential values - it should help stop some of the linux-windows buildbot failures matching NaN/INF etc. as well.

Differential Revision: https://reviews.llvm.org/D52702

llvm-svn: 343562
2018-10-02 09:08:51 +00:00
Reid Kleckner 9ea2c01264 [codeview] Emit S_FRAMEPROC and use S_DEFRANGE_FRAMEPOINTER_REL
Summary:
Before this change, LLVM would always describe locals on the stack as
being relative to some specific register, RSP, ESP, EBP, ESI, etc.
Variables in stack memory are pretty common, so there is a special
S_DEFRANGE_FRAMEPOINTER_REL symbol for them. This change uses it to
reduce the size of our debug info.

On top of the size savings, there are cases on 32-bit x86 where local
variables are addressed from ESP, but ESP changes across the function.
Unlike in DWARF, there is no FPO data to describe the stack adjustments
made to push arguments onto the stack and pop them off after the call,
which makes it hard for the debugger to find the local variables in
frames further up the stack.

To handle this, CodeView has a special VFRAME register, which
corresponds to the $T0 variable set by our FPO data in 32-bit.  Offsets
to local variables are instead relative to this value.

This is part of PR38857.

Reviewers: hans, zturner, javed.absar

Subscribers: aprantl, hiraditya, JDevlieghere, llvm-commits

Differential Revision: https://reviews.llvm.org/D52217

llvm-svn: 343543
2018-10-01 21:59:45 +00:00
Craig Topper 42cd8cd862 Recommit r343499 "[X86] Enable load folding in the test shrinking code"
Original message:
This patch adds load folding support to the test shrinking code. This was noticed missing in the review for D52669

llvm-svn: 343540
2018-10-01 21:35:28 +00:00
Craig Topper f06a57fc89 Recommit r343498 "[X86] Improve test instruction shrinking when the sign flag is used and the output of the and is truncated."
This includes a fix to prevent i16 compares with i32/i64 ands from being shrunk if bit 15 of the and is set and the sign bit is used.

Original commit message:
Currently we skip looking through truncates if the sign flag is used. But that's overly restrictive.

It's safe to look through the truncate as long as we ensure one of the 3 things when we shrink. Either the MSB of the mask at the shrunken size isn't set. If the mask bit is set then either the shrunk size needs to be equal to the compare size or the sign

There are still missed opportunities to shrink a load and fold it in here. This will be fixed in a future patch.

llvm-svn: 343539
2018-10-01 21:35:26 +00:00
Matthias Braun 3e081703c3 X86, AArch64, ARM: Do not attach debug location to spill/reload instructions
Spill/reload instructions are artificially generated by the compiler and
have no relation to the original source code. So the best thing to do is
not attach any debug location to them (instead of just taking the next
debug location we find on following instructions).

Differential Revision: https://reviews.llvm.org/D52125

llvm-svn: 343520
2018-10-01 18:56:39 +00:00
Craig Topper e072934d28 Revert r343499 and r343498. X86 test improvements
There's a subtle bug in the handling of truncate from i32/i64 to i32 without minsize.

I'll be adding more test cases and trying to find a fix.

llvm-svn: 343516
2018-10-01 18:40:44 +00:00
Craig Topper aa84e1bba2 [X86] Enable load folding in the test shrinking code
This patch adds load folding support to the test shrinking code. This was noticed missing in the review for D52669

Differential Revision: https://reviews.llvm.org/D52699

llvm-svn: 343499
2018-10-01 17:10:50 +00:00
Craig Topper 2b587ad071 [X86] Improve test instruction shrinking when the sign flag is used and the output of the and is truncated
Currently we skip looking through truncates if the sign flag is used. But that's overly restrictive.

It's safe to look through the truncate as long as we ensure one of the 3 things when we shrink. Either the MSB of the mask at the shrunken size isn't set. If the mask bit is set then either the shrunk size needs to be equal to the compare size or the sign flag needs to be unused.

There are still missed opportunities to shrink a load and fold it in here. This will be fixed in a future patch.

Differential Revision: https://reviews.llvm.org/D52669

llvm-svn: 343498
2018-10-01 17:10:45 +00:00
Simon Pilgrim e0d2019052 [X86][Btver2] Fix BT(C|R|S)mr & BT(C|R|S)mi schedule latency + uop counts
Match AMD Fam16h SOG + llvm-exegesis tests

llvm-svn: 343494
2018-10-01 16:31:30 +00:00
Simon Pilgrim 683e35527b [X86] Create schedule classes for BT(C|R|S)mi and BT(C|R|S)mr instructions
llvm-svn: 343490
2018-10-01 16:12:44 +00:00
Simon Pilgrim 4334912c1c [X86] Remove unnecessary BTmi/BTmr scheduler overrides
llvm-svn: 343487
2018-10-01 15:01:00 +00:00
Simon Pilgrim 6ddc4e821c [X86][Btver2] Fix BTmr schedule uop counts
Match AMD Fam16h SOG + llvm-exegesis tests

llvm-svn: 343484
2018-10-01 14:42:16 +00:00
Simon Pilgrim 43737a3df4 [X86] Create schedule classes for BTmi and BTmr instructions
llvm-svn: 343478
2018-10-01 14:23:37 +00:00
Simon Pilgrim a982236e59 [X86][Btver2] Fix masked load schedule
JFPU01 resource usage should match JFPX

Match AMD Fam16h SOG + llvm-exegesis tests

llvm-svn: 343468
2018-10-01 13:12:05 +00:00
Andrea Di Biagio 24ea163007 [X86][BtVer2] Teach how to identify zero-idiom VPERM2F128rr instructions.
This patch adds another variant class to identify zero-idiom VPERM2F128rr
instructions.

On Jaguar, a VPERM wih bit 3 and 7 of the mask set, is a zero-idiom.

Differential Revision: https://reviews.llvm.org/D52663

llvm-svn: 343452
2018-10-01 10:35:13 +00:00
Clement Courbet a933fb237e [X86][Sched] Update scheduling information for VZEROALL on HWS, BDW, SKX, SNB.
Summary:
    While looking at PR35606, I found out that the scheduling info is incorrect.

    One can check that it's really a P5+P6 and not a 2*P56 with:
    echo -e 'vzeroall\nvandps %xmm1, %xmm2, %xmm3' | ./bin/llvm-exegesis -mode=uops -snippets-file=-
    (vandps executes on P5 only)

    Reviewers: craig.topper, RKSimon

    Subscribers: llvm-commits

    Differential Revision: https://reviews.llvm.org/D52541

llvm-svn: 343447
2018-10-01 08:37:48 +00:00
Clement Courbet dac60b9837 [X86][Sched] Add pfm uop counter definitions for SNB,BDW,SKX.
llvm-svn: 343446
2018-10-01 08:37:37 +00:00
Craig Topper 67d9dbdbdd [X86] Stop X86DomainReassignment from creating copies between GR8/GR16 physical registers and k-registers.
We can only copy between a k-register and a GR32/GR64 register.

This patch detects that the copy will be illegal and prevents the domain reassignment from happening for that closure.

This probably isn't the best fix, and we should probably figure out how to handle this correctly.

Fixes PR38803.

llvm-svn: 343443
2018-10-01 07:08:41 +00:00
Craig Topper 1d1dca6a6f [X86] Change an llvm_unreachable to a report_fatal_error so the optimizer will stop making us reach the other report_fatal_error in this function.
There's a conditional report_fatal_error just above this llvm_unreachable. The optimizer when seeing the unreachable removes the conditional and just makes any other error trigger the existing report_fatal_error.

llvm-svn: 343428
2018-09-30 23:43:30 +00:00
Simon Pilgrim f21083870d [X86] Fix scheduler class for BTmi instructions
This wasn't treated as a folded load instruction

llvm-svn: 343424
2018-09-30 20:19:16 +00:00
Craig Topper 99ad2a5723 [X86] Copy memrefs when folding a load for division instruction selection.
llvm-svn: 343419
2018-09-30 17:47:18 +00:00
Simon Pilgrim 4f5693ac8d [X86][Btver2] Fix PCmpIStrI/PCmpIStrM schedules
Missing JFPU0 pipe and double JFPU1 pipe (to match JVALU1) resources

Match AMD Fam16h SOG + llvm-exegesis tests

llvm-svn: 343413
2018-09-30 16:38:38 +00:00
Simon Pilgrim 9cec221a1c [X86][BtVer2] Add the ability to add additional uops for folded instructions
Some instructions take an extra load uop - but not consistently.....

llvm-svn: 343410
2018-09-30 15:58:56 +00:00
Craig Topper 1709829fed [X86] Disable BMI BEXTR in X86DAGToDAGISel::matchBEXTRFromAnd unless we're on compiling for a CPU with single uop BEXTR
Summary:
This function turns (X >> C1) & C2 into a BMI BEXTR or TBM BEXTRI instruction. For BMI BEXTR we have to materialize an immediate into a register to feed to the BEXTR instruction.

The BMI BEXTR instruction is 2 uops on Intel CPUs. It looks like on SKL its one port 0/6 uop and one port 1/5 uop. Despite what Agner's tables say. I know one of the uops is a regular shift uop so it would have to go through the port 0/6 shifter unit. So that's the same or worse execution wise than the shift+and which is one 0/6 uop and one 0/1/5/6 uop. The move immediate into register is an additional 0/1/5/6 uop.

For now I've limited this transform to AMD CPUs which have a single uop BEXTR. If may also might make sense if we can fold a load or if the and immediate is larger than 32-bits and can't be encoded as a sign extended 32-bit value or if LICM or CSE can hoist the move immediate and share it. But we'd need to look more carefully at that. In the regression I looked at it doesn't look load folding or large immediates were occurring so the regression isn't caused by the loss of those. So we could try to be smarter here if we find a compelling case.

Reviewers: RKSimon, spatel, lebedev.ri, andreadb

Reviewed By: RKSimon

Subscribers: llvm-commits, andreadb, RKSimon

Differential Revision: https://reviews.llvm.org/D52570

llvm-svn: 343399
2018-09-30 03:01:46 +00:00
Simon Pilgrim a2efe82b81 [X86] SimplifyDemandedVectorEltsForTargetNode - remove identity target shuffles before simplifying inputs
By removing demanded target shuffles that simplify to zero/undef/identity before simplifying its inputs we improve chances of further simplification, as only the immediate parent user of the combined is added back to the work list - this still doesn't help us if its passed through other ops though (bitcasts....).

llvm-svn: 343390
2018-09-29 18:15:26 +00:00
Simon Pilgrim a93407fadf [X86][SSE] LowerScalarImmediateShift - remove 32-bit vXi64 special case handling.
This is all handled generally by getTargetConstantBitsFromNode now

llvm-svn: 343387
2018-09-29 17:36:22 +00:00
Simon Pilgrim b5737007cd Fix signed/unsigned mismatch warning. NFCI.
llvm-svn: 343385
2018-09-29 17:11:19 +00:00
Simon Pilgrim d633e290c8 [X86] getTargetConstantBitsFromNode - add support for rearranging constant bits via shuffles
Exposed an issue that recursive calls to getTargetConstantBitsFromNode don't handle changes to EltSizeInBits yet.

llvm-svn: 343384
2018-09-29 17:01:55 +00:00
Simon Pilgrim ae34ae12ef [X86][SSE] LowerScalarImmediateShift - use getTargetConstantBitsFromNode to get immediate data
Don't just attempt to find a splat build vector.

First step towards getting rid of all the 32-bit special case code.

llvm-svn: 343383
2018-09-29 16:40:35 +00:00
Simon Pilgrim a731940c60 [X86] getTargetConstantBitsFromNode - fix self-move assertions from gcc builds due to rL343375
llvm-svn: 343377
2018-09-29 14:51:09 +00:00
Simon Pilgrim 22d51014af [X86] getTargetConstantBitsFromNode - add support for peeking through ISD::EXTRACT_SUBVECTOR
llvm-svn: 343375
2018-09-29 14:17:32 +00:00
Simon Pilgrim aa77033a6b [X86][SSE] Fixed issue with v2i64 variable shifts on 32-bit targets
The shift amount might have peeked through a extract_subvector, altering the number of vector elements in the 'Amt' variable - so we were incorrectly calculating the ratio when peeking through bitcasts, resulting in incorrectly detecting splats.

llvm-svn: 343373
2018-09-29 13:25:22 +00:00
Simon Pilgrim 428c1196d8 [X86][Btver2] PSUBS/PSUBUS instructions are zero-idioms
Noticed during llvm-exegesis tests, the PSUBS/PSUBUS instructions have the same zero-idiom behaviour to PSUB

llvm-svn: 343321
2018-09-28 14:20:42 +00:00
Simon Pilgrim 66da1ed29d [X86][Btver2] CVTSS2I/CVTSD2I - add missing JFPU0 pipe
We issue JFPU1->JSTC then JFPU0->JFPA then -> JALU0 (integer pipe)

Match AMD Fam16h SOG + llvm-exegesis tests

llvm-svn: 343314
2018-09-28 13:19:22 +00:00
Simon Pilgrim 17e5981ebf [X86][Btver2] Fix BSF/BSR schedule
Double throughput to account for 2 pipes + fix BSF's latency/uop counts

Match AMD Fam16h SOG + llvm-exegesis tests

llvm-svn: 343311
2018-09-28 10:26:48 +00:00
Simon Pilgrim 280af1c7f0 [X86][BtVer2] Fix PHMINPOS schedule resources typo
PHMINPOS can run on either JFPU pipe

llvm-svn: 343299
2018-09-28 08:21:39 +00:00
Simon Pilgrim 2a64d393ea [X86] Remove BT/BTC/BTR/BTS rr/ri overrides
llvm-svn: 343241
2018-09-27 17:29:13 +00:00
Simon Pilgrim 86c7b07ecd [X86][Btver2] (V)MPSADBW instructions take 3uops not 1
llvm-svn: 343238
2018-09-27 17:13:57 +00:00
Simon Pilgrim dd744f158a [X86][Btver2] BTC/BTR/BTS instructions take 2uops not 1
llvm-svn: 343234
2018-09-27 16:39:52 +00:00
Simon Pilgrim 29cf499bca [X86] Split BT and BTC/BTR/BTS scheduler classes
llvm-svn: 343233
2018-09-27 16:24:42 +00:00
Simon Pilgrim c2a88ea64e [X86][Btver2] BLSI/BLSMSK/BLSR instructions take 2uops not 1 (same as TZCNT)
llvm-svn: 343227
2018-09-27 14:57:57 +00:00
Simon Pilgrim 98f503a326 [X86][Btver2] TZCNT instructions take 2uops not 1
llvm-svn: 343200
2018-09-27 12:28:47 +00:00
Simon Pilgrim 7e4f154e79 [X86][Btver2] Add uops counter for exegesis reports
llvm-svn: 343194
2018-09-27 11:40:26 +00:00
Fangrui Song 0cac726a00 llvm::sort(C.begin(), C.end(), ...) -> llvm::sort(C, ...)
Summary: The convenience wrapper in STLExtras is available since rL342102.

Reviewers: dblaikie, javed.absar, JDevlieghere, andreadb

Subscribers: MatzeB, sanjoy, arsenm, dschuff, mehdi_amini, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, javed.absar, gbedwell, jrtc27, mgrang, atanasyan, steven_wu, george.burgess.iv, dexonsmith, kristina, jsji, llvm-commits

Differential Revision: https://reviews.llvm.org/D52573

llvm-svn: 343163
2018-09-27 02:13:45 +00:00
Simon Pilgrim ebabd79f43 [X86][SSE] canReduceVMulWidth - use ComputeNumSignBits/SignBitIsZero directly
Don't reinvent the wheel for BUILD_VECTOR/ZERO_EXTEND - its only the ANY_EXTEND special case that needs handling.

llvm-svn: 343096
2018-09-26 11:48:52 +00:00
Clement Courbet 596c56ff9c [llvm-exegesis] Add support for measuring NumMicroOps.
Summary:
Example output for vzeroall:

---
mode:            uops
key:
  instructions:
    - 'VZEROALL'
  config:          ''
  register_initial_values:
cpu_name:        haswell
llvm_triple:     x86_64-unknown-linux-gnu
num_repetitions: 10000
measurements:
  - { debug_string: HWPort0, value: 0.0006, per_snippet_value: 0.0006,
      key: '3' }
  - { debug_string: HWPort1, value: 0.0011, per_snippet_value: 0.0011,
      key: '4' }
  - { debug_string: HWPort2, value: 0.0004, per_snippet_value: 0.0004,
      key: '5' }
  - { debug_string: HWPort3, value: 0.0018, per_snippet_value: 0.0018,
      key: '6' }
  - { debug_string: HWPort4, value: 0.0002, per_snippet_value: 0.0002,
      key: '7' }
  - { debug_string: HWPort5, value: 1.0019, per_snippet_value: 1.0019,
      key: '8' }
  - { debug_string: HWPort6, value: 1.0033, per_snippet_value: 1.0033,
      key: '9' }
  - { debug_string: HWPort7, value: 0.0001, per_snippet_value: 0.0001,
      key: '10' }
  - { debug_string: NumMicroOps, value: 20.0069, per_snippet_value: 20.0069,
      key: NumMicroOps }
error:           ''
info:            ''
assembled_snippet: C5FC77C5FC77C5FC77C5FC77C5FC77C5FC77C5FC77C5FC77C5FC77C5FC77C5FC77C5FC77C5FC77C5FC77C5FC77C5FC77C3
...

Reviewers: gchatelet

Subscribers: tschuett, RKSimon, andreadb, llvm-commits

Differential Revision: https://reviews.llvm.org/D52539

llvm-svn: 343094
2018-09-26 11:22:56 +00:00
Simon Pilgrim 5beaac433d [X86][SSE] Use ISD::MULHS for constant vXi16 ISD::SRA lowering (PR38151)
Similar to the existing ISD::SRL constant vector shifts from D49562, this patch adds ISD::SRA support with ISD::MULHS.

As we're dealing with signed values, we have to handle shift by zero and shift by one special cases, so XOP+AVX2/AVX512 splitting/extension is still a better solution - really we should still use ISD::MULHS if one of the special cases are used but for now I've just left a TODO and filtered by isKnownNeverZero.

Differential Revision: https://reviews.llvm.org/D52171

llvm-svn: 343093
2018-09-26 10:57:05 +00:00
Craig Topper 12c18840fa [X86] Allow movmskpd/ps ISD nodes to be created and selected with integer input types.
This removes an int->fp bitcast between the surrounding code and the movmsk. I had already added a hack to combineMOVMSK to try to look through this bitcast to improve the SimplifyDemandedBits there.

But I found an additional issue where the bitcast was preventing combineMOVMSK from being called again after earlier nodes in the DAG are optimized. The bitcast gets revisted, but not the user of the bitcast. By using integer types throughout, the bitcast doesn't get in the way.

llvm-svn: 343046
2018-09-25 23:28:27 +00:00
Simon Pilgrim 96335dd1ec [X86] combineUIntToFP - Fix UINT_TO_FP(vXi1) comment (PR39078)
llvm-svn: 343026
2018-09-25 20:52:08 +00:00
Sanjay Patel 10c11b867a [x86] avoid 256-bit andnp that requires insert/extract with AVX1 (PR37449)
This is the final (I hope!) problem pattern mentioned in PR37749:
https://bugs.llvm.org/show_bug.cgi?id=37749

We are trying to avoid an AVX1 sinkhole caused by having 256-bit bitwise logic ops but no other 256-bit integer ops. 
We've already solved the simple logic ops, but 'andn' is an x86 special. I looked at alternative solutions like 
extending the generic DAG combine or trying to wait until the ANDNP node is created, but those are bigger patches 
that can over-reach. Ie, splitting to 128-bit does not look like a win in most cases with >1 256-bit op.

The pattern matching is cluttered with bitcasts because of our i64 element canonicalization. For the affected test, 
we have this vector-type-legalized sequence:

        t29: v8i32 = concat_vectors t27, t28
      t30: v4i64 = bitcast t29
        t18: v8i32 = BUILD_VECTOR Constant:i32<-1>, Constant:i32<-1>, ...
      t31: v4i64 = bitcast t18
    t32: v4i64 = xor t30, t31
      t9: v8i32 = BUILD_VECTOR Constant:i32<255>, Constant:i32<255>, ...
    t34: v4i64 = bitcast t9
  t35: v4i64 = and t32, t34
t36: v8i32 = bitcast t35
      t37: v4i32 = extract_subvector t36, Constant:i64<0>
      t38: v4i32 = extract_subvector t36, Constant:i64<4>

Differential Revision: https://reviews.llvm.org/D52318

llvm-svn: 343008
2018-09-25 19:09:34 +00:00
Craig Topper 6fb1358a98 [X86] Add AVX512 support to combineVectorSizedSetCCEquality.
Reviewers: spatel, RKSimon

Reviewed By: spatel

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D52424

llvm-svn: 342989
2018-09-25 16:27:12 +00:00
Simon Pilgrim b56be79e0c Revert rL342916: [X86] Remove shift/rotate by CL memory (RMW) overrides
As suggested by Craig Topper - I'm going to look at cleaning up the RMW sequences instead.

The uops are slightly different to the register variant, so requires a +1uop tweak

llvm-svn: 342969
2018-09-25 13:01:26 +00:00
Craig Topper 9ce5da7b62 [X86] Don't create FILD ISD nodes when X87 is disabled.
The included test case previously asserted because the type legalizer tried to soften the FILD ISD node.

Fixes PR38819.

llvm-svn: 342934
2018-09-25 00:16:57 +00:00
Craig Topper aeb4930b47 [X86] Remove superfluous curly braces. NFC
llvm-svn: 342933
2018-09-25 00:16:54 +00:00
Craig Topper b7e2499e80 [X86] Update comment. Use 'glued' instead of 'flagged' NFC
llvm-svn: 342932
2018-09-25 00:16:52 +00:00
Simon Pilgrim 0b4ad7596f [X86] Remove shift/rotate by CL memory (RMW) overrides
The uops are slightly different to the register variant, so requires a +1uop tweak

llvm-svn: 342916
2018-09-24 20:11:50 +00:00
Simon Pilgrim a8b4e27760 [X86] Remove WriteDiv/WriteIDiv schedule overrides - use classes directly. NFCI.
We're missing quite a bit of data for these instruction, removing the overrides makes this obvious - inconsistent reg/mem variants is a concern as well.

Also, we have Divider resources (HWDivider etc.) but they aren't actually used consistently.

llvm-svn: 342904
2018-09-24 16:58:26 +00:00
Simon Pilgrim 00865a48d1 [X86] Split WriteIMul into 8/16/32/64 implementations (PR36931)
Split WriteIMul by size and also by IMUL multiply-by-imm and multiply-by-reg cases.

This removes all the scheduler overrides for gpr multiplies and stops WriteMULH being ignored for BMI2 MULX instructions.

llvm-svn: 342892
2018-09-24 15:21:57 +00:00
Simon Pilgrim f3f3dd584a [X86] Split WriteShift/WriteRotate schedule classes by CL usage.
Variable Shifts/Rotates using the CL register have different behaviours to the immediate instructions - split accordingly to help remove yet more repeated overrides from the schedule models.

llvm-svn: 342852
2018-09-23 21:19:15 +00:00
Simon Pilgrim 6d95a8521f [X86] Remove unnecessary WriteRotate override. NFCI.
SNB was the last override for ROT(L|R)r(1|i) - they now all use WriteRotate correctly.

llvm-svn: 342848
2018-09-23 19:33:58 +00:00
Simon Pilgrim e7938423b2 Fix line ending mismatches. NFCI.
llvm-svn: 342847
2018-09-23 19:16:32 +00:00
Simon Pilgrim 9202c9fb47 [X86] ROR*mCL instruction models should match ROL*mCL etc.
Confirmed with Craig Topper - fix a typo that was missing a Port4 uop for ROR*mCL instructions on some Intel models.

Yet another step on the scheduler model cleanup marathon......

llvm-svn: 342846
2018-09-23 19:16:01 +00:00
Sanjay Patel 0027946915 [DAGCombiner][x86] extend decompose of integer multiply into shift/add with negation
This is an alternative to https://reviews.llvm.org/D37896. We can't decompose 
multiplies generically without a target hook to tell us when it's profitable.

ARM and AArch64 may be able to remove some existing code that overlaps with
this transform.

This extends D52195 and may resolve PR34474: 
https://bugs.llvm.org/show_bug.cgi?id=34474
(still an open question about transforming legal vector multiplies, but we
could open another bug report for those)

llvm-svn: 342844
2018-09-23 18:41:38 +00:00
Simon Pilgrim 19952add7c [X86] Added missing RCL/RCR schedule overrides to the generic SNB model
The SandyBridge model was missing schedule values for the RCL/RCR values - instead using the (incredibly optimistic) WriteShift (now WriteRotate) defaults.

I've added overrides with more realistic (slow) values, based on a mixture of Agner/instlatx64 numbers and what later Intel models do as well.

This is necessary to allow WriteRotate to be updated to remove other rotate overrides.

It'd probably be a good idea to investigate a WriteRotateCarry class at some point but its not high priority given the unusualness of these instructions.

llvm-svn: 342842
2018-09-23 17:40:24 +00:00
Simon Pilgrim 22d31c5e0f [X86] Remove unnecessary WriteRotate overrides. NFCI.
llvm-svn: 342841
2018-09-23 16:53:02 +00:00
Simon Pilgrim 4b50086013 [X86] Move RORX instructions back to WriteShift schedule class
Despite being rotates, these more modern instructions avoid many of the quirks of the regular x86 rotate instructions and consistently have a schedule closer to shifts.

llvm-svn: 342839
2018-09-23 16:17:13 +00:00
Simon Pilgrim 5f9d912095 [X86] Add WriteRotate schedule class, splitting off from WriteShift.
NFCI for now, but it should make it easier to remove a lot of unnecessary overrides in a future commit.

Now that funnel shift intrinsics are coming online we need to get this cleaned up to make vectorization costs from scalar rotate patterns more straightforward.

llvm-svn: 342837
2018-09-23 15:12:10 +00:00
Craig Topper c296436a30 [X86] Add isel pattern for (v8i16 (sext (v8i1))) with DQI and no BWI.
Our lowering that tries to avoid this sign extend can be defeated by the DAG combine folding it with a truncate.

The pattern needs to extend to an v8i32 then truncate back down to v8i16.

llvm-svn: 342830
2018-09-23 06:49:48 +00:00
Craig Topper 3e0b4b0eb7 [X86] Fix a few typos in comments.
llvm-svn: 342829
2018-09-23 06:49:47 +00:00
Craig Topper 082e04c61d [X86] Fix inline expansion for memset in x32
Summary: Similar to D51893 which was for memcpy

Reviewers: efriedma

Reviewed By: efriedma

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D52063

llvm-svn: 342796
2018-09-22 05:16:35 +00:00
Craig Topper 9995760df4 [X86] Fold (movmsk (setne (and X, (1 << C)), 0)) -> (movmsk (X << C)) for vXi8 vectors.
We don't have a vXi8 shift left so we need to bitcast to a vXi16 vector to perform the shift. If we let lowering legalize the vXi8 shift we get an extra and that we don't need and fail to remove.

llvm-svn: 342795
2018-09-22 05:08:38 +00:00
Craig Topper ecdab03d10 [X86] Teach fast isel to use MOV32ri64 for loading an unsigned 32 immediate into a 64-bit register.
Previously we used SUBREG_TO_REG+MOV32ri. But regular isel was changed recently to use the MOV32ri64 pseudo. Fast isel now does the same.

llvm-svn: 342788
2018-09-21 23:14:05 +00:00
Clement Courbet 8171bd8e0f [X86][Sched] Add zero idiom sched data to the SNB model.
Summary:
On SNB, renamer-based zeroing does not work for:
 - 16 and 8-bit GPRs[1].
 - MMX [2].
 - ANDN variants [3]

[1] echo 'sub %ax, %ax' | /tmp/llvm-exegesis -mode=uops -snippets-file=-
[2] echo 'pxor %mm0, %mm0' | /tmp/llvm-exegesis -mode=uops -snippets-file=-
[3] echo 'andnps %xmm0, %xmm0' | /tmp/llvm-exegesis -mode=uops -snippets-file=-

Reviewers: RKSimon, andreadb

Subscribers: gbedwell, craig.topper, llvm-commits

Differential Revision: https://reviews.llvm.org/D52358

llvm-svn: 342736
2018-09-21 14:07:20 +00:00
Andrea Di Biagio 4cd5cf9fc8 [X86][BtVer2] Fix latency and resource cycles of AVX 256-bit zero-idioms.
This patch introduces a SchedWriteVariant to describe zero-idiom VXORP(S|D)Yrr
and VANDNP(S|D)Yrr.

This is a follow-up of r342555.

On Jaguar, a VXORPSYrr is 2 macro opcodes. Only one opcode is eliminated at
register-renaming stage. The other opcode has to be executed to set the upper
half of the destination YMM.
Same for VANDNP(S|D)Yrr.

Differential Revision: https://reviews.llvm.org/D52347

llvm-svn: 342728
2018-09-21 12:43:07 +00:00
Sanjay Patel 8a1227ccc8 [SelectionDAG] replace duplicated peekThroughBitcast helper functions; NFCI
x86 had 2 versions of peekThroughBitcast. DAGCombiner had 1. Plus, it had a 1-off implementation for the one-use variant.
Move the x86 versions of the code to SelectionDAG, so we don't have different copies of the code. 
No functional change intended.

I'm putting this next to isBitwiseNot() because I am planning to use it in there. Another option is next to the
helpers in the ISD namespace (eg, ISD::isConstantSplatVector()). But if there's no good reason for those to be 
there, I'd prefer to pull other helpers over to SelectionDAG in follow-up steps.

Differential Revision: https://reviews.llvm.org/D52285

llvm-svn: 342669
2018-09-20 17:34:08 +00:00
Simon Pilgrim 3e2de767f6 [X86][SSE] Remove UNPCKL(SHUFFLE)->UNPCKH custom combine
This can be achieved more generally by combineX86ShufflesRecursively.

llvm-svn: 342645
2018-09-20 13:10:22 +00:00
Simon Pilgrim 46c1dcb1af [X86][SSE] Remove PSHUFLW/PSHUFHW combineRedundantHalfShuffle combine
This can be achieved more generally by combineX86ShufflesRecursively and was causing a fuzz test failure found by Mikael Holmén.

llvm-svn: 342642
2018-09-20 12:11:38 +00:00
Simon Pilgrim 2d0f20cc04 [X86] Handle COPYs of physregs better (regalloc hints)
Enable enableMultipleCopyHints() on X86.

Original Patch by @jonpa:

While enabling the mischeduler for SystemZ, it was discovered that for some reason a test needed one extra seemingly needless COPY (test/CodeGen/SystemZ/call-03.ll). The handling for that is resulted in this patch, which improves the register coalescing by providing not just one copy hint, but a sorted list of copy hints. On SystemZ, this gives ~12500 less register moves on SPEC, as well as marginally less spilling.

Instead of improving just the SystemZ backend, the improvement has been implemented in common-code (calculateSpillWeightAndHint(). This gives a lot of test failures, but since this should be a general improvement I hope that the involved targets will help and review the test updates.

Differential Revision: https://reviews.llvm.org/D38128

llvm-svn: 342578
2018-09-19 18:59:08 +00:00
Sanjay Patel 1a1c0ee599 [x86] change names of vector splitting helper functions; NFC
As the code comments suggest, these are about splitting, and they
are not necessarily limited to lowering, so that misled me.

There's nothing that's actually x86-specific in these either, so 
they might be better placed in a common header so any target can 
use them.

llvm-svn: 342575
2018-09-19 18:52:00 +00:00
Simon Pilgrim 8191d63c3b [X86] Add initial SimplifyDemandedVectorEltsForTargetNode support
This patch adds an initial x86 SimplifyDemandedVectorEltsForTargetNode implementation to handle target shuffles.

Currently the patch only decodes a target shuffle, calls SimplifyDemandedVectorElts on its input operands and removes any shuffle that reduces to undef/zero/identity.

Future work will need to integrate this with combineX86ShufflesRecursively, add support for other x86 ops, etc.

NOTE: There is a minor regression that appears to be affecting further (extractelement?) combines which I haven't been able to solve yet - possibly something to do with how nodes are added to the worklist after simplification.

Differential Revision: https://reviews.llvm.org/D52140

llvm-svn: 342564
2018-09-19 18:11:34 +00:00
Andrea Di Biagio 8b6c314be1 [TableGen][SubtargetEmitter] Add the ability for processor models to describe dependency breaking instructions.
This patch adds the ability for processor models to describe dependency breaking
instructions.

Different processors may specify a different set of dependency-breaking
instructions.
That means, we cannot assume that all processors of the same target would use
the same rules to classify dependency breaking instructions.

The main goal of this patch is to provide the means to describe dependency
breaking instructions directly via tablegen, and have the following
TargetSubtargetInfo hooks redefined in overrides by tabegen'd
XXXGenSubtargetInfo classes (here, XXX is a Target name).

```
virtual bool isZeroIdiom(const MachineInstr *MI, APInt &Mask) const {
  return false;
}

virtual bool isDependencyBreaking(const MachineInstr *MI, APInt &Mask) const {
  return isZeroIdiom(MI);
}
```

An instruction MI is a dependency-breaking instruction if a call to method
isDependencyBreaking(MI) on the STI (TargetSubtargetInfo object) evaluates to
true. Similarly, an instruction MI is a special case of zero-idiom dependency
breaking instruction if a call to STI.isZeroIdiom(MI) returns true.
The extra APInt is used for those targets that may want to select which machine
operands have their dependency broken (see comments in code).
Note that by default, subtargets don't know about the existence of
dependency-breaking. In the absence of external information, those method calls
would always return false.

A new tablegen class named STIPredicate has been added by this patch to let
processor models classify instructions that have properties in common. The idea
is that, a MCInstrPredicate definition can be used to "generate" an instruction
equivalence class, with the idea that instructions of a same class all have a
property in common.

STIPredicate definitions are essentially a collection of instruction equivalence
classes.
Also, different processor models can specify a different variant of the same
STIPredicate with different rules (i.e. predicates) to classify instructions.
Tablegen backends (in this particular case, the SubtargetEmitter) will be able
to process STIPredicate definitions, and automatically generate functions in
XXXGenSubtargetInfo.

This patch introduces two special kind of STIPredicate classes named
IsZeroIdiomFunction and IsDepBreakingFunction in tablegen. It also adds a
definition for those in the BtVer2 scheduling model only.

This patch supersedes the one committed at r338372 (phabricator review: D49310).

The main advantages are:
 - We can describe subtarget predicates via tablegen using STIPredicates.
 - We can describe zero-idioms / dep-breaking instructions directly via
   tablegen in the scheduling models.

In future, the STIPredicates framework can be used for solving other problems.
Examples of future developments are:
 - Teach how to identify optimizable register-register moves
 - Teach how to identify slow LEA instructions (each subtarget defining its own
   concept of "slow" LEA).
 - Teach how to identify instructions that have undocumented false dependencies
   on the output registers on some processors only.

It is also (in my opinion) an elegant way to expose knowledge to both external
tools like llvm-mca, and codegen passes.
For example, machine schedulers in LLVM could reuse that information when
internally constructing the data dependency graph for a code region.

This new design feature is also an "opt-in" feature. Processor models don't have
to use the new STIPredicates. It has all been designed to be as unintrusive as
possible.

Differential Revision: https://reviews.llvm.org/D52174

llvm-svn: 342555
2018-09-19 15:57:45 +00:00
Sanjay Patel 4fd2e2a498 [DAGCombiner][x86] add transform/hook to decompose integer multiply into shift/add
This is an alternative to D37896. I don't see a way to decompose multiplies 
generically without a target hook to tell us when it's profitable. 

ARM and AArch64 may be able to remove some duplicate code that overlaps with 
this transform.

As a first step, we're only getting the most clear wins on the vector examples
requested in PR34474:
https://bugs.llvm.org/show_bug.cgi?id=34474

As noted in the code comment, it's likely that the x86 constraints are tighter
than necessary, but it may not always be a win to replace a pmullw/pmulld.

Differential Revision: https://reviews.llvm.org/D52195

llvm-svn: 342554
2018-09-19 15:57:40 +00:00
Hans Wennborg 4195eb1068 [COFF] Emit @feat.00 on 64-bit and set the CFG bit when emitting guardcf tables
The 0x800 bit in @feat.00 needs to be set in order to make LLD pick up
the .gfid$y table. I believe this is fine to set even if we don't emit
the instrumentation.

We haven't emitted @feat.00 on 64-bit before. I see that MSVC does emit
it, but I'm not entirely sure what the default value should be. I went
with zero since that seems as safe as not emitting the symbol in the
first place.

Differential Revision: https://reviews.llvm.org/D52235

llvm-svn: 342532
2018-09-19 09:58:30 +00:00
Simon Pilgrim e9bf71e761 [X86][SSE] LowerShift - pull out repeated getTargetVShiftUniformOpcode calls. NFCI.
llvm-svn: 342462
2018-09-18 10:44:44 +00:00
Keno Fischer c8ccaed325 [X86ISel] Implement byval lowering for Win64 calling convention
Summary:
The IR reference for the `byval` attribute states:

```
This indicates that the pointer parameter should really be passed by value
to the function. The attribute implies that a hidden copy of the pointee is
made between the caller and the callee, so the callee is unable to modify
the value in the caller. This attribute is only valid on LLVM pointer arguments.
```

However, on Win64, this attribute is unimplemented and the raw pointer is
passed to the callee instead. This is problematic, because frontend authors
relying on the implicit hidden copy (as happens for every other calling
convention) will see the passed value silently (if mutable memory) or
loudly (by means of a crash) modified because the callee treats the
location as scratch memory space it is allowed to mutate.

At this point, it's worth taking a step back to understand the context.
In most calling conventions, aggregates that are too large to be passed
in registers, instead get *copied* to the stack at a fixed (computable
from the signature) offset of the stack pointer. At the LLVM, we hide
this hidden copy behind the byval attribute. The caller passes a pointer
to the desired data and the callee receives a pointer, but these pointers
are not the same. In particular, the pointer that the callee receives
points to temporary stack memory allocated as part of the call lowering.
In most calling conventions, this pointer is never realized in registers
or memory. The temporary memory is simply defined by an implicit
offset from the stack pointer at function entry.

Win64, uniquely, works differently. The structure is still passed in
memory, but instead of being stored at an implicit memory offset, the
caller computes a pointer to the temporary memory and passes it to
the callee as a regular pointer (taking up a register, or if all
registers are taken up, an additional stack slot). Presumably, this
was done to allow eliding the copy when passing aggregates through
several functions on the stack.

This explains why ignoring the `byval` attribute mostly works on Win64.
The argument simply gets passed as a pointer and as long as we're ok
with the callee trampling all over that memory, there are no ill effects.
However, it does contradict the documentation of the `byval` attribute
which specifies that there is to be an implicit copy.

Frontends can of course work around this by never emitting the `byval`
attribute for Win64 and creating `alloca`s for the requisite temporary
stack slots (and that does appear to be what frontends are doing).
However, the presence of the `byval` attribute is not a trap for
frontend authors, since it seems to work, but silently modifies the
passed memory contrary to documentation.

I see two solutions:
- Disallow the `byval` attribute in the verifier if using the Win64
  calling convention.
- Make it work by simply emitting a temporary stack copy as we would
  with any other calling convention (frontends can of course always
  not use the attribute if they want to elide the copy).

This patch implements the second option (make it work), though I would
be fine with the first also.

Ref: https://github.com/JuliaLang/julia/issues/28338

Reviewers: rnk

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D51842

llvm-svn: 342402
2018-09-17 17:37:14 +00:00
Simon Pilgrim cffa206423 [X86][SSE] Always enable ISD::SRL -> ISD::MULHU for v8i16
For constant non-uniform cases we'll never introduce more and/andn/or selects than already occur in generic pre-SSE41 ISD::SRL lowering.

llvm-svn: 342352
2018-09-16 20:28:38 +00:00
Simon Pilgrim ea069ffd44 [X86][AVX] Enable ISD::SRL -> ISD::MULHU for v16i16
Now that rL340913 has landed with improved v16i16 selects as shuffles.

llvm-svn: 342349
2018-09-16 19:20:47 +00:00
Sanjay Patel bfee5a9b42 [x86] fix uses check in broadcast transform (PR38949)
https://bugs.llvm.org/show_bug.cgi?id=38949

It's not clear to me that we even need a one-use check in this fold.
Ie, 2 independent loads might be better than a load+dependent shuffle.

Note that the existing re-use tests are not affected. We actually do form a
broadcast node in those tests now because there's no extra use of the 
insert_subvector node in those cases. But something later in isel pattern 
matching decides that it is not worth using a broadcast for the full load in 
those tests:

Legalized selection DAG: %bb.0 'test_broadcast_2f64_4f64_reuse:'
  t7: v2f64,ch = load<(load 16 from %ir.p0)> t0, t2, undef:i64
      t4: i64,ch = CopyFromReg t0, Register:i64 %1
    t10: ch = store<(store 16 into %ir.p1)> t7:1, t7, t4, undef:i64
      t18: v4f64 = insert_subvector undef:v4f64, t7, Constant:i64<0>
    t20: v4f64 = insert_subvector t18, t7, Constant:i64<2>

Becomes:
  t7: v2f64,ch = load<(load 16 from %ir.p0)> t0, t2, undef:i64
      t4: i64,ch = CopyFromReg t0, Register:i64 %1
    t10: ch = store<(store 16 into %ir.p1)> t7:1, t7, t4, undef:i64
    t21: v4f64 = X86ISD::SUBV_BROADCAST t7

ISEL: Starting selection on root node: t21: v4f64 = X86ISD::SUBV_BROADCAST t7
...
  Created node: t27: v4f64 = INSERT_SUBREG IMPLICIT_DEF:v4f64, t7, TargetConstant:i32<7>
  Morphed node: t21: v4f64 = VINSERTF128rr t27, t7, TargetConstant:i8<1>

llvm-svn: 342347
2018-09-16 15:41:56 +00:00
Craig Topper fe0b973fbf [X86] Remove an fp->int->fp domain crossing in LowerUINT_TO_FP_i64.
Summary: This unfortunately adds a move, but isn't that better than going to the int domain and back?

Reviewers: RKSimon

Reviewed By: RKSimon

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D52134

llvm-svn: 342327
2018-09-15 16:23:35 +00:00
Craig Topper 273f755da3 [X86] Fold (movmsk (setne (and X, (1 << C)), 0)) -> (movmsk (X << C))
Summary:
MOVMSK only care about the sign bit so we don't need the setcc to fill the whole element with 0s/1s. We can just shift the bit we're looking for into the sign bit. This saves a constant pool load.

Inspired by PR38840.

Reviewers: RKSimon, spatel

Reviewed By: RKSimon

Subscribers: lebedev.ri, llvm-commits

Differential Revision: https://reviews.llvm.org/D52121

llvm-svn: 342326
2018-09-15 16:23:33 +00:00
Simon Pilgrim 32857c54d2 [X86][SSE] Lower shuffles to permute(unpack(x,y)) (PR31151)
Attempt to lower a shuffle as an unpack of elements from two inputs followed by a single-input (wider) permutation.

As long as the permutation is wider this is a win - there may be some circumstances where same size permutations would also be useful but I've left that for future work.

Differential Revision: https://reviews.llvm.org/D52043

llvm-svn: 342257
2018-09-14 18:33:31 +00:00
Simon Pilgrim 1c1335a10d [X86][BMI1] Fix BLSI/BLSMSK/BLSR BMI1 scheduling on btver2
These have the same behaviour as tzcnt on btver2 - confirmed with AMD 16h SOG, Agner and instlatx64.

llvm-svn: 342235
2018-09-14 13:31:14 +00:00
Simon Pilgrim 6a47cdbdec [X86][BMI1] Add scheduler class for BLSI/BLSMSK/BLSR BMI1 instructions
llvm-svn: 342234
2018-09-14 13:09:56 +00:00
Nirav Dave 59ad1c8457 [X86] Fix register resizings for inline assembly register operands.
When replacing a named register input to the appropriately sized
sub/super-register. In the case of a 64-bit value being assigned to a
register in 32-bit mode, match GCC's assignment.

Reviewers: eli.friedman, craig.topper

Subscribers: nickdesaulniers, llvm-commits, hiraditya

Differential Revision: https://reviews.llvm.org/D51502

llvm-svn: 342175
2018-09-13 20:33:56 +00:00
Nirav Dave 2060a16dfd [X86] Cleanup pair returns. NFCI.
llvm-svn: 342174
2018-09-13 20:33:27 +00:00
Craig Topper f107123a88 [X86] Type legalize v2i32 div/rem by scalarizing rather than promoting
Summary:
Previously we type legalized v2i32 div/rem by promoting to v2i64. But we don't support div/rem of vectors so op legalization would then scalarize it using i64 scalar ops since it doesn't know about the original promotion. 64-bit scalar divides on Intel hardware are known to be slow and in 32-bit mode they require a libcall.

This patch switches type legalization to do the scalarizing itself using i32.

It looks like the division by power of 2 optimization is still kicking in and leaving the code as a vector. The division by other constant optimization doesn't kick in pre type legalization since it ignores illegal types. And previously, after type legalization we scalarized the v2i64 since we don't have v2i64 MULHS/MULHU support.

Another option might be to widen v2i32 to v4i32 so we could do division by constant optimizations, but we'd have to be careful to only do that for constant divisors or we risk scalaring to 4 scalar divides.

Reviewers: RKSimon, spatel

Reviewed By: spatel

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D51325

llvm-svn: 342114
2018-09-13 06:13:37 +00:00
Craig Topper 2262613532 [X86] Remove isel patterns for ADCX instruction
There's no advantage to this instruction unless you need to avoid touching other flag bits. It's encoding is longer, it can't fold an immediate, it doesn't write all the flags.

I don't think gcc will generate this instruction either.

Fixes PR38852.

Differential Revision: https://reviews.llvm.org/D51754

llvm-svn: 342059
2018-09-12 15:47:34 +00:00
Craig Topper dc32e91bc6 [X86] Teach X86SelectionDAGInfo::EmitTargetCodeForMemcpy about GNUX32
Summary:
In GNUX23, is64BitMode returns true, but pointers are 32-bits. So we shouldn't copy pointer values into RSI/RDI since the widths don't match.

Fixes PR38865 despite what the title says. I think the llvm_unreachable in the copyPhysReg code tricked the optimizer and made the fatal error trigger.

Reviewers: rnk, efriedma, MatzeB, echristo

Reviewed By: efriedma

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D51893

llvm-svn: 342015
2018-09-12 01:57:22 +00:00
Craig Topper 8238580aae [X86] Prefer unpckhpd over movhlps in isel for fake unary cases
In r337348, I changed lowering to prefer X86ISD::UNPCKL/UNPCKH opcodes over MOVLHPS/MOVHLPS for v2f64 {0,0} and {1,1} shuffles when we have SSE2. This enabled the removal of a bunch of weirdly bitcasted isel patterns in r337349. To avoid changing the tests I placed a gross hack in isel to still emit movhlps instructions for fake unary unpckh nodes. A similar hack was not needed for unpckl and movlhps because we do execution domain switching for those. But unpckh and movhlps have swapped operand order.

This patch removes the hack.

This is a code size increase since unpckhpd requires a 0x66 prefix and movhlps does not. But if that's a big concern we should be using movhlps for all unpckhpd opcodes and let commuteInstruction turnit into unpckhpd when its an advantage.

Differential Revision: https://reviews.llvm.org/D49499

llvm-svn: 341973
2018-09-11 17:57:27 +00:00
Craig Topper cc9efaffad [X86] Teach X86FastISel::X86SelectRet to use EAX for the sret pointer in GNUX32
GNUX32 uses 32-bit pointers despite is64BitMode being true. So we should use EAX to return the value.

Fixes ones of the failures from PR38865.

Differential Revision: https://reviews.llvm.org/D51940

llvm-svn: 341972
2018-09-11 17:57:23 +00:00
Craig Topper d7362a3e5f [X86] Correct the one use check from r341915.
The one use check should be on the bitcast, not the input to the bitcast.

llvm-svn: 341956
2018-09-11 16:05:03 +00:00
Craig Topper 844f035e1e [X86] In combineMOVMSK, look through int->fp bitcasts before callling SimplifyDemandedBits.
MOVMSKPS and MOVMSKPD both take FP types, but likely the operations before it are on integer types with just a int->fp bitcast between them. If the bitcast isn't used by anything else and doesn't change the element width we can look through it to simplify the integer ops.

llvm-svn: 341915
2018-09-11 08:20:02 +00:00
Erich Keane 911ddd6db5 Move FeatureAES from SLM, WSM and SNB to GLM and SKL
Complements https://reviews.llvm.org/D51510 and matches
https://gcc.gnu.org/ml/gcc-patches/2018-08/msg01940.html

GoldmontProc already has FeatureAES.

Patch By: thiagomacieira

Differential Revision: https://reviews.llvm.org/D51565

llvm-svn: 341861
2018-09-10 21:12:19 +00:00
Craig Topper a5ae613c15 [X86] Mark the ISD::SETLT/SETLE condition codes as illegal for v32i16/v64i8 to match the other vector types.
I'm having a hard time finding a test case for this, but we should be consistent here. The fact that we canonicalize all zeros and all ones constants to vXi32 and all other constants to loads makes this hard to hit the easy DAG combine infinite loop we get for some of the other types.

llvm-svn: 341859
2018-09-10 20:31:27 +00:00
Craig Topper 3823516103 [X86] Custom type legalize (v2i32 (fp_to_uint v2f64))) without avx512vl by widening to v4i32 and v4f64 instead of v8i32 and v8f64. Make it aware of x86-experimental-vector-widening-legalization
We have isel patterns for v4i32/v4f64 that artificially widen to v8i32/v8f64 so just use that.

If x86-experimental-vector-widening-legalization is enabled, we don't need any custom legalization and can just return. I've modified the test RUN lines to cover this case.

llvm-svn: 341765
2018-09-09 20:36:36 +00:00
Craig Topper 7af5e333e7 [X86] Create paddus/psubus from narrower vectors with i8/i16 element types.
Summary:
This patch allows vectors with a power of 2 number of elements and i8/i16 element type to select paddus/psubus instructions. ReplaceNodeResults has been updated to custom widen these operations up to 128 bits like we already do for PAVG.

Another step towards fixing PR38691

Reviewers: RKSimon, spatel

Reviewed By: RKSimon, spatel

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D51818

llvm-svn: 341753
2018-09-08 19:32:58 +00:00
Craig Topper a2c9694bc8 [X86] Mark the ADCX and ADOX instruction as commutable.
llvm-svn: 341752
2018-09-08 18:47:56 +00:00
Craig Topper c96305970d [X86] Add commuted isel pattern for the load form of ADCX instructions.
This prevents the legacy ADC instruction from being favored over ADCX when the load is in the operand 0.

llvm-svn: 341745
2018-09-08 06:31:43 +00:00
Craig Topper 5cbce81c91 [X86] Don't create ZERO_EXTEND_INREG/SIGN_EXTEND_INREG for v1iX vectors.
The generic type legalizer will scalarize vXi1 instructions getting rid of the vector entirely. Creating wider vector instructions is just going to prevent that.

llvm-svn: 341705
2018-09-07 20:56:03 +00:00
Craig Topper 39f48fdcbc [X86] Don't create X86ISD::AVG nodes from v1iX vectors.
The type legalizer will try to scalarize this and fail.

It looks like there's some other v1iX oddities out there too since we still generated some vector instructions.

llvm-svn: 341704
2018-09-07 20:56:01 +00:00
Craig Topper 4863313b35 [X86] Modify the the rdtscp intrinsic to return values instead of taking a pointer argument
Similar to what was recently done for addcarry/subborrow and has been done for rdrand/rdseed for a while. It's better to use two results and an explicit store in IR when the store isn't part of the semantics of the instruction. This allows store->load forwarding to happen in the middle end. Or the store to be removed if its never loaded.

Differential Revision: https://reviews.llvm.org/D51803

llvm-svn: 341698
2018-09-07 19:14:15 +00:00
Craig Topper 72964ae99e [X86] Change the addcarry and subborrow intrinsics to return 2 results and remove the pointer argument.
We should represent the store directly in IR instead. This gives the middle end a chance to remove it if it can see a load from the same address.

Differential Revision: https://reviews.llvm.org/D51769

llvm-svn: 341677
2018-09-07 16:58:39 +00:00
Craig Topper 313d09af51 [X86] Teach X86DAGToDAGISel::foldLoadStoreIntoMemOperand to handle loads in operand 1 of commutable operations.
Previously we only handled loads in operand 0, but nothing guarantees the load will be operand 0 for commutable operations.

Differential Revision: https://reviews.llvm.org/D51768

llvm-svn: 341675
2018-09-07 16:27:55 +00:00
Craig Topper 13148564d4 [X86] Fix some incorrect comments. NFC
llvm-svn: 341624
2018-09-07 01:29:42 +00:00
Craig Topper 2c9dede9cb [X86] Add RMW ADC patterns with load in operand 1.
ADC is commutable and the load could be in either operand, but we were only checking operand 0.

Ideally we'd mark X86adc_flag as commutable and tablegen would automatically do this, but the EFLAGS register mention is preventing it.

llvm-svn: 341606
2018-09-06 23:55:36 +00:00
Craig Topper 0fd5cdee3a [X86] Add isel patterns for commuting X86adc_flag with a load in the LHS.
The peephole pass likely gets this normally, but we should be doing it during isel.

Ideally we'd just make the X86adc_flag pattern SDNPCommutable, but the tablegen doesn't handle that when one of the operands is a register reference.

llvm-svn: 341596
2018-09-06 22:41:44 +00:00
Craig Topper 5a53760f65 [X86][Assembler] Allow %eip as a register in 32-bit mode for .cfi directives.
This basically reverts a change made in r336217, but improves the text of the error message for not allowing IP-relative addressing in 32-bit mode.

Fixes PR38826.

Patch by Iain Sandoe.

llvm-svn: 341512
2018-09-06 02:03:14 +00:00
Sander de Smalen c91b27d9ee Remove FrameAccess struct from hasLoadFromStackSlot
This removes the FrameAccess struct that was added to the interface
in D51537, since the PseudoValue from the MachineMemoryOperand
can be safely casted to a FixedStackPseudoSourceValue.

Reviewers: MatzeB, thegameg, javed.absar

Reviewed By: thegameg

Differential Revision: https://reviews.llvm.org/D51617

llvm-svn: 341454
2018-09-05 08:59:50 +00:00
Martin Storsjo 68df812cce [MinGW] Move code for indicating "potentially not DSO local" into shouldAssumeDSOLocal. NFC.
On Windows, if shouldAssumeDSOLocal returns false, it's either a
dllimport reference, or a reference that we should treat as non-local
and create a stub for.

Clean up AArch64Subtarget::ClassifyGlobalReference a little while
touching the flag handling relating to dllimport.

Differential Revision: https://reviews.llvm.org/D51590

llvm-svn: 341402
2018-09-04 20:56:28 +00:00
Chandler Carruth 664aa868f5 [x86/SLH] Add a real Clang flag and LLVM IR attribute for Speculative
Load Hardening.

Wires up the existing pass to work with a proper IR attribute rather
than just a hidden/internal flag. The internal flag continues to work
for now, but I'll likely remove it soon.

Most of the churn here is adding the IR attribute. I talked about this
Kristof Beyls and he seemed at least initially OK with this direction.
The idea of using a full attribute here is that we *do* expect at least
some forms of this for other architectures. There isn't anything
*inherently* x86-specific about this technique, just that we only have
an implementation for x86 at the moment.

While we could potentially expose this as a Clang-level attribute as
well, that seems like a good question to defer for the moment as it
isn't 100% clear whether that or some other programmer interface (or
both?) would be best. We'll defer the programmer interface side of this
for now, but at least get to the point where the feature can be enabled
without relying on implementation details.

This also allows us to do something that was really hard before: we can
enable *just* the indirect call retpolines when using SLH. For x86, we
don't have any other way to mitigate indirect calls. Other architectures
may take a different approach of course, and none of this is surfaced to
user-level flags.

Differential Revision: https://reviews.llvm.org/D51157

llvm-svn: 341363
2018-09-04 12:38:00 +00:00
Chandler Carruth 219888d1b2 [x86/SLH] Teach SLH to harden against the "ret2spec" attack by
implementing the proposed mitigation technique described in the original
design document.

The idea is to check after calls that the return address used to arrive
at that location is in fact the correct address. In the event of
a mis-predicted return which reaches a *valid* return but not the
*correct* return, this will detect the mismatch much like it would
a mispredicted conditional branch.

This is the last published attack vector that I am aware of in the
Spectre v1 space which is not mitigated by SLH+retpolines. However,
don't read *too* much into that: this is an area of ongoing research
where we expect more issues to be discovered in the future, and it also
makes no attempt to mitigate Spectre v4. Still, this is an important
completeness bar for SLH.

The change here is of course delightfully simple. It was predicated on
cutting support for post-instruction symbols into LLVM which was not at
all simple. Many thanks to Hal Finkel, Reid Kleckner, and Justin Bogner
who helped me figure out how to do a bunch of the complex changes
involved there.

Differential Revision: https://reviews.llvm.org/D50837

llvm-svn: 341358
2018-09-04 10:59:10 +00:00
Chandler Carruth 8d8489f513 [x86/SLH] Teach SLH to harden indirect branches and switches without
retpolines.

This implements the core design of tracing the intended target into the
target, checking it, and using that to update the predicate state. It
takes advantage of a few interesting aspects of SLH to make it a bit
easier to implement:
- We already split critical edges with conditional branches, so we can
assume those are gone.
- We already unfolded any memory access in the indirect branch
instruction itself.

I've left hard errors in place to catch if any of these somewhat subtle
invariants get violated.

There is some code that I can factor out and share with D50837 when it
lands, but I didn't want to couple landing the two patches, so I'll do
that in a follow-up cleanup commit if alright.

Factoring out the code to handle different scenarios of materializing an
address remains frustratingly hard. In a bunch of cases you want to fold
one of the cases into an immediate operand of some other instruction,
and you also have both symbols and basic blocks being used which require
different methods on the MI builder (and different operand kinds).
Still, I'll take a stab at sharing at least some of this code in
a follow-up if I can figure out how.

Differential Revision: https://reviews.llvm.org/D51083

llvm-svn: 341356
2018-09-04 10:44:21 +00:00
Andrea Di Biagio fb3d9e1449 [X86] Remove wrong ReadAdvance from multiclass sse_fp_unop_s.
A ReadAdvance was incorrectly added to the SchedReadWrite list associated with
the following SSE instructions:

sqrtss
sqrtsd
rsqrtss
rcpss

As a consequence, a wrong operand latency was computed for the register operand
used as the base address of the folded load operand.

This patch removes the wrong ReadAdvance, and updates the llvm-mca test cases.
There is still a problem with correctly modeling partial register writes on XMM
registers This other problem is currently tracked here:
https://bugs.llvm.org/show_bug.cgi?id=38813

Differential Revision: https://reviews.llvm.org/D51542

llvm-svn: 341326
2018-09-03 16:47:34 +00:00
Argyrios Kyrtzidis c30340b207 Add header guards to some headers that are missing them
Also adjust some of dsymutil's headers to put the header guards at the top,
otherwise the compiler will not recognize them as header guards.

llvm-svn: 341323
2018-09-03 16:22:05 +00:00
Sander de Smalen 6cab60fa06 Extend hasStoreToStackSlot with list of FI accesses.
For instructions that spill/fill to and from multiple frame-indices
in a single instruction, hasStoreToStackSlot and hasLoadFromStackSlot
should return an array of accesses, rather than just the first encounter
of such an access.

This better describes FI accesses for AArch64 (paired) LDP/STP
instructions.

Reviewers: t.p.northover, gberry, thegameg, rengolin, javed.absar, MatzeB

Reviewed By: MatzeB

Differential Revision: https://reviews.llvm.org/D51537

llvm-svn: 341301
2018-09-03 09:15:58 +00:00
Craig Topper caf6672779 [X86] Add intrinsics for KTEST instructions.
These intrinsics use the same implementation as PTEST intrinsics, but use vXi1 vectors.

New clang builtins will be accompanying them shortly.

llvm-svn: 341259
2018-08-31 21:31:53 +00:00
Craig Topper b7bb9f0078 [X86] Add support for turning vXi1 shuffles into KSHIFTL/KSHIFTR.
This patch recognizes shuffles that shift elements and fill with zeros. I've copied and modified the shift matching code we use for normal vector registers to do this. I'm not sure if there's a good way to share more of this code without making the existing function more complex than it already is.

This will be used to enable kshift intrinsics in clang.

Differential Revision: https://reviews.llvm.org/D51401

llvm-svn: 341227
2018-08-31 17:17:21 +00:00
Andrea Di Biagio a59ec4efa0 [X86][BtVer2] Remove wrong ReadAdvance from AVX vbroadcast(ss|sd|f128) instructions.
The presence of a ReadAdvance for input operand #0 is problematic
because it changes the input latency of the register used as the base address
for the folded load.

A broadcast cannot start executing if the load address hasn't been computed yet.

In the llvm-mca example, the VBROADCASTSS is dependent on the address generated
by the LEAQ.  That means, it cannot start until LEAQ reaches the write-back
stage. If we apply ReadAdvance, then we wrongly assume that the load can start 3
cycles in advance.

Differential Revision: https://reviews.llvm.org/D51534

llvm-svn: 341222
2018-08-31 16:05:48 +00:00
Alexander Ivchenko 9d053074a1 [GlobalISel][X86] Add the support for G_FPTRUNC
Differential Revision: https://reviews.llvm.org/D49855

llvm-svn: 341202
2018-08-31 11:26:51 +00:00
Alexander Ivchenko 9b0b492653 [GlobalISel][X86_64] Support for G_FPTOSI
Differential Revision: https://reviews.llvm.org/D49183

llvm-svn: 341200
2018-08-31 11:16:58 +00:00
Alexander Ivchenko 58a5d6fde7 [GlobalIsel][X86] Support for llvm.trap intrinsic
Differential Revision: https://reviews.llvm.org/D49180

llvm-svn: 341199
2018-08-31 11:05:13 +00:00
Alexander Ivchenko 5b8418983c [NFC] Fix unused variable warning in X86RegisterBankInfo.cpp
llvm-svn: 341198
2018-08-31 10:39:54 +00:00
Alexander Ivchenko a26a364e75 [GlobalIsel][X86] Support for G_FCMP
Differential Revision: https://reviews.llvm.org/D49172

llvm-svn: 341193
2018-08-31 09:38:27 +00:00
Andrea Di Biagio b998eae2f2 [X86][BtVer2] Fix WriteFShuffle256 schedule write info.
This patch fixes the number of micro opcodes, and processor resource cycles for
the following AVX instructions:

vinsertf128rr/rm
vperm2f128rr/rm
vbroadcastf128

Tests have been regenerated using the usual scripts in the llvm/utils directory.

Differential Revision: https://reviews.llvm.org/D51492

llvm-svn: 341185
2018-08-31 08:30:47 +00:00
Martin Storsjo f010872b5c [MinGW] [X86] Pass true for the second parameter to StubValueTy for MO_COFFSTUB. NFC.
These stubs should never be emitted for internal symbols, and
nothing in AsmPrinter ever actually use this value when producing
the stubs for COFF anyway.

llvm-svn: 341177
2018-08-31 08:00:31 +00:00
Craig Topper 83e9f928ba [X86] Don't do anything in ReplaceNodeResults for (v2i32 (fptoui/fptosi v2f32)) when -x86-experimental-vector-widening-legalization is on.
We don't need to do our own widening, the generic legalizer can do it.

llvm-svn: 341174
2018-08-31 07:05:39 +00:00
Craig Topper e9af89a78b [X86] Don't custom widen (v2i32 (setcc v2f32)) when -x86-experimental-vector-widening-legalization is in effect.
We aren't doing anything than what the generic legalizer will do so just let it do it.

llvm-svn: 341172
2018-08-31 07:05:37 +00:00
Craig Topper 1a8c99e670 [X86] Weaken an overly aggressive assert.
This assert tried to check that AND constants are only on the RHS. But its possible for both operands to be constants if one is opaque which will prevent the AND from being constant folded.

Fixes PR38771

llvm-svn: 341102
2018-08-30 19:35:38 +00:00
Alexander Ivchenko af96112ec6 Make TargetInstrInfo::isCopyInstr return true for regular COPY-instructions
..Move all target-dependent checks into new isCopyInstrImpl method.

This change allows us to treat MoveReg-type instructions and generic
COPY instruction in the same way

Differential Revision: https://reviews.llvm.org/D49913

llvm-svn: 341072
2018-08-30 14:32:47 +00:00
Andrew V. Tischenko 62f7a3207b [X86] Improved sched model for X86 CMPXCHG* instructions.
Differential Revision: https://reviews.llvm.org/D50070 

llvm-svn: 341024
2018-08-30 06:26:00 +00:00
Craig Topper b7b353be60 [X86] Make Feature64Bit useful
We now only add +64bit to the CPU string for "generic" CPU. All other CPU names are assumed to have the feature flag already set if they support 64-bit. I've remove the implies from CMPXCHG8 so that Feature64Bit only comes in via CPUs or user passing -mattr=+64bit.

I've changed the assert to a report_fatal_error so it's not lost in Release builds.

The test updates are to fix things that tripped the new error.

Differential Revision: https://reviews.llvm.org/D51231

llvm-svn: 341022
2018-08-30 06:01:05 +00:00
Martin Storsjo 489993db94 [MinGW] [X86] Add stubs for references to data variables that might end up imported from a dll
Variables declared with the dllimport attribute are accessed via a
stub variable named __imp_<var>. In MinGW configurations, variables that
aren't declared with a dllimport attribute might still end up imported
from another DLL with runtime pseudo relocs.

For x86_64, this avoids the risk that the target is out of range
for a 32 bit PC relative reference, in case the target DLL is loaded
further than 4 GB from the reference. It also avoids having to make the
text section writable at runtime when doing the runtime fixups, which
makes it worthwhile to do for i386 as well.

Add stub variables for all dso local data references where a definition
of the variable isn't visible within the module, since the DLL data
autoimporting might make them imported even though they are marked as
dso local within LLVM.

Don't do this for variables that actually are defined within the same
module, since we then know for sure that it actually is dso local.

Don't do this for references to functions, since there's no need for
runtime pseudo relocations for autoimporting them; if a function from
a different DLL is called without the appropriate dllimport attribute,
the call just gets routed via a thunk instead.

GCC does something similar since 4.9 (when compiling with -mcmodel=medium
or large; from that version, medium is the default code model for x86_64
mingw), but only for x86_64.

Differential Revision: https://reviews.llvm.org/D51288

llvm-svn: 340942
2018-08-29 17:28:34 +00:00
Simon Pilgrim 6b9bf7ecbc [X86][AVX] Prefer VPBLENDW+VPBLENDD to VPBLENDVB for v16i16 blend shuffles
Noticed while looking at D49562 codegen - we can avoid a large constant mask load and a slow VPBLENDVB select op by using VPBLENDW+VPBLENDD instead.

TODO: As discussed on the patch, we should investigate adding VPBLENDVB handling to target shuffle combining as well, that will allow us to extend this to VPBLENDW+VPBLENDW+VPBLENDD.

Differential Revision: https://reviews.llvm.org/D50074

llvm-svn: 340913
2018-08-29 10:51:08 +00:00
Craig Topper 9401fd0ed2 [X86] Add intrinsics for KADD instructions
These are intrinsics for supporting kadd builtins in clang. These builtins are already in gcc to implement intrinsics from icc. Though they are missing from the Intel Intrinsics Guide.

This instruction adds two mask registers together as if they were scalar rather than a vXi1. We might be able to get away with a bitcast to scalar and a normal add instruction, but that would require DAG combine smarts in the backend to recoqnize add+bitcast. For now I'd prefer to go with the easiest implementation so we can get these builtins in to clang with good codegen.

Differential Revision: https://reviews.llvm.org/D51370

llvm-svn: 340869
2018-08-28 19:22:55 +00:00
Craig Topper c73095e264 [X86] Mark the FUCOMI instructions as requiring CMOV to be enabled. NFCI
These instructions were added on the PentiumPro along with CMOV.

This was already comprehended by the lowering process which should emit an alternate sequence using FCOM and FNSTW. This just makes it an explicit error if that doesn't work for some reason.

llvm-svn: 340844
2018-08-28 17:17:13 +00:00
Simon Pilgrim af98587095 [X86][SSE] Improve variable scalar shift of vXi8 vectors (PR34694)
This patch creates the shift mask and actual shift using the vXi16 vector shift ops.

Differential Revision: https://reviews.llvm.org/D51263

llvm-svn: 340813
2018-08-28 10:37:29 +00:00
Simon Pilgrim f119e27d80 [X86][SSE] Avoid vector extraction/insertion for non-constant uniform shifts
As discussed on D51263, we're better off using byte shifts to clear the upper bits on pre-SSE41 hardware.

llvm-svn: 340810
2018-08-28 10:14:09 +00:00
Craig Topper c1436db753 [X86] Fix some comments to refer to KORTEST not KTEST. NFC
KTEST is a different instruction. All of this code uses KORTEST.

llvm-svn: 340799
2018-08-28 06:39:35 +00:00
Craig Topper 4be11c0585 [X86] When lowering v32i8 MULHS/MULHU, shuffle after the PACKUS rather than before.
We're using a 256-bit PACKUS to do the truncation, but that instruction operates on 128-bit lanes. So previously we shuffled first to rearrange the lanes. But that requires 2 shuffles. Instead we can shuffle after the PACKUS using a single VPERMQ. This matches what our normal LowerTRUNCATE code does when it uses PACKUS.

Differential Revision: https://reviews.llvm.org/D51284

llvm-svn: 340757
2018-08-27 17:20:41 +00:00
Craig Topper fff90377fd [X86] Add support for matching paddus patterns where one of the vectors is a constant.
InstCombine mucks these up a bit. So we need to do some additional pattern matching to fix it. There are a still a few special cases not handled, but this covers the general case.

Differential Revision: https://reviews.llvm.org/D50952

llvm-svn: 340756
2018-08-27 17:20:38 +00:00
Craig Topper 73ed2a2a6b [X86] Cleanup the LowerMULH code by hoisting some commonalities between the vXi32 and vXi8 handling. NFCI
vXi32 support was recently moved from LowerMUL_LOHI to LowerMULH.

This commit shares the getOperand calls, switches both to use common IsSigned flag, and hoists the NumElems/NumElts variable.

llvm-svn: 340720
2018-08-27 06:35:02 +00:00
Craig Topper a72012c206 [X86] Correct the cost of (v4i32 (fptoui (v4f64))) under AVX512F.
Summary: This was inheriting the cost from the AVX table, but should be legal under AVX512.

Reviewers: RKSimon

Reviewed By: RKSimon

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D51267

llvm-svn: 340708
2018-08-26 18:47:44 +00:00
Craig Topper 128915f4ae [X86] Add FeatureCMOV explicitly to all CPUs that support it. Remove FeatureCMOV implication from Feature64Bit and FeatureSSE1
Summary:
Previously most CPUs inherited cmov support through Feature64Bit(or FeatureCMPXCHG16HB implying Feature64Bit) or FeatureSSE1.

This has the surprising side effect that -mattr=-cmov causes an assert to fire in 64-bit mode because it clears the Feature64Bit. Or in 32-bit mode, -mattr=-cmov disables any sse/avx features which seems surprising.

This patch removes the implication and instead updates hasCMOV in X86Subtarget to check SSE1 or is64Bit in addition to the regular cmov flag. This should keep most things working the way they did before. I don't believe there is a way to specific "-cmov" directly from clang so this should only effect our lower level tools.

This does stop -mattr=cx16(cmpxchg16b) from implying cmov is enabled via the 64bit flag as you can see from one of the changed tests. But that was a 32-bit test so I don't know why it enabled cx16 anyway.

For the other test I had to add -sse to override the new sse check in hasCMOV.

Reviewers: RKSimon, DavidKreitzer, spatel

Reviewed By: RKSimon

Subscribers: llvm-commits, jfb

Differential Revision: https://reviews.llvm.org/D51228

llvm-svn: 340707
2018-08-26 18:29:33 +00:00
Craig Topper b68a78b9ac [X86] Add FeatureCMOV to athlon and athlon-tbird cpus.
Summary: This matches gcc and one cpuid dump I found online. Given that these are considered 7th generation x86 CPU it seems likely they support cmov since cmov was added by Intel in their 6th generation.

Reviewers: RKSimon, spatel

Reviewed By: RKSimon

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D51264

llvm-svn: 340706
2018-08-26 18:29:27 +00:00
Sanjay Patel 113cac3b15 [SelectionDAG][x86] turn insertelement into undef with variable index into splat
I noticed this along with the patterns in D51125, but when the index is variable, 
we don't convert insertelement into a build_vector.

For x86, that means these get expanded at legalization time into the loading/spilling 
code that we see in the tests. I think it's always better to avoid going to memory on 
these, and we get the optimal 'broadcast' if it's available.

I suspect other targets may want to look at enabling the hook. AArch64 and AMDGPU have 
regression tests that would be affected (although I did not check what would happen in 
those cases). In the most basic cases shown here, AArch64 would probably do much 
better with a splat.

Differential Revision: https://reviews.llvm.org/D51186

llvm-svn: 340705
2018-08-26 18:20:41 +00:00
Craig Topper 4240ecb909 [X86] Fix typo in comment, expect->except. NFC
llvm-svn: 340695
2018-08-26 03:43:23 +00:00
Craig Topper ebec2793d1 [X86] Replace support for vXi32 SMUL_LOHI/UMUL_LOHI with MULHS/MULHU support instead.
Summary:
The only time vector SMUL_LOHI/UMUL_LOHI nodes are created is during division/remainder lowering. If its created before op legalization, generic DAGCombine immediately turns that SMUL_LOHI/UMUL_LOHI into a MULHS/MULHU since only the upper half is used. That node will stick around through vector op legalization and will be turned back into UMUL_LOHI/SMUL_LOHI during op legalization. It will then be custom lowered by the X86 backend. Due to this two step lowering the vector shuffles created by the custom lowering get legalized after their inputs rather than before. This prevents the shuffles from being combined with any build_vector of constants.

This patch uses changes vXi32 to use MULHS/MULHU instead. This is what the later DAG combine did anyway. But by skipping the change back to UMUL_LOHI/SMUL_LOHI we lower it before any constant BUILD_VECTORS. This allows the vector_shuffle creation to constant fold with the build_vectors. This accounts for the test changes here.

Reviewers: RKSimon, spatel

Reviewed By: RKSimon

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D51254

llvm-svn: 340690
2018-08-25 18:01:24 +00:00
Craig Topper a11a3b3818 [SelectionDAG][X86] Reorder the operands the MaskedStoreSDNode to put the value first.
Summary:
Previously the value being stored is the last operand in SDNode. This causes the type legalizer to visit the mask operand before the value operand. The type legalizer was more complicated because of this since we want the type of the value to drive the decisions.

This patch moves the value to be the first operand so we visit it first during type legalization. It also simplifies the type legalization code accordingly.

X86 is currently the only in tree target that uses this SDNode. Not sure if there are any users out of tree.

Reviewers: RKSimon, delena, hfinkel, eli.friedman

Reviewed By: RKSimon

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D50402

llvm-svn: 340689
2018-08-25 17:48:17 +00:00
Craig Topper bce8680605 [X86] Make sure type is a vector before calling VT.getVectorNumElements() in combineLoopMAddPattern
Fixes PR38700.

llvm-svn: 340688
2018-08-25 17:23:43 +00:00
Sanjay Patel 8a84c747d2 [x86] try harder to use broadcast to load a scalar into vector reg
This is a preliminary step for a preliminary step for D50992. 
I noticed that x86 often misses chances to load a scalar directly 
into a vector register.

So this patch is just allowing more of those cases to match a 
broadcast op in lowerBuildVectorAsBroadcast(). The old code comment 
said it doesn't make sense to use a broadcast when we're loading a 
single element and everything else is undef, but I think that's the 
best case in the improved tests in insert-loaded-scalar.ll. We avoid 
scalar-to-vector-register move and/or less efficient shuffling.

Note that there are some existing types that were already producing 
a broadcast, but that happens semi-accidentally. Ie, it's not 
happening as part of lowerBuildVectorAsBroadcast(). The build vector 
gets expanded into load + shuffle, and then shuffle lowering produces 
the broadcast.

Description of the other test diffs:
1. avx-basic.ll - replacing load+shufle is a win.
2. sse3-avx-addsub-2.ll - vmovddup vs. vbroadcastss is neutral
3. sse41.ll - don't care - we convert that intrinsic to generic IR now, so this test is deprecated
4. vector-shuffle-128-v8.ll / vector-shuffle-256-v16.ll - pshufb alternatives with an extra instruction are not obviously bad

Differential Revision: https://reviews.llvm.org/D51125

llvm-svn: 340685
2018-08-25 14:56:05 +00:00
Craig Topper 4058e29e7d [X86] Teach combineLoopMAddPattern to handle cases where there is no loop and the add has two multiply inputs
Differential Revision: https://reviews.llvm.org/D50868

llvm-svn: 340631
2018-08-24 18:05:04 +00:00
Joel Galenson c6f6c17c9b Add missing override keyword (NFC)
llvm-svn: 340615
2018-08-24 16:15:44 +00:00
Joel Galenson d36fb48a27 Find PLT entries for x86, x86_64, and AArch64.
This adds a new method to ELFObjectFileBase that returns the symbols and addresses of PLT entries.

This design was suggested by pcc and eugenis in https://reviews.llvm.org/D49383.

Differential Revision: https://reviews.llvm.org/D50203

llvm-svn: 340610
2018-08-24 15:21:56 +00:00
Sanjay Patel 40aa86751a [x86] add debug option for and-immediate shrinking
The commit that added this functionality:
rL322957

may be causing/exposing a miscompile in PR38648:
https://bugs.llvm.org/show_bug.cgi?id=38648

so allow enabling/disabling to make debugging easier.

llvm-svn: 340540
2018-08-23 15:58:07 +00:00
Chandler Carruth ae0cafece8 [x86/retpoline] Split the LLVM concept of retpolines into separate
subtarget features for indirect calls and indirect branches.

This is in preparation for enabling *only* the call retpolines when
using speculative load hardening.

I've continued to use subtarget features for now as they continue to
seem the best fit given the lack of other retpoline like constructs so
far.

The LLVM side is pretty simple. I'd like to eventually get rid of the
old feature, but not sure what backwards compatibility issues that will
cause.

This does remove the "implies" from requesting an external thunk. This
always seemed somewhat questionable and is now clearly not desirable --
you specify a thunk the same way no matter which set of things are
getting retpolines.

I really want to keep this nicely isolated from end users and just an
LLVM implementation detail, so I've moved the `-mretpoline` flag in
Clang to no longer rely on a specific subtarget feature by that name and
instead to be directly handled. In some ways this is simpler, but in
order to preserve existing behavior I've had to add some fallback code
so that users who relied on merely passing -mretpoline-external-thunk
continue to get the same behavior. We should eventually remove this
I suspect (we have never tested that it works!) but I've not done that
in this patch.

Differential Revision: https://reviews.llvm.org/D51150

llvm-svn: 340515
2018-08-23 06:06:38 +00:00
Craig Topper cf9df99d79 [X86] Teach combineLoopSADPattern to handle cases where there is no loop and the add has two absolute difference inputs
Previously we asumed a vector reduction add is part of a loop and one of the input is a phi. But the code in SelectionDAGBuilder that sets vector reduction flag handles more cases than that. It just requires that the use chain ends in a horizontal reduction. And there are no other uses. This means it can handle unrolled reduction loops.

If the initial value of the reduction was 0, an unrolled loop would begin with a vector reduction add that has two sad inputs. Previously we would only transform one side of the add, but for this case we need to transform both sides.

I've created a lambda to reuse some of the code for both sides. And fixed the variables names to remove reference to "phi".

Differential Revision: https://reviews.llvm.org/D50817

llvm-svn: 340478
2018-08-22 23:19:01 +00:00
Craig Topper 538f8ab438 [X86] Replace (32/64 - n) shift amounts with (neg n) since the shift amount is masked in hardware
Inspired by what AArch64 does for shifts, this patch attempts to replace shift amounts with neg if we can.

This is done directly as part of isel so its as late as possible to avoid breaking some BZHI patterns since those patterns need an unmasked (32-n) to be correct.

To avoid manual load folding and custom instruction selection for the negate. I've inserted new nodes in the DAG above the shift node in topological order.

Differential Revision: https://reviews.llvm.org/D48789

llvm-svn: 340441
2018-08-22 19:39:09 +00:00
Craig Topper 87f78cfe15 [X86] In OptimizeLEAs pass, check that the key is in the LEAs map before accessing
When the key is not already in the map, the access operator[] creates an empty value and grows the map.
Resizing a map is very slow, so this needs to be avoided.

Found with csmith + asserts.

May help with
https://bugs.llvm.org/show_bug.cgi?id=25843

Patch by Tom Rix.

Differential Revision: https://reviews.llvm.org/D50780

llvm-svn: 340434
2018-08-22 18:24:13 +00:00
Simon Pilgrim ffdfe45645 [X86][SSE] LowerMULH vXi8 - use SSE shifts directly.
We know these vXi16 extended cases are legal constant splat shifts.

llvm-svn: 340414
2018-08-22 15:37:11 +00:00
David Green 9dd1d451d9 [AArch64] Add Tiny Code Model for AArch64
This adds the plumbing for the Tiny code model for the AArch64 backend. This,
instead of loading addresses through the normal ADRP;ADD pair used in the Small
model, uses a single ADR. The 21 bit range of an ADR means that the code and
its statically defined symbols need to be within 1MB of each other.

This makes it mostly interesting for embedded applications where we want to fit
as much as we can in as small a space as possible.

Differential Revision: https://reviews.llvm.org/D49673

llvm-svn: 340397
2018-08-22 11:31:39 +00:00
Heejin Ahn ed5e06b0a7 [WebAssembly] Add isEHScopeReturn instruction property
Summary:
So far, `isReturn` property is used to mean both a return instruction
from a functon and the end of an EH scope, a scope that starts with a EH
scope entry BB and ends with a catchret or a cleanupret instruction.
Because WinEH uses funclets, all EH-scope-ending instructions are also
real return instruction from a function. But for wasm, they only serve
as the end marker of an EH scope but not a return instruction that
exits a function. This mismatch caused incorrect prolog and epilog
generation in wasm EH scopes. This patch fixes this.

This patch is in the same vein with rL333045, which splits
`MachineBasicBlock::isEHFuncletEntry` into `isEHFuncletEntry` and
`isEHScopeEntry`.

Reviewers: dschuff

Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits

Differential Revision: https://reviews.llvm.org/D50653

llvm-svn: 340325
2018-08-21 19:44:11 +00:00
Simon Pilgrim 50eba6b380 [X86][SSE] Lower vXi8 general shifts to SSE shifts directly. NFCI.
Most of these shifts are extended to vXi16 so we don't gain anything from forcing another round of generic shift lowering - we know these extended cases are legal constant splat shifts.

llvm-svn: 340307
2018-08-21 17:27:03 +00:00
Simon Pilgrim 98eb4ae499 [X86][SSE] Lower v8i16 general shifts to SSE shifts directly. NFCI.
We don't gain anything from forcing another round of generic shift lowering - we know these are legal constant splat shifts.

llvm-svn: 340302
2018-08-21 17:05:07 +00:00
Simon Pilgrim dbe4e9e3ff [X86][SSE] Lower directly to SSE shifts in the BLEND(SHIFT, SHIFT) combine. NFCI.
We don't gain anything from forcing another round of generic shift lowering - we know these are legal constant splat shifts.

llvm-svn: 340300
2018-08-21 16:46:48 +00:00
Simon Pilgrim 5a83a1fd13 [X86][SSE] Add helper function to convert to/between the SSE vector shift opcodes. NFCI.
Also remove some more getOpcode calls from LowerShift when we already have Opc.

llvm-svn: 340290
2018-08-21 15:57:33 +00:00
Craig Topper 210ccfe3db [X86] Prevent lowerVectorShuffleByMerging128BitLanes from creating cycles
Due to some splat handling code in getVectorShuffle, its possible for NewV1/NewV2 to have their mask modified from what is requested. This can lead to cycles being created in the DAG.

This patch examines the returned mask and makes sure its different. Long term we may need to look closer at that splat code in getVectorShuffle, or add more splat awareness to getVectorShuffle.

Fixes PR38639

Differential Revision: https://reviews.llvm.org/D50981

llvm-svn: 340214
2018-08-20 21:08:35 +00:00
Craig Topper 7dcb2c4b0a [X86] Teach combineTruncatedArithmetic to handle some cases of ISD::SUB
We can safely avoid interfering with the subus combine if both inputs are freely truncatable. Either both extends, or an extend and a constant vector.

Differential Revision: https://reviews.llvm.org/D50878

llvm-svn: 340212
2018-08-20 20:57:35 +00:00
Craig Topper 803912ea57 [X86] Fix an issue in the matching for ADDUS.
We were basically assuming only one operand of the compare could be an ADD node and using that to swap operands. But we can have a normal add followed by a saturing add.

This rewrites the canonicalization to just be based on the condition code.

llvm-svn: 340134
2018-08-19 04:26:31 +00:00
Craig Topper 2b03df9b05 [X86] Use SDValue::operator== instead of DAG.isEqualTo in strictly integer matching.
isEqualTo is more useful for floating point. operator== is sufficient for integer.

llvm-svn: 340130
2018-08-18 19:16:56 +00:00
Craig Topper 3e299d896f [X86] Simplify the PADDUS legality check in combineSelect to match PSUBUS. NFC
While there remove some trailing whitespace.

llvm-svn: 340129
2018-08-18 18:51:04 +00:00
Craig Topper 40c9559b74 [X86] Add support for using 512-bit PSUBUS to combineSelect.
The code already support 128 and 256 and even knows to split 256 for AVX1. So we really just needed to stop looking for specific VTs and subtarget features and just look for legal VTs with i8/i16 elements.

While there, add some curly braces around outer if statement bodies that contain only another if. It makes all the closing curly braces look more regular.

llvm-svn: 340128
2018-08-18 18:51:03 +00:00
Simon Pilgrim 9c1761a6fd [X86] Replace all single match schedule class instregexs with instrs entries
Helps reduce cost of instrw collection

llvm-svn: 340124
2018-08-18 18:04:29 +00:00
Simon Pilgrim ebfd6ebba7 [X86] Merge shift/rotate schedule class instregexs
Helps reduce cost of instrw collection

llvm-svn: 340123
2018-08-18 15:58:19 +00:00
Zachary Turner bc94ae437f Add the extended XMM registers mappings for AVX-512.
After this we should have the entire AVX-512 register set
mapping in place.

llvm-svn: 340118
2018-08-18 03:54:16 +00:00
Craig Topper 62dd1b1b4f [X86] Remove detectAddSubSatPattern.
This was added very recently in r339650, but appears to be completely untested and has at least one bug in it.

llvm-svn: 340086
2018-08-17 21:19:28 +00:00
Simon Pilgrim 2f48122cc9 [X86][SSE] Lower constant vXi8 ISD::SRL/ISD::SRA using PMULLW
Extending the concept introduced in D49562, this patch lowers constant vXi8 ISD::SRL/ISD::SRA by zero/sign extending to vXi16 and using PMULLW and then truncating the high 8 bits of the result.

Differential Revision: https://reviews.llvm.org/D50781

llvm-svn: 340062
2018-08-17 18:03:11 +00:00
Craig Topper 730890dbdb [X86] Use hasOneUse instead of isOnlyUserOf. NFCI
isOnlyUserOf is a little heavier because it allows the node to be used multiple times by the other node. In this case we are looking at a truncate which only has one operand so we know it can only use it once. Thus hasOneUse is better.

llvm-svn: 340059
2018-08-17 17:57:25 +00:00
Francis Visoiu Mistrih 8bff832534 [X86] Fix liveness information when expanding X86::EH_SjLj_LongJmp64
test/CodeGen/X86/shadow-stack.ll has the following machine verifier
errors:

```
*** Bad machine code: Using a killed virtual register ***
- function:    bar
- basic block: %bb.6 entry (0x7fdc81857818)
- instruction: %3:gr64 = MOV64rm killed %2:gr64, 1, $noreg, 8, $noreg
- operand 1:   killed %2:gr64

*** Bad machine code: Using a killed virtual register ***
- function:    bar
- basic block: %bb.6 entry (0x7fdc81857818)
- instruction: $rsp = MOV64rm killed %2:gr64, 1, $noreg, 16, $noreg
- operand 1:   killed %2:gr64

*** Bad machine code: Virtual register killed in block, but needed live out. ***
- function:    bar
- basic block: %bb.2 entry (0x7fdc818574f8)
Virtual register %2 is used after the block.
```

The fix here is to only copy the machine operand's register without the
kill flags for all the instructions except the very last one of the
sequence.

I had to insert dummy PHIs in the test case to force the NoPHI function
property to be set to false. More on this here: https://llvm.org/PR38439

Differential Revision: https://reviews.llvm.org/D50260

llvm-svn: 340033
2018-08-17 14:46:56 +00:00
Craig Topper bde2b43cb3 [X86] In EFLAGS copy pass, don't emit EXTRACT_SUBREG instructions since we're after peephole
Normally the peephole pass converts EXTRACT_SUBREG to COPY instructions. But we're after peephole so we can't rely on it to clean these up.

To fix this, the eflags pass now emits a COPY with a subreg input.

I also noticed that in 32-bit mode we need to constrain the input to the copy to ensure the subreg is valid. Otherwise we'll fail verify-machineinstrs

Differential Revision: https://reviews.llvm.org/D50656

llvm-svn: 339945
2018-08-16 21:54:02 +00:00
Chandler Carruth c73c0307fe [MI] Change the array of `MachineMemOperand` pointers to be
a generically extensible collection of extra info attached to
a `MachineInstr`.

The primary change here is cleaning up the APIs used for setting and
manipulating the `MachineMemOperand` pointer arrays so chat we can
change how they are allocated.

Then we introduce an extra info object that using the trailing object
pattern to attach some number of MMOs but also other extra info. The
design of this is specifically so that this extra info has a fixed
necessary cost (the header tracking what extra info is included) and
everything else can be tail allocated. This pattern works especially
well with a `BumpPtrAllocator` which we use here.

I've also added the basic scaffolding for putting interesting pointers
into this, namely pre- and post-instruction symbols. These aren't used
anywhere yet, they're just there to ensure I've actually gotten the data
structure types correct. I'll flesh out support for these in
a subsequent patch (MIR dumping, parsing, the works).

Finally, I've included an optimization where we store any single pointer
inline in the `MachineInstr` to avoid the allocation overhead. This is
expected to be the overwhelmingly most common case and so should avoid
any memory usage growth due to slightly less clever / dense allocation
when dealing with >1 MMO. This did require several ergonomic
improvements to the `PointerSumType` to reasonably support the various
usage models.

This also has a side effect of freeing up 8 bits within the
`MachineInstr` which could be repurposed for something else.

The suggested direction here came largely from Hal Finkel. I hope it was
worth it. ;] It does hopefully clear a path for subsequent extensions
w/o nearly as much leg work. Lots of thanks to Reid and Justin for
careful reviews and ideas about how to do all of this.

Differential Revision: https://reviews.llvm.org/D50701

llvm-svn: 339940
2018-08-16 21:30:05 +00:00
Reid Kleckner bd5d71229d [codeview] Use push_macro to avoid conflicts instead of a prefix
Summary:
This prefix was added in r333421, and it changed our dumper output to
say things like "CVRegEAX" instead of just "EAX". That's a functional
change that I'd rather avoid.

I tested GCC, Clang, and MSVC, and all of them support #pragma
push_macro. They don't issue warnings whem the macro is not defined
either.

I don't have a Mac so I can't test the real termios.h header, but I
looked at the termios.h sources online and looked for other conflicts.
I saw only the CR* macros, so those are the ones we work around.

Reviewers: zturner, JDevlieghere

Subscribers: hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D50851

llvm-svn: 339907
2018-08-16 17:34:31 +00:00
Nirav Dave 7fd992a755 [MC][X86] Enhance X86 Register expression handling to more closely match GCC.
Allow the comparison of x86 registers in the evaluation of assembler
directives. This generalizes and simplifies the extension from r334022
to catch another case found in the Linux kernel.

Reviewers: rnk, void

Reviewed By: rnk

Subscribers: hiraditya, nickdesaulniers, llvm-commits

Differential Revision: https://reviews.llvm.org/D50795

llvm-svn: 339895
2018-08-16 16:31:14 +00:00
Zachary Turner 2838b59121 Add support for AVX-512 CodeView registers.
When compiling with /arch:AVX512 and optimizations turned on,
we could crash while emitting debug info because we did not
have CodeView register constants for the AVX 512 register
set defined.  This patch defines them.

Differential Revision: https://reviews.llvm.org/D50819

llvm-svn: 339893
2018-08-16 16:17:55 +00:00
Craig Topper 9c1d9fdeaa [X86] Remove masking from the 512-bit padds and psubs intrinsics. Use select in IR instead.
llvm-svn: 339842
2018-08-16 06:20:24 +00:00
Craig Topper 9d6983c9fd [X86] Remove the unused masked 128 and 256-bit masked padds/psubs intrinsics.
Still need to remove masking from the 512-bit versions.

llvm-svn: 339841
2018-08-16 06:20:22 +00:00
Chandler Carruth 00c35c7794 [x86] Actually initialize the SLH pass with the x86 backend and use
a shorter name ('x86-slh') for the internal flags and pass name.

Without this, you can't use the -stop-after or -stop-before
infrastructure. I seem to have just missed this when originally adding
the pass.

The shorter name solves two problems. First, the flag names were ...
really long and hard to type/manage. Second, the pass name can't be the
exact same as the flag name used to enable this, and there are already
some users of that flag name so I'm avoiding changing it unnecessarily.

llvm-svn: 339836
2018-08-16 01:22:19 +00:00
Craig Topper 08e082619a [X86] Improve AVX1 shuffle lowering for v8f32 shuffles where the low half comes from V1 and the high half comes from V2 and the halves do the same operation
To lower this we now create a new V1 containing the low half of both sources and a new V2 containing the upper half of both sources. Then we created a repeated lane shuffle of those new sources to create the final result.

This fixes PR35833

Differential Revison: https://reviews.llvm.org/D41794

llvm-svn: 339818
2018-08-15 21:21:52 +00:00
Simon Pilgrim f3b5943ffc Remove lambda default argument to fix gcc pedantic warning.
llvm-svn: 339767
2018-08-15 12:32:09 +00:00
Craig Topper 633fe98e27 [X86] Change legacy SSE scalar fp to integer intrinsics to use specific ISD opcodes instead of keeping as intrinsics. Unify SSE and AVX512 isel patterns.
AVX512 added new versions of these intrinsics that take a rounding mode. If the rounding mode is 4 the new intrinsics are equivalent to the old intrinsics.

The AVX512 intrinsics were being lowered to ISD opcodes, but the legacy SSE intrinsics were left as intrinsics. This resulted in the AVX512 instructions needing separate patterns for the ISD opcodes and the legacy SSE intrinsics.

Now we convert SSE intrinsics and AVX512 intrinsics with rounding mode 4 to the same ISD opcode so we can share the isel patterns.

llvm-svn: 339749
2018-08-15 01:23:00 +00:00
Chandler Carruth 66654b72c9 [SDAG] Remove the reliance on MI's allocation strategy for
`MachineMemOperand` pointers attached to `MachineSDNodes` and instead
have the `SelectionDAG` fully manage the memory for this array.

Prior to this change, the memory management was deeply confusing here --
The way the MI was built relied on the `SelectionDAG` allocating memory
for these arrays of pointers using the `MachineFunction`'s allocator so
that the raw pointer to the array could be blindly copied into an
eventual `MachineInstr`. This creates a hard coupling between how
`MachineInstr`s allocate their array of `MachineMemOperand` pointers and
how the `MachineSDNode` does.

This change is motivated in large part by a change I am making to how
`MachineFunction` allocates these pointers, but it seems like a layering
improvement as well.

This would run the risk of increasing allocations overall, but I've
implemented an optimization that should avoid that by storing a single
`MachineMemOperand` pointer directly instead of allocating anything.
This is expected to be a net win because the vast majority of uses of
these only need a single pointer.

As a side-effect, this makes the API for updating a `MachineSDNode` and
a `MachineInstr` reasonably different which seems nice to avoid
unexpected coupling of these two layers. We can map between them, but we
shouldn't be *surprised* at where that occurs. =]

Differential Revision: https://reviews.llvm.org/D50680

llvm-svn: 339740
2018-08-14 23:30:32 +00:00
Andrea Di Biagio 9eaf5aa006 [Tablegen][MCInstPredicate] Removed redundant template argument from class TIIPredicate, and implemented verification rules for TIIPredicates.
This patch removes redundant template argument `TargetName` from TIIPredicate.
Tablegen can always infer the target name from the context. So we don't need to
force users of TIIPredicate to always specify it.

This allows us to better modularize the tablegen class hierarchy for the
so-called "function predicates". class FunctionPredicateBase has been added; it
is currently used as a building block for TIIPredicates. However, I plan to
reuse that class to model other function predicate classes too (i.e. not just
TIIPredicates). For example, this can be a first step towards implementing
proper support for dependency breaking instructions in tablegen.

This patch also adds a verification step on TIIPredicates in tablegen.
We cannot have multiple TIIPredicates with the same name. Otherwise, this will
cause build errors later on, when tablegen'd .inc files are included by cpp
files and then compiled.

Differential Revision: https://reviews.llvm.org/D50708

llvm-svn: 339706
2018-08-14 18:36:54 +00:00
Simon Pilgrim 2ce3d6e135 [X86][SSE] Avoid duplicate shuffle input sources in combineX86ShufflesRecursively
rL339686 added the case where a faux shuffle might have repeated shuffle inputs coming from either side of the OR().

This patch improves the insertion of the inputs into the source ops lists to account for this, as well as making it trivial to add support for shuffles with more than 2 inputs in the future.

llvm-svn: 339696
2018-08-14 17:22:37 +00:00
Simon Pilgrim ed55138247 [X86][SSE] Add shuffle combine support for OR(PSHUFB,PSHUFB) style patterns.
If each element is zero from one (or both) inputs then we can combine these into a single shuffle mask.

llvm-svn: 339686
2018-08-14 16:00:05 +00:00
Simon Pilgrim df9880f257 [X86][SSE] Generalize lowerVectorShuffleAsBlendOfPSHUFBs to work with any vXi8 type.
We still only use this for v16i8, but this cleans up the code to support v32i8/v64i8 sometime in the future.

llvm-svn: 339679
2018-08-14 14:00:14 +00:00
Tomasz Krupa 86a63889f3 [X86] Lowering addus/subus intrinsics to native IR
Summary: This revision improves previous version (rL330322) which has been reverted due to crashes.

This is the patch that lowers x86 intrinsics to native IR
in order to enable optimizations. The patch also includes folding
of previously missing saturation patterns so that IR emits the same
machine instructions as the intrinsics.

Reviewers: craig.topper, spatel, RKSimon

Reviewed By: craig.topper

Subscribers: mike.dvoretsky, DavidKreitzer, sroland, llvm-commits

Differential Revision: https://reviews.llvm.org/D46179

llvm-svn: 339650
2018-08-14 08:00:56 +00:00
Craig Topper cade635c77 [X86] Don't ignore 0x66 prefix on relative jumps in 64-bit mode. Fix opcode selection of relative jumps in 16-bit mode. Treat jno/jo like other jcc instructions.
The behavior in 64-bit mode is different between Intel and AMD CPUs. Intel ignores the 0x66 prefix. AMD does not. objump doesn't ignore the 0x66 prefix. Since LLVM aims to match objdump behavior, we should do the same.

While I was trying to fix this I had change brtarget16/32 to use ENCODING_IW/ID instead of ENCODING_Iv to get the 0x66+REX.W case to act sort of sanely. It's still wrong, but that's a problem for another day.

The change in encoding exposed the fact that 16-bit mode disassembly of relative jumps was creating JMP_4 with a 2 byte immediate. It should have been JMP_2. From just printing you can't tell the difference, but if you dumped the encoding it wouldn't have matched what we started with.

While fixing that, it exposed that jo/jno opcodes were missing from the switch that this patch deleted and there were no test cases for them.

Fixes PR38537.

llvm-svn: 339622
2018-08-13 22:06:28 +00:00
Andrea Di Biagio 7b77b14198 [X86][BtVer2] Use NoSchedPredicate to model default transitions in variant scheduling classes. NFC.
llvm-svn: 339589
2018-08-13 17:52:39 +00:00
Craig Topper ed8a114c86 [X86] Remove unnecessary AddedComplexity line. NFC
The use of the or_is_add predicate already gives enough of a complexity boost to get the patterns ordered properly.

llvm-svn: 339507
2018-08-12 03:22:18 +00:00
Craig Topper b3e3477649 [X86] Remove the AL/AX/EAX/RAX short immediate forms from the macro fusion shouldScheduleAdjacent. NFC
These instructions are only created by the backend during MCInst lowering.

llvm-svn: 339499
2018-08-11 06:42:51 +00:00
Craig Topper c6cf169940 [X86] Add the mem-reg form of CMP to the macro fusion shouldScheduleAdjacent.
Unlike the other arithmetic instructions the mem-reg form of compare is just a load and not a RMW operation. According to the Intel optimization manual, this form is also supported by macro fusion.

llvm-svn: 339498
2018-08-11 06:42:50 +00:00
Craig Topper 616eeb827d [X86] Remove ADD8mi and ADDmr from the macro fusion shouldScheduleAdjacent.
The are RMW of memory operations. They aren't eligible for macro fusion.

llvm-svn: 339497
2018-08-11 06:42:49 +00:00
Craig Topper 570d47a010 [X86] Change the MOV32ri64 pseudo instruction to def a GR64 directly instead of wrapping it in a SUBREG_TO_REG.
Now we switch to the subregister in expandPostRAPseudos where we already switched the opcode.

This simplifies a few isel patterns that used the pseudo directly. And magically seems to have improved our ability to CSE it in the undef-label.ll test.

llvm-svn: 339496
2018-08-11 05:33:00 +00:00
Simon Pilgrim 130b00bc43 [X86][SSE] Pull out repeated shift getOpcode() calls. NFCI.
llvm-svn: 339425
2018-08-10 11:42:42 +00:00
Craig Topper 9a8136f7b4 [X86] Qualify one of the heuristics in combineMul to only apply to positive multiply amounts.
This seems to slightly help the performance of one of our internal benchmarks. We probably need better heuristics here.

llvm-svn: 339406
2018-08-09 23:27:42 +00:00
Andrea Di Biagio f3bde0485c [MC][PredicateExpander] Extend the grammar to support simple switch and return statements.
This patch introduces tablegen class MCStatement.

Currently, an MCStatement can be either a return statement, or a switch
statement.

```
MCStatement:
   MCReturnStatement
   MCOpcodeSwitchStatement
```

A MCReturnStatement expands to a return statement, and the boolean expression
associated with the return statement is described by a MCInstPredicate.

An MCOpcodeSwitchStatement is a switch statement where the condition is a check
on the machine opcode. It allows the definition of multiple checks, as well as a
default case. More details on the grammar implemented by these two new
constructs can be found in the diff for TargetInstrPredicates.td.

This patch makes it easier to read the body of auto-generated TargetInstrInfo
predicates.

In future, I plan to reuse/extend the MCStatement grammar to describe more
complex target hooks. For now, this is just a first step (mostly a minor
cosmetic change to polish the new predicates framework).

Differential Revision: https://reviews.llvm.org/D50457

llvm-svn: 339352
2018-08-09 15:32:48 +00:00
Simon Pilgrim 511c3fc529 [X86][SSE] Remove PMULDQ/PMULUDQ by zero
Exposed by D50328

Differential Revision: https://reviews.llvm.org/D50328

llvm-svn: 339337
2018-08-09 12:37:36 +00:00
Simon Pilgrim 01ae462fef [X86][SSE] Combine (some) target shuffles with multiple uses
As discussed on D41794, we have many cases where we fail to combine shuffles as the input operands have other uses.

This patch permits these shuffles to be combined as long as they don't introduce additional variable shuffle masks, which should reduce instruction dependencies and allow the total number of shuffles to still drop without increasing the constant pool.

However, this may mean that some memory folds may no longer occur, and on pre-AVX require the occasional extra register move.

This also exposes some poor PMULDQ/PMULUDQ codegen which was doing unnecessary upper/lower calculations which will in fact fold to zero/undef - the fix will be added in a followup commit.

Differential Revision: https://reviews.llvm.org/D50328

llvm-svn: 339335
2018-08-09 12:30:02 +00:00
Andrew V. Tischenko 24f63bcb34 [X86] Improved sched models for X86 XCHG*rr and XADD*rr instructions.
Differential Revision: https://reviews.llvm.org/D49861

llvm-svn: 339321
2018-08-09 09:23:26 +00:00
Craig Topper deb2899b2d [SelectionDAG][X86][SystemZ] Add a generic nonvolatile_store/nonvolatile_load pattern fragment in TargetSelectionDAG.td
Differential Revision: https://reviews.llvm.org/D50358

llvm-svn: 339156
2018-08-07 17:34:59 +00:00
Craig Topper 9de1797c50 [SelectionDAG][X86] Rename MaskedLoadSDNode::getSrc0 to getPassThru.
Src0 doesn't really convey any meaning to what the operand is. Passthru matches what's used in the documentation for the intrinsic this comes from.

llvm-svn: 339101
2018-08-07 06:52:49 +00:00
Craig Topper 17989208a9 [SelectionDAG][X86] Rename getValue to getPassThru for gather SDNodes.
getValue is more meaningful name for scatter than it is for gather. Split them and use getPassThru for gather.

llvm-svn: 339096
2018-08-07 06:13:40 +00:00
Easwaran Raman 10fd92dd94 [X86] Recognize a splat of negate in isFNEG
Summary:
Expand isFNEG so that we generate the appropriate F(N)M(ADD|SUB)
instructions in more cases. For example, the following sequence
a = _mm256_broadcast_ss(f)
d = _mm256_fnmadd_ps(a, b, c)

generates an fsub and fma without this patch and an fnma with this
change.

Reviewers: craig.topper

Subscribers: llvm-commits, davidxl, wmi

Differential Revision: https://reviews.llvm.org/D48467

llvm-svn: 339043
2018-08-06 19:23:38 +00:00
Craig Topper 0076477a4c [X86] When using "and $0" and "orl $-1" to store 0 and -1 for minsize, make sure the store isn't volatile
If the store is volatile this might be a memory mapped IO access. In that case we shouldn't generate a load that didn't exist in the source

Differential Revision: https://reviews.llvm.org/D50270

llvm-svn: 339041
2018-08-06 18:44:26 +00:00
Craig Topper 3c869cb5e5 [X86] Add isel patterns for atomic_load+sub+atomic_sub.
Despite the comment removed in this patch, this is beneficial when the RHS of the sub is a register.

llvm-svn: 338930
2018-08-03 22:08:30 +00:00
Craig Topper d7391eefdf [X86] Remove RELEASE_ and ACQUIRE_ pseudo instructions. Use isel patterns and the normal instructions instead
At one point in time acquire implied mayLoad and mayStore as did release. Thus we needed separate pseudos that also carried that property. This appears to no longer be the case. I believe it was changed in 2012 with a comment saying that atomic memory accesses are marked volatile which preserves the ordering.

So from what I can tell we shouldn't need additional pseudos since they aren't carry any flags that are different from the normal instructions. The only thing I can think of is that we may consider them for load folding candidates in the peephole pass now where we didn't before. If that's important hopefully there's something in the memory operand we can check to prevent the folding without relying on pseudo instructions.

Differential Revision: https://reviews.llvm.org/D50212

llvm-svn: 338925
2018-08-03 21:40:44 +00:00
Craig Topper feb2a58860 [X86] Add a DAG combine for the __builtin_parity idiom used by clang to enable better codegen
Clang uses "ctpop & 1" to implement __builtin_parity. If the popcnt instruction isn't supported this generates a large amount of code to calculate the population count. Instead we can bisect the data down to a single byte using xor and then check the parity flag.

Even when popcnt is supported, its still a good idea to split 64-bit data on 32-bit targets using an xor in front of a single popcnt. Otherwise we get two popcnts and an add before the and.

I've specifically targeted this at the sizes supported by clang builtins, but we could generalize this if we think that's useful.

Differential Revision: https://reviews.llvm.org/D50165

llvm-svn: 338907
2018-08-03 18:00:29 +00:00
Craig Topper a7a12399a1 [X86] Remove all the vector NOP bitcast patterns. Use a few lines of code in the Select method in X86ISelDAGToDAG.cpp instead.
There are a lot of permutations of types here generating a lot of patterns in the isel table. It's more efficient to just ReplaceUses and RemoveDeadNode from the Select function.

The test changes are because we have a some shuffle patterns that have a bitcast as their root node. But the behavior is identical to another instruction whose pattern doesn't start with a bitcast. So this isn't a functional change.

llvm-svn: 338824
2018-08-03 07:01:10 +00:00
Craig Topper e902b7d0b0 [X86] Support fp128 and/or/xor/load/store with VEX and EVEX encoded instructions.
Move all the patterns to X86InstrVecCompiler.td so we can keep SSE/AVX/AVX512 all in one place.

To save some patterns we'll use an existing DAG combine to convert f128 fand/for/fxor to integer when sse2 is enabled. This allows use to reuse all the existing patterns for v2i64.

I believe this now makes SHA instructions the only case where VEX/EVEX and legacy encoded instructions could be generated simultaneously.

llvm-svn: 338821
2018-08-03 06:12:56 +00:00
Craig Topper a80352c04e [X86] When post-processing the DAG to remove zero extending moves for YMM/ZMM, make sure the producing instruction is VEX/XOP/EVEX encoded.
If the producing instruction is legacy encoded it doesn't implicitly zero the upper bits. This is important for the SHA instructions which don't have a VEX encoded version. We might also be able to hit this with the incomplete f128 support that hasn't been ported to VEX.

llvm-svn: 338812
2018-08-03 04:49:42 +00:00
Craig Topper b2cc9a1d44 [X86] Add R13D to the isInefficientLEAReg in FixupLEAs.
I'm assuming the R13 restriction extends to R13D. Guessing this restriction is related to the funny encoding of this register as base always requiring a displacement to be encoded.

llvm-svn: 338806
2018-08-03 03:45:19 +00:00
Craig Topper 2c095444a4 [X86] Prevent promotion of i16 add/sub/and/or/xor to i32 if we can fold an atomic load and atomic store.
This makes them consistent with i8/i32/i64. Which still seems to be more aggressive on folding than icc, gcc, or MSVC.

llvm-svn: 338795
2018-08-03 00:37:34 +00:00
Craig Topper 63873db5c4 [X86] Allow 'atomic_store (neg/not atomic_load)' to isel to a RMW instruction.
There was a FIXMe in the td file about a type inference issue that was easy to fix.

llvm-svn: 338782
2018-08-02 23:30:38 +00:00
Craig Topper 0423881820 [X86] Allow fake unary unpckhpd and movhlps to be commuted for execution domain fixing purposes
These instructions perform the same operation, but the semantic of which operand is destroyed is reversed. If the same register is used as both operands we can change the execution domain without worrying about this difference.

Unfortunately, this really only works in cases where the input register is killed by the instruction. If its not killed, the two address isntruction pass inserts a copy that will become a move instruction. This makes the instruction use different physical registers that contain the same data at the time the unpck/movhlps executes. I've considered using a unary pseudo instruction with tied operand to trick the two address instruction pass. We could then expand the pseudo post regalloc to get the same physical register on both inputs.

Differential Revision: https://reviews.llvm.org/D50157

llvm-svn: 338735
2018-08-02 16:48:01 +00:00
Simon Pilgrim 8b16e15d47 [X86][SSE] Pull out duplicate VSELECT to shuffle mask code. NFCI.
llvm-svn: 338693
2018-08-02 09:20:27 +00:00
Alexander Ivchenko 49168f6778 [GlobalISel] Rewrite CallLowering::lowerReturn to accept multiple VRegs per Value
This is logical continuation of https://reviews.llvm.org/D46018 (r332449)

Differential Revision: https://reviews.llvm.org/D49660

llvm-svn: 338685
2018-08-02 08:33:31 +00:00
Reid Kleckner a30a6d2c29 Load from the GOT for external symbols in the large, PIC code model
Do the same handling for external symbols that we do for jump table
symbols and global values.

Fixes one of the cases in PR38385

llvm-svn: 338651
2018-08-01 22:56:05 +00:00
Craig Topper c985d42903 [X86] Canonicalize the pattern for __builtin_ffs in a similar way to '__builtin_ffs + 5'
We now emit a move of -1 before the cmov and do the addition after the cmov just like the case with an extra addition.

This may be slightly worse for code size, but is more consistent with other compilers. And we might be able to hoist the mov -1 outside of loops.

llvm-svn: 338613
2018-08-01 18:38:46 +00:00
Vlad Tsyrklevich ab016e00ec [X86] FastISel fall back on !absolute_symbol GVs
Summary:
D25878, which added support for !absolute_symbol for normal X86 ISel,
did not add support for materializing references to absolute symbols for
X86 FastISel. This causes build failures because FastISel generates
PC-relative relocations for absolute symbols. Fall back to normal ISel
for references to !absolute_symbol GVs. Fix for PR38200.

Reviewers: pcc, craig.topper

Reviewed By: pcc

Subscribers: hiraditya, llvm-commits, kcc

Differential Revision: https://reviews.llvm.org/D50116

llvm-svn: 338599
2018-08-01 17:44:37 +00:00
Simon Pilgrim 931ebe3be1 [X86] Assign from a brace initializer to match style guide. NFCI.
llvm-svn: 338598
2018-08-01 17:43:38 +00:00
Simon Pilgrim a3548c960e [SelectionDAG] Make binop reduction matcher available to all targets
There is nothing x86-specific about this code, so it'd be nice to make this available for other targets to use in the future (and get it out of X86ISelLowering!).

Differential Revision: https://reviews.llvm.org/D50083

llvm-svn: 338586
2018-08-01 16:52:28 +00:00
Simon Pilgrim 564762cf32 [X86] Use isNullConstant helper. NFCI.
llvm-svn: 338530
2018-08-01 13:06:14 +00:00
Simon Pilgrim e447a273bd [X86] Use isNullConstant helper. NFCI.
llvm-svn: 338516
2018-08-01 11:24:11 +00:00
Andrew V. Tischenko dad919d357 [X86] Improved sched models for X86 BT*rr instructions.
Differential Revision: https://reviews.llvm.org/D49243

llvm-svn: 338507
2018-08-01 10:24:27 +00:00
Craig Topper 65a1388881 [X86] When looking for (CMOV C-1, (ADD (CTTZ X), C), (X != 0)) -> (ADD (CMOV (CTTZ X), -1, (X != 0)), C), make sure we really have a compare with 0.
It's not strictly required by the transform of the cmov and the add, but it makes sure we restrict it to the cases we know we want to match.

While there canonicalize the operand order of the cmov to simplify the matching and emitting code.

llvm-svn: 338492
2018-08-01 06:36:20 +00:00
Chandler Carruth 2ce191e220 [x86] Fix a really subtle miscompile due to a somewhat glaring bug in
EFLAGS copy lowering.

If you have a branch of LLVM, you may want to cherrypick this. It is
extremely unlikely to hit this case empirically, but it will likely
manifest as an "impossible" branch being taken somewhere, and will be
... very hard to debug.

Hitting this requires complex conditions living across complex control
flow combined with some interesting memory (non-stack) initialized with
the results of a comparison. Also, because you have to arrange for an
EFLAGS copy to be in *just* the right place, almost anything you do to
the code will hide the bug. I was unable to reduce anything remotely
resembling a "good" test case from the place where I hit it, and so
instead I have constructed synthetic MIR testing that directly exercises
the bug in question (as well as the good behavior for completeness).

The issue is that we would mistakenly assume any SETcc with a valid
condition and an initial operand that was a register and a virtual
register at that to be a register *defining* SETcc...

It isn't though....

This would in turn cause us to test some other bizarre register,
typically the base pointer of some memory. Now, testing this register
and using that to branch on doesn't make any sense. It even fails the
machine verifier (if you are running it) due to the wrong register
class. But it will make it through LLVM, assemble, and it *looks*
fine... But wow do you get a very unsual and surprising branch taken in
your actual code.

The fix is to actually check what kind of SETcc instruction we're
dealing with. Because there are a bunch of them, I just test the
may-store bit in the instruction. I've also added an assert for sanity
that ensure we are, in fact, *defining* the register operand. =D

llvm-svn: 338481
2018-08-01 03:01:58 +00:00
Simon Pilgrim 67caf04d3a [X86] WriteBSWAP sched classes are reg-reg only.
Don't declare them as X86SchedWritePair when the folded class will never be used.

Note: MOVBE (load/store endian conversion) instructions tend to have a very different behaviour to BSWAP.
llvm-svn: 338412
2018-07-31 18:24:24 +00:00
Simon Pilgrim 5d9b00d15b [X86][SSE] Use ISD::MULHU for constant/non-zero ISD::SRL lowering (PR38151)
As was done for vector rotations, we can efficiently use ISD::MULHU for vXi8/vXi16 ISD::SRL lowering.

Shift-by-zero cases are still problematic (mainly on v32i8 due to extra AND/ANDN/OR or VPBLENDVB blend masks but v8i16/v16i16 aren't great either if PBLENDW fails) so I've limited this first patch to known non-zero cases if we can't easily use PBLENDW.

Differential Revision: https://reviews.llvm.org/D49562

llvm-svn: 338407
2018-07-31 18:05:56 +00:00
Craig Topper bef126fb71 [X86] Add pattern matching for PMADDUBSW
Summary:
Similar to D49636, but for PMADDUBSW. This instruction has the additional complexity that the addition of the two products saturates to 16-bits rather than wrapping around. And one operand is treated as signed and the other as unsigned.

A C example that triggers this pattern

```
static const int N = 128;

int8_t A[2*N];
uint8_t B[2*N];
int16_t C[N];

void foo() {
  for (int i = 0; i != N; ++i)
    C[i] = MIN(MAX((int16_t)A[2*i]*(int16_t)B[2*i] + (int16_t)A[2*i+1]*(int16_t)B[2*i+1], -32768), 32767);
}
```

Reviewers: RKSimon, spatel, zvi

Reviewed By: RKSimon, zvi

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D49829

llvm-svn: 338402
2018-07-31 17:12:08 +00:00
Francis Visoiu Mistrih ae8002c1cf [X86] Preserve more liveness information in emitStackProbeInline
This commit fixes two issues with the liveness information after the
call:

1) The code always spills RCX and RDX if InProlog == true, which results
in an use of undefined phys reg.
2) FinalReg, JoinReg, RoundedReg, SizeReg are not added as live-ins to
the basic blocks that use them, therefore they are seen undefined.

https://llvm.org/PR38376

Differential Revision: https://reviews.llvm.org/D50020

llvm-svn: 338400
2018-07-31 16:41:12 +00:00
Andrea Di Biagio a1852b6194 [llvm-mca][BtVer2] Teach how to identify dependency-breaking idioms.
This patch teaches llvm-mca how to identify dependency breaking instructions on
btver2.

An example of dependency breaking instructions is the zero-idiom XOR (example:
`XOR %eax, %eax`), which always generates zero regardless of the actual value of
the input register operands.
Dependency breaking instructions don't have to wait on their input register
operands before executing. This is because the computation is not dependent on
the inputs.

Not all dependency breaking idioms are also zero-latency instructions. For
example, `CMPEQ %xmm1, %xmm1` is independent on
the value of XMM1, and it generates a vector of all-ones.
That instruction is not eliminated at register renaming stage, and its opcode is
issued to a pipeline for execution. So, the latency is not zero. 

This patch adds a new method named isDependencyBreaking() to the MCInstrAnalysis
interface. That method takes as input an instruction (i.e. MCInst) and a
MCSubtargetInfo.
The default implementation of isDependencyBreaking() conservatively returns
false for all instructions. Targets may override the default behavior for
specific CPUs, and return a value which better matches the subtarget behavior.

In future, we should teach to Tablegen how to automatically generate the body of
isDependencyBreaking from scheduling predicate definitions. This would allow us
to expose the knowledge about dependency breaking instructions to the machine
schedulers (and, potentially, other codegen passes).

Differential Revision: https://reviews.llvm.org/D49310

llvm-svn: 338372
2018-07-31 13:21:43 +00:00
Simon Pilgrim 0aa2867545 Revert r338365: [X86] Improved sched models for X86 BT*rr instructions.
https://reviews.llvm.org/D49243

Contains WIP code that should not have been included.

llvm-svn: 338369
2018-07-31 13:00:51 +00:00
Andrew V. Tischenko e6f5ace81a [X86] Improved sched models for X86 BT*rr instructions.
https://reviews.llvm.org/D49243

llvm-svn: 338365
2018-07-31 12:33:48 +00:00
Andrew V. Tischenko e564055671 [X86] Improved sched models for X86 SHLD/SHRD* instructions.
Differential Revision: https://reviews.llvm.org/D9611

llvm-svn: 338359
2018-07-31 10:14:43 +00:00
Simon Pilgrim 99d475f97d [X86][SSE] isFNEG - Use getTargetConstantBitsFromNode to handle all constant cases
isFNEG was duplicating much of what was done by getTargetConstantBitsFromNode in its own calls to getTargetConstantFromNode.

Noticed while reviewing D48467.

llvm-svn: 338358
2018-07-31 10:13:17 +00:00
Craig Topper 9164b9b16e [X86] Stop accidentally running the Bonnell LEA fixup path on Goldmont.
In one place we checked X86Subtarget.slowLEA() to decide if the pass should run. But to decide what the pass should we only check isSLM. This resulted in Goldmont going down the Bonnell path.

llvm-svn: 338342
2018-07-31 00:43:54 +00:00
Fangrui Song f78650a8de Remove trailing space
sed -Ei 's/[[:space:]]+$//' include/**/*.{def,h,td} lib/**/*.{cpp,h}

llvm-svn: 338293
2018-07-30 19:41:25 +00:00
Craig Topper f014ec9b3b [X86] Fix typo in comment. NFC
llvm-svn: 338274
2018-07-30 17:34:31 +00:00
Craig Topper dd0ef801f8 Recommit r338204 "[X86] Correct the immediate cost for 'add/sub i64 %x, 0x80000000'."
This checks in a more direct way without triggering a UBSAN error.

llvm-svn: 338273
2018-07-30 17:29:57 +00:00
Francis Visoiu Mistrih 7d003657de [MachineOutliner][X86] Use TAILJMPd64 instead of JMP_1 for TailCall construction
The machine verifier asserts with:

Assertion failed: (isMBB() && "Wrong MachineOperand accessor"), function getMBB, file ../include/llvm/CodeGen/MachineOperand.h, line 542.

It calls analyzeBranch which tries to call getMBB if the opcode is
JMP_1, but in this case we do:

JMP_1 @OUTLINED_FUNCTION

I believe we have to use TAILJMPd64 instead of JMP_1 since JMP_1 is used
with brtarget8.

Differential Revision: https://reviews.llvm.org/D49299

llvm-svn: 338237
2018-07-30 09:59:33 +00:00
Dean Michael Berris 927b3da6c9 Revert "[X86] Correct the immediate cost for 'add/sub i64 %x, 0x80000000'."
This reverts commit r338204.

llvm-svn: 338236
2018-07-30 09:45:09 +00:00
Craig Topper 5daa032546 [X86] Correct the immediate cost for 'add/sub i64 %x, 0x80000000'.
X86 normally requires immediates to be a signed 32-bit value which would exclude i64 0x80000000. But for add/sub we can negate the constant and use the opposite instruction.

llvm-svn: 338204
2018-07-28 18:21:46 +00:00
Craig Topper ba208b07b6 [X86] Use alignTo and divideCeil to make some code more readable. NFC
llvm-svn: 338203
2018-07-28 18:21:45 +00:00
Matt Arsenault 81920b0a25 DAG: Add calling convention argument to calling convention funcs
This seems like a pretty glaring omission, and AMDGPU
wants to treat kernels differently from other calling
conventions.

llvm-svn: 338194
2018-07-28 13:25:19 +00:00
Craig Topper c3e11bf3f7 [X86] Add support expanding multiplies by constant where the constant is -3/-5/-9 multplied by a power of 2.
These can be replaced with an LEA, a shift, and a negate. This seems to match what gcc and icc would do.

llvm-svn: 338174
2018-07-27 23:04:59 +00:00
Craig Topper 561e298e29 [X86] Remove an unnecessary 'if' that prevented treating INT64_MAX and -INT64_MAX as power of 2 minus 1 in the multiply expansion code.
Not sure why they were being explicitly excluded, but I believe all the math inside the if works. I changed the absolute value to be uint64_t instead of int64_t so INT64_MIN+1 wouldn't be signed wrap.

llvm-svn: 338101
2018-07-27 05:56:27 +00:00
Craig Topper e364baa88b [X86] Add matching for another pattern of PMADDWD.
Summary:
This is the pattern you get from the loop vectorizer for something like this

int16_t A[1024];
int16_t B[1024];
int32_t C[512];

void pmaddwd() {
  for (int i = 0; i != 512; ++i)
    C[i] = (A[2*i]*B[2*i]) + (A[2*i+1]*B[2*i+1]);
}

In this case we will have (add (mul (build_vector), (build_vector)), (mul (build_vector), (build_vector))). This is different than the pattern we currently match which has the build_vectors between an add and a single multiply. I'm not sure what C code would get you that pattern.

Reviewers: RKSimon, spatel, zvi

Reviewed By: zvi

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D49636

llvm-svn: 338097
2018-07-27 04:29:10 +00:00
Craig Topper f7bc550223 [X86] When removing sign extends from gather/scatter indices, make sure we handle UpdateNodeOperands finding an existing node to CSE with.
If this happens the operands aren't updated and the existing node is returned. Make sure we pass this existing node up to the DAG combiner so that a proper replacement happens. Otherwise we get stuck in an infinite loop with an unoptimized node.

llvm-svn: 338090
2018-07-27 00:00:30 +00:00
Chandler Carruth 1387159b93 [x86/SLH] Extract the logic to trace predicate state through calls to
a helper function with a nice overview comment. NFC.

This is a preperatory refactoring to implementing another component of
mitigation here that was descibed in the design document but hadn't been
implemented yet.

llvm-svn: 338016
2018-07-26 09:42:57 +00:00
Craig Topper 4e687d5bb2 [X86] Don't use CombineTo to skip adding new nodes to the DAGCombiner worklist in combineMul.
I'm not sure if this was trying to avoid optimizing the new nodes further or what. Or maybe to prevent a cycle if something tried to reform the multiply? But I don't think its a reliable way to do that. If the user of the expanded multiply is visited by the DAGCombiner after this conversion happens, the DAGCombiner will check its operands, see that they haven't been visited by the DAGCombiner before and it will then add the first node to the worklist. This process will repeat until all the new nodes are visited.

So this seems like an unreliable prevention at best. So this patch just returns the new nodes like any other combine. If this starts causing problems we can try to add target specific nodes or something to more directly prevent optimizations.

Now that we handle the combine normally, we can combine any negates the mul expansion creates into their users since those will be visited now.

llvm-svn: 338007
2018-07-26 05:40:10 +00:00
Craig Topper 370bdd3a0f [X86] Remove some unnecessary explicit calls to DCI.AddToWorkList.
These calls were making sure some newly created nodes were added to worklist, but the DAGCombiner has internal support for ensuring it has visited all nodes. Any time it visits a node it ensures the operands have been queued to be visited as well. This means if we only need to return the last new node. The DAGCombiner will take care of adding its inputs thus walking backwards through all the new nodes.

llvm-svn: 337996
2018-07-26 03:20:27 +00:00
Matthias Braun 57dd5b3dea CodeGen: Cleanup regmask construction; NFC
- Avoid duplication of regmask size calculation.
- Simplify allocateRegisterMask() call.
- Rename allocateRegisterMask() to allocateRegMask() to be consistent
  with naming in MachineOperand.

llvm-svn: 337986
2018-07-26 00:27:47 +00:00
Martin Storsjo d2662c32fb [COFF] Hoist constant pool handling from X86AsmPrinter into AsmPrinter
In SVN r334523, the first half of comdat constant pool handling was
hoisted from X86WindowsTargetObjectFile (which despite the name only
was used for msvc targets) into the arch independent
TargetLoweringObjectFileCOFF, but the other half of the handling was
left behind in X86AsmPrinter::GetCPISymbol.

With only half of the handling in place, inconsistent comdat
sections/symbols are created, causing issues with both GNU binutils
(avoided for X86 in SVN r335918) and with the MS linker, which
would complain like this:

fatal error LNK1143: invalid or corrupt file: no symbol for COMDAT section 0x4

Differential Revision: https://reviews.llvm.org/D49644

llvm-svn: 337950
2018-07-25 18:35:31 +00:00
Chandler Carruth 4f6481dc81 [x86/SLH] Sink the return hardening into the main block-walk + hardening
code.

This consolidates all our hardening calls, and simplifies the code
a bit. It seems much more clear to handle all of these together.

No functionality changed here.

llvm-svn: 337895
2018-07-25 09:18:48 +00:00
Chandler Carruth 196e719acd [x86/SLH] Improve name and comments for the main hardening function.
This function actually does two things: it traces the predicate state
through each of the basic blocks in the function (as that isn't directly
handled by the SSA updater) *and* it hardens everything necessary in the
block as it goes. These need to be done together so that we have the
currently active predicate state to use at each point of the hardening.

However, this also made obvious that the flag to disable actual
hardening of loads was flawed -- it also disabled tracing the predicate
state across function calls within the body of each block. So this patch
sinks this debugging flag test to correctly guard just the hardening of
loads.

Unless load hardening was disabled, no functionality should change with
tis patch.

llvm-svn: 337894
2018-07-25 09:00:26 +00:00
Craig Topper dc0e8a601d [X86] Use X86ISD::MUL_IMM instead of ISD::MUL for multiply we intend to be selected to LEA.
This prevents other combines from possibly disturbing it.

llvm-svn: 337890
2018-07-25 05:33:36 +00:00
Chandler Carruth 7024921c0a [x86/SLH] Teach the x86 speculative load hardening pass to harden
against v1.2 BCBS attacks directly.

Attacks using spectre v1.2 (a subset of BCBS) are described in the paper
here:
https://people.csail.mit.edu/vlk/spectre11.pdf

The core idea is to speculatively store over the address in a vtable,
jumptable, or other target of indirect control flow that will be
subsequently loaded. Speculative execution after such a store can
forward the stored value to subsequent loads, and if called or jumped
to, the speculative execution will be steered to this potentially
attacker controlled address.

Up until now, this could be mitigated by enableing retpolines. However,
that is a relatively expensive technique to mitigate this particular
flavor. Especially because in most cases SLH will have already mitigated
this. To fully mitigate this with SLH, we need to do two core things:
1) Unfold loads from calls and jumps, allowing the loads to be post-load
   hardened.
2) Force hardening of incoming registers even if we didn't end up
   needing to harden the load itself.

The reason we need to do these two things is because hardening calls and
jumps from this particular variant is importantly different from
hardening against leak of secret data. Because the "bad" data here isn't
a secret, but in fact speculatively stored by the attacker, it may be
loaded from any address, regardless of whether it is read-only memory,
mapped memory, or a "hardened" address. The only 100% effective way to
harden these instructions is to harden the their operand itself. But to
the extent possible, we'd like to take advantage of all the other
hardening going on, we just need a fallback in case none of that
happened to cover the particular input to the control transfer
instruction.

For users of SLH, currently they are paing 2% to 6% performance overhead
for retpolines, but this mechanism is expected to be substantially
cheaper. However, it is worth reminding folks that this does not
mitigate all of the things retpolines do -- most notably, variant #2 is
not in *any way* mitigated by this technique. So users of SLH may still
want to enable retpolines, and the implementation is carefuly designed to
gracefully leverage retpolines to avoid the need for further hardening
here when they are enabled.

Differential Revision: https://reviews.llvm.org/D49663

llvm-svn: 337878
2018-07-25 01:51:29 +00:00
Craig Topper fc501a9223 [X86] Use a shift plus an lea for multiplying by a constant that is a power of 2 plus 2/4/8.
The LEA allows us to combine an add and the multiply by 2/4/8 together so we just need a shift for the larger power of 2.

llvm-svn: 337875
2018-07-25 01:15:38 +00:00
Craig Topper 5be253d988 [X86] Expand mul by pow2 + 2 using a shift and two adds similar to what we do for pow2 - 2.
llvm-svn: 337874
2018-07-25 01:15:35 +00:00
Craig Topper 56c104f104 [X86] Use a two lea sequence for multiply by 37, 41, and 73.
These fit a pattern used by 11, 21, and 19.

llvm-svn: 337871
2018-07-24 23:44:17 +00:00
Craig Topper f8fcee70a3 [X86] Change multiply by 26 to use two multiplies by 5 and an add instead of multiply by 3 and 9 and a subtract.
Same number of operations, but ending in an add is friendlier due to it being commutable.

llvm-svn: 337869
2018-07-24 23:44:12 +00:00
Craig Topper 5ddc0a2b14 [X86] When expanding a multiply by a negative of one less than a power of 2, like 31, don't generate a negate of a subtract that we'll never optimize.
We generated a subtract for the power of 2 minus one then negated the result. The negate can be optimized away by swapping the subtract operands, but DAG combine doesn't know how to do that and we don't add any of the new nodes to the worklist anyway.

This patch makes use explicitly emit the swapped subtract.

llvm-svn: 337858
2018-07-24 21:31:21 +00:00
Craig Topper 6d29891bef [X86] Generalize the multiply by 30 lowering to generic multipy by power 2 minus 2.
Use a left shift and 2 subtracts like we do for 30. Move this out from behind the slow lea check since it doesn't even use an LEA.

Use this for multiply by 14 as well.

llvm-svn: 337856
2018-07-24 21:15:41 +00:00
Craig Topper 86d6320b94 [X86] Change multiply by 19 to use (9 * X) * 2 + X instead of (5 * X) * 4 - 1.
The new lowering can be done in 2 LEAs. The old code took 1 LEA, 1 shift, and 1 sub.

llvm-svn: 337851
2018-07-24 20:31:48 +00:00
Jessica Paquette 69f517df27 [MachineOutliner][NFC] Move target frame info into OutlinedFunction
Just some gardening here.

Similar to how we moved call information into Candidates, this moves outlined
frame information into OutlinedFunction. This allows us to remove
TargetCostInfo entirely.

Anywhere where we returned a TargetCostInfo struct, we now return an
OutlinedFunction. This establishes OutlinedFunctions as more of a general
repeated sequence, and Candidates as occurrences of those repeated sequences.

llvm-svn: 337848
2018-07-24 20:13:10 +00:00
Chandler Carruth c9313a9ecb [x86] Teach the x86 backend that it can fold between TCRETURNm* and TCRETURNr* and fix latent bugs with register class updates.
Summary:
Enabling this fully exposes a latent bug in the instruction folding: we
never update the register constraints for the register operands when
fusing a load into another operation. The fused form could, in theory,
have different register constraints on its operands. And in fact,
TCRETURNm* needs its memory operands to use tailcall compatible
registers.

I've updated the folding code to re-constrain all the registers after
they are mapped onto their new instruction.

However, we still can't enable folding in the general case from
TCRETURNr* to TCRETURNm* because doing so may require more registers to
be available during the tail call. If the call itself uses all but one
register, and the folded load would require both a base and index
register, there will not be enough registers to allocate the tail call.

It would be better, IMO, to teach the register allocator to *unfold*
TCRETURNm* when it runs out of registers (or specifically check the
number of registers available during the TCRETURNr*) but I'm not going
to try and solve that for now. Instead, I've just blocked the forward
folding from r -> m, leaving LLVM free to unfold from m -> r as that
doesn't introduce new register pressure constraints.

The down side is that I don't have anything that will directly exercise
this. Instead, I will be immediately using this it my SLH patch. =/

Still worse, without allowing the TCRETURNr* -> TCRETURNm* fold, I don't
have any tests that demonstrate the failure to update the memory operand
register constraints. This patch still seems correct, but I'm nervous
about the degree of testing due to this.

Suggestions?

Reviewers: craig.topper

Subscribers: sanjoy, mcrosier, hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D49717

llvm-svn: 337845
2018-07-24 19:04:37 +00:00
Jessica Paquette fca55129b1 [MachineOutliner][NFC] Make Candidates own their call information
Before this, TCI contained all the call information for each Candidate.

This moves that information onto the Candidates. As a result, each Candidate
can now supply how it ought to be called. Thus, Candidates will be able to,
say, call the same function in cheaper ways when possible. This also removes
that information from TCI, since it's no longer used there.

A follow-up patch for the AArch64 outliner will demonstrate this.

llvm-svn: 337840
2018-07-24 17:42:11 +00:00
Chandler Carruth 54529146c6 [x86/SLH] Extract the core register hardening logic to a low-level
helper and restructure the post-load hardening to use this.

This isn't as trivial as I would have liked because the post-load
hardening used a trick that only works for it where it swapped in
a temporary register to the load rather than replacing anything.
However, there is a simple way to do this without that trick that allows
this to easily reuse a friendly API for hardening a value in a register.
That API will in turn be usable in subsequent patcehs.

This also techincally changes the position at which we insert the subreg
extraction for the predicate state, but that never resulted in an actual
instruction and so tests don't change at all.

llvm-svn: 337825
2018-07-24 12:44:00 +00:00
Chandler Carruth 376113da89 [x86/SLH] Tidy up a comment, using doxygen structure and wording it to
be more accurate and understandable.

llvm-svn: 337822
2018-07-24 12:19:01 +00:00
Chandler Carruth 66fbbbca60 [x86/SLH] Simplify the code for hardening a loaded value. NFC.
This is in preparation for extracting this into a re-usable utility in
this code.

llvm-svn: 337785
2018-07-24 00:35:36 +00:00
Chandler Carruth b46c22de00 [x86/SLH] Remove complex SHRX-based post-load hardening.
This code was really nasty, had several bugs in it originally, and
wasn't carrying its weight. While on Zen we have all 4 ports available
for SHRX, on all of the Intel parts with Agner's tables, SHRX can only
execute on 2 ports, giving it 1/2 the throughput of OR.

Worse, all too often this pattern required two SHRX instructions in
a chain, hurting the critical path by a lot.

Even if we end up needing to safe/restore EFLAGS, that is no longer so
bad. We pay for a uop to save the flag, but we very likely get fusion
when it is used by forming a test/jCC pair or something similar. In
practice, I don't expect the SHRX to be a significant savings here, so
I'd like to avoid the complex code required. We can always resurrect
this if/when someone has a specific performance issue addressed by it.

llvm-svn: 337781
2018-07-24 00:21:59 +00:00
Reid Kleckner 980c4df037 Re-land r335297 "[X86] Implement more of x86-64 large and medium PIC code models"
Don't try to generate large PIC code for non-ELF targets. Neither COFF
nor MachO have relocations for large position independent code, and
users have been using "large PIC" code models to JIT 64-bit code for a
while now. With this change, if they are generating ELF code, their
JITed code will truly be PIC, but if they target MachO or COFF, it will
contain 64-bit immediates that directly reference external symbols. For
a JIT, that's perfectly fine.

llvm-svn: 337740
2018-07-23 21:14:35 +00:00
Roman Lebedev 52b85377eb [NFC][MCA] ZnVer1: Update RegisterFile to identify false dependencies on partially written registers.
Summary:
Pretty mechanical follow-up for D49196.

As microarchitecture.pdf notes, "20 AMD Ryzen pipeline",
"20.8 Register renaming and out-of-order schedulers":
  The integer register file has 168 physical registers of 64 bits each.
  The floating point register file has 160 registers of 128 bits each.
"20.14 Partial register access":
  The processor always keeps the different parts of an integer register together.
  ...
  An instruction that writes to part of a register will therefore have a false dependence
  on any previous write to the same register or any part of it.

Reviewers: andreadb, courbet, RKSimon, craig.topper, GGanesh

Reviewed By: GGanesh

Subscribers: gbedwell, llvm-commits

Differential Revision: https://reviews.llvm.org/D49393

llvm-svn: 337676
2018-07-23 10:10:13 +00:00
Chandler Carruth 1d926fb9f4 [x86/SLH] Fix a bug where we would harden tail calls twice -- once as
a call, and then again as a return.

Also added a comment to try and explain better why we would be doing
what we're doing when hardening the (non-call) returns.

llvm-svn: 337673
2018-07-23 07:56:15 +00:00
Chandler Carruth 0477b40137 [x86/SLH] Rename and comment the main hardening function. NFC.
This provides an overview of the algorithm used to harden specific
loads. It also brings this our terminology further in line with
hardening rather than checking.

Differential Revision: https://reviews.llvm.org/D49583

llvm-svn: 337667
2018-07-23 04:01:34 +00:00
Craig Topper b2a626b52e [X86] Remove the max vector width restriction from combineLoopMAddPattern and rely splitOpsAndApply to handle splitting.
This seems to be a net improvement. There's still an issue under avx512f where we have a 512-bit vpaddd, but not vpmaddwd so we end up doing two 256-bit vpmaddwds and inserting the results before a 512-bit vpaddd. It might be better to do two 512-bits paddds with zeros in the upper half. Same number of instructions, but breaks a dependency.

llvm-svn: 337656
2018-07-22 19:44:35 +00:00
Benjamin Kramer 64c7fa3201 Revert "[X86][AVX] Convert X86ISD::VBROADCAST demanded elts combine to use SimplifyDemandedVectorElts"
This reverts commit r337547. It triggers an infinite loop.

llvm-svn: 337617
2018-07-20 20:59:46 +00:00
Craig Topper 28ac623f6f [X86] Remove isel patterns for MOVSS/MOVSD ISD opcodes with integer types.
Ideally our ISD node types going into the isel table would have types consistent with their instruction domain. This prevents us having to duplicate patterns with different types for the same instruction.

Unfortunately, it seems our shuffle combining is currently relying on this a little remove some bitcasts. This seems to enable some switching between shufps and shufd. Hopefully there's some way we can address this in the combining.

Differential Revision: https://reviews.llvm.org/D49280

llvm-svn: 337590
2018-07-20 17:57:53 +00:00
Craig Topper 6194ccf8c7 [X86] Remove what appear to be unnecessary uses of DCI.CombineTo
CombineTo is most useful when you need to replace multiple results, avoid the worklist management, or you need to something else after the combine, etc. Otherwise you should be able to just return the new node and let DAGCombiner go through its usual worklist code.

All of the places changed in this patch look to be standard cases where we should be able to use the more stand behavior of just returning the new node.

Differential Revision: https://reviews.llvm.org/D49569

llvm-svn: 337589
2018-07-20 17:57:42 +00:00
Simon Pilgrim 70fcd0f481 [X86][XOP] Fix SUB constant folding for VPSHA/VPSHL shift lowering
We can safely use getConstant here as we're still lowering, which allows constant folding to kick in and simplify the vector shift codegen.

Noticed while working on D49562.

llvm-svn: 337578
2018-07-20 16:55:18 +00:00
Simon Pilgrim c7132031a2 [X86][SSE] Use SplitOpsAndApply to improve HADD/HSUB lowering
Improve AVX1 256-bit vector HADD/HSUB matching by using SplitOpsAndApply to split into 128-bit instructions.

llvm-svn: 337568
2018-07-20 16:20:45 +00:00
Simon Pilgrim a85b86a982 [X86][AVX] Add support for i16 256-bit vector horizontal op redundant shuffle removal
llvm-svn: 337566
2018-07-20 15:51:01 +00:00
Simon Pilgrim 7c56bce996 [X86][AVX] Add support for 32/64 bits 256-bit vector horizontal op redundant shuffle removal
llvm-svn: 337561
2018-07-20 15:24:12 +00:00
Simon Pilgrim 6fb8b68b2d [X86][AVX] Convert X86ISD::VBROADCAST demanded elts combine to use SimplifyDemandedVectorElts
This is an early step towards using SimplifyDemandedVectorElts for target shuffle combining - this merely moves the existing X86ISD::VBROADCAST simplification code to use the SimplifyDemandedVectorElts mechanism.

Adds X86TargetLowering::SimplifyDemandedVectorEltsForTargetNode to handle X86ISD::VBROADCAST - in time we can support all target shuffles (and other ops) here.

llvm-svn: 337547
2018-07-20 13:26:51 +00:00
Andrew V. Tischenko ee2e3144ba Improved sched model for X86 BSWAP* instrs.
Differential Revision: https://reviews.llvm.org/D49477

llvm-svn: 337537
2018-07-20 09:39:14 +00:00
Chandler Carruth a3a03ac247 [x86/SLH] Clean up helper naming for return instruction handling and
remove dead declaration of a call instruction handling helper.

This moves to the 'harden' terminology that I've been trying to settle
on for returns. It also adds a really detailed comment explaining what
all we're trying to accomplish with return instructions and why.
Hopefully this makes it much more clear what exactly is being
"hardened".

Differential Revision: https://reviews.llvm.org/D49571

llvm-svn: 337510
2018-07-19 23:46:24 +00:00
Simon Pilgrim 1d181bc992 [X86][AVX] Use extract_subvector to reduce vector op widths (PR36761)
We have a number of cases where we fail to reduce vector op widths, performing the op in a larger vector and then extracting a subvector. This is often because by default it would create illegal types.

This peephole patch attempts to handle a few common cases detailed in PR36761, which typically involved extension+conversion to vX2f64 types.

Differential Revision: https://reviews.llvm.org/D49556

llvm-svn: 337500
2018-07-19 21:52:06 +00:00
Craig Topper 9888670c6b [X86] Fix some 'return SDValue()' after DCI.CombineTo instead return the output of CombineTo
Returning SDValue() means nothing was changed. Returning the result of CombineTo returns the first argument of CombineTo. This is specially detected by DAGCombiner as meaning that something changed, but worklist management was already taken care of.

I think the only real effect of this change is that we now properly update the Statistic the counts the number of combines performed. That's the only thing between the check for null and the check for N in the DAGCombiner.

llvm-svn: 337491
2018-07-19 20:10:44 +00:00
Andrea Di Biagio b6022aa8d9 [X86][BtVer2] correctly model the latency/throughput of LEA instructions.
This patch fixes the latency/throughput of LEA instructions in the BtVer2
scheduling model.

On Jaguar, A 3-operands LEA has a latency of 2cy, and a reciprocal throughput of
1. That is because it uses one cycle of SAGU followed by 1cy of ALU1.  An LEA
with a "Scale" operand is also slow, and it has the same latency profile as the
3-operands LEA. An LEA16r has a latency of 3cy, and a throughput of 0.5 (i.e.
RThrouhgput of 2.0).

This patch adds a new TIIPredicate named IsThreeOperandsLEAFn to X86Schedule.td.
The tablegen backend (for instruction-info) expands that definition into this
(file X86GenInstrInfo.inc):
```
static bool isThreeOperandsLEA(const MachineInstr &MI) {
  return (
    (
      MI.getOpcode() == X86::LEA32r
      || MI.getOpcode() == X86::LEA64r
      || MI.getOpcode() == X86::LEA64_32r
      || MI.getOpcode() == X86::LEA16r
    )
    && MI.getOperand(1).isReg()
    && MI.getOperand(1).getReg() != 0
    && MI.getOperand(3).isReg()
    && MI.getOperand(3).getReg() != 0
    && (
      (
        MI.getOperand(4).isImm()
        && MI.getOperand(4).getImm() != 0
      )
      || (MI.getOperand(4).isGlobal())
    )
  );
}
```

A similar method is generated in the X86_MC namespace, and included into
X86MCTargetDesc.cpp (the declaration lives in X86MCTargetDesc.h).

Back to the BtVer2 scheduling model:
A new scheduling predicate named JSlowLEAPredicate now checks if either the
instruction is a three-operands LEA, or it is an LEA with a Scale value
different than 1.
A variant scheduling class uses that new predicate to correctly select the
appropriate latency profile.

Differential Revision: https://reviews.llvm.org/D49436

llvm-svn: 337469
2018-07-19 16:42:15 +00:00
Chandler Carruth 4b0028a3d1 [x86/SLH] Major refactoring of SLH implementaiton. There are two big
changes that are intertwined here:

1) Extracting the tracing of predicate state through the CFG to its own
   function.
2) Creating a struct to manage the predicate state used throughout the
   pass.

Doing #1 necessitates and motivates the particular approach for #2 as
now the predicate management is spread across different functions
focused on different aspects of it. A number of simplifications then
fell out as a direct consequence.

I went with an Optional to make it more natural to construct the
MachineSSAUpdater object.

This is probably the single largest outstanding refactoring step I have.
Things get a bit more surgical from here. My current goal, beyond
generally making this maintainable long-term, is to implement several
improvements to how we do interprocedural tracking of predicate state.
But I don't want to do that until the predicate state management and
tracing is in reasonably clear state.

Differential Revision: https://reviews.llvm.org/D49427

llvm-svn: 337446
2018-07-19 11:13:58 +00:00
Simon Pilgrim dd7bf598cc Fix spelling mistake in comments. NFCI.
llvm-svn: 337442
2018-07-19 09:14:39 +00:00
Simon Pilgrim d4b82da113 [X86][SSE] Canonicalize scalar fp arithmetic shuffle patterns
As discussed on PR38197, this canonicalizes MOVS*(N0, OP(N0, N1)) --> MOVS*(N0, SCALAR_TO_VECTOR(OP(N0[0], N1[0])))

This returns the scalar-fp codegen lost by rL336971.

Additionally it handles the OP(N1, N0)) case for commutable (FADD/FMUL) ops.

Differential Revision: https://reviews.llvm.org/D49474

llvm-svn: 337419
2018-07-18 19:55:19 +00:00
Simon Pilgrim 3a45369b9e [X86][SSE] Remove BLENDPD canonicalization from combineTargetShuffle
When rL336971 removed the scalar-fp isel patterns, we lost the need for this canonicalization - commutation/folding can handle everything else.

llvm-svn: 337387
2018-07-18 13:01:20 +00:00
Craig Topper 92ea7a7b48 [X86] Enable commuting of VUNPCKHPD to VMOVLHPS to enable load folding by using VMOVLPS with a modified address.
This required an annoying amount of tablegen multiclass changes to make only VUNPCKHPDZ128rr commutable.

llvm-svn: 337357
2018-07-18 07:31:32 +00:00
Craig Topper 95063a45b8 [X86] Remove patterns that mix X86ISD::MOVLHPS/MOVHLPS with v2i64/v2f64 types.
The X86ISD::MOVLHPS/MOVHLPS should now only be emitted in SSE1 only. This means that the v2i64/v2f64 types would be illegal thus we don't need these patterns.

llvm-svn: 337349
2018-07-18 05:10:53 +00:00
Craig Topper 1425e10cc6 [X86] Generate v2f64 X86ISD::UNPCKL/UNPCKH instead of X86ISD::MOVLHPS/MOVHLPS for unary v2f64 {0,0} and {1,1} shuffles with SSE2.
I'm trying to restrict the MOVLHPS/MOVHLPS ISD nodes to SSE1 only. With SSE2 we can use unpcks. I believe this will allow some patterns to be cleaned up to require fewer bitcasts.

I've put in an odd isel hack to still select MOVHLPS instruction from the unpckh node to avoid changing tests and because movhlps is a shorter encoding. Ideally we'd do execution domain switching on this, but the operands are in the wrong order and are tied. We might be able to try a commute in the domain switching using custom code.

We already support domain switching for UNPCKLPD and MOVLHPS.

llvm-svn: 337348
2018-07-18 05:10:51 +00:00
Craig Topper a29f58dc31 [X86] Remove the vector alignment requirement from the patterns added in r337320.
The resulting instruction will only load 64 bits so alignment isn't required.

llvm-svn: 337334
2018-07-17 23:26:20 +00:00
Craig Topper 9ef92865ec [X86] Add patterns for folding full vector load into MOVHPS and MOVLPS with SSE1 only.
llvm-svn: 337320
2018-07-17 20:16:18 +00:00
Chandler Carruth c0cb5731fc [x86/SLH] Flesh out the data-invariant instruction table a bit based on feedback from Craig.
Summary:
The only thing he suggested that I've skipped here is the double-wide
multiply instructions. Multiply is an area I'm nervous about there being
some hidden data-dependent behavior, and it doesn't seem important for
any benchmarks I have, so skipping it and sticking with the minimal
multiply support that matches what I know is widely used in existing
crypto libraries. We can always add double-wide multiply when we have
clarity from vendors about its behavior and guarantees.

I've tried to at least cover the fundamentals here with tests, although
I've not tried to cover every width or permutation. I can add more tests
where folks think it would be helpful.

Reviewers: craig.topper

Subscribers: sanjoy, mcrosier, hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D49413

llvm-svn: 337308
2018-07-17 18:07:59 +00:00
Craig Topper 9187bca71b [X86] Remove some standalone patterns in favor of the patterns in the MOVLPD instruction definitions.
Previously we passed 'null_frag' into the instruction definition. The multiclass is shared with MOVHPD which doesn't use null_frag. It turns out by passing X86Movsd it produces patterns equivalent to some standalone patterns.

llvm-svn: 337299
2018-07-17 16:24:33 +00:00
Craig Topper 880f92ad71 [X86] Properly qualify some MOVSS/MOVSD patterns with OptSize.
These are integer versions of patterns that I already fixed for floating point.

llvm-svn: 337240
2018-07-17 06:24:16 +00:00
Craig Topper c376a1916b [X86] Add full set of patterns for turning ceil/floor/trunc/rint/nearbyint into rndscale with loads, broadcast, and masking.
This amounts to pretty ridiculous number of patterns. Ideally we'd canonicalize the X86ISD::VRNDSCALE earlier to reuse those patterns. I briefly looked into doing that, but some strict FP operations could still get converted to rint and nearbyint during isel. It's probably still worthwhile to look into. This patch is meant as a starting point to work from.

llvm-svn: 337234
2018-07-17 05:48:48 +00:00
Craig Topper 6751727d76 [X86] Add a missing FMA3 scalar intrinsic pattern.
This allows us to use 231 form to fold an insertelement on the add input to the fma. There is technically no software intrinsic that can use this until AVX512F, but it can be manually built up from other intrinsics.

llvm-svn: 337223
2018-07-16 23:10:58 +00:00
Chandler Carruth fa065aa75c [x86/SLH] Completely rework how we sink post-load hardening past data
invariant instructions to be both more correct and much more powerful.

While testing, I continued to find issues with sinking post-load
hardening. Unfortunately, it was amazingly hard to create any useful
tests of this because we were mostly sinking across copies and other
loading instructions. The fact that we couldn't sink past normal
arithmetic was really a big oversight.

So first, I've ported roughly the same set of instructions from the data
invariant loads to also have their non-loading varieties understood to
be data invariant. I've also added a few instructions that came up so
often it again made testing complicated: inc, dec, and lea.

With this, I was able to shake out a few nasty bugs in the validity
checking. We need to restrict to hardening single-def instructions with
defined registers that match a particular form: GPRs that don't have
a NOREX constraint directly attached to their register class.

The (tiny!) test case included catches all of the issues I was seeing
(once we can sink the hardening at all) except for the NOREX issue. The
only test I have there is horrible. It is large, inexplicable, and
doesn't even produce an error unless you try to emit encodings. I can
keep looking for a way to test it, but I'm out of ideas really.

Thanks to Ben for giving me at least a sanity-check review. I'll follow
up with Craig to go over this more thoroughly post-commit, but without
it SLH crashes everywhere so landing it for now.

Differential Revision: https://reviews.llvm.org/D49378

llvm-svn: 337177
2018-07-16 14:58:32 +00:00
Roman Lebedev de506632aa [X86][AArch64][DAGCombine] Unfold 'check for [no] signed truncation' pattern
Summary:

[[ https://bugs.llvm.org/show_bug.cgi?id=38149 | PR38149 ]]

As discussed in https://reviews.llvm.org/D49179#1158957 and later,
the IR for 'check for [no] signed truncation' pattern can be improved:
https://rise4fun.com/Alive/gBf
^ that pattern will be produced by Implicit Integer Truncation sanitizer,
https://reviews.llvm.org/D48958 https://bugs.llvm.org/show_bug.cgi?id=21530
in signed case, therefore it is probably a good idea to improve it.

But the IR-optimal patter does not lower efficiently, so we want to undo it..

This handles the simple pattern.
There is a second pattern with predicate and constants inverted.

NOTE: we do not check uses here. we always do the transform.

Reviewers: spatel, craig.topper, RKSimon, javed.absar

Reviewed By: spatel

Subscribers: kristof.beyls, llvm-commits

Differential Revision: https://reviews.llvm.org/D49266

llvm-svn: 337166
2018-07-16 12:44:10 +00:00
Chandler Carruth e66a6f48e3 [x86/SLH] Fix a bug where we would try to post-load harden non-GPRs.
Found cases that hit the assert I added. This patch factors the validity
checking into a nice helper routine and calls it when deciding to harden
post-load, and asserts it when doing so later.

I've added tests for the various ways of loading a floating point type,
as well as loading all vector permutations. Even though many of these go
to identical instructions, it seems good to somewhat comprehensively
test them.

I'm confident there will be more fixes needed here, I'll try to add
tests each time as I get this predicate adjusted.

llvm-svn: 337160
2018-07-16 11:38:48 +00:00
Chandler Carruth 3620b9957a [x86/SLH] Extract another small helper function, add better comments and
use better terminology. NFC.

llvm-svn: 337157
2018-07-16 10:46:16 +00:00
Craig Topper 07a1787501 [X86] Merge the FR128 and VR128 regclass since they have identical spill and alignment characteristics.
This unfortunately requires a bunch of bitcasts to be added added to SUBREG_TO_REG, COPY_TO_REGCLASS, and instructions in output patterns. Otherwise tablegen seems to default to picking f128 and then we fail when something tries to get the register class for f128 which isn't always valid.

The test changes are because we were previously mixing fr128 and vr128 due to contrainRegClass finding FR128 first and passes like live range shrinking weren't handling that well.

llvm-svn: 337147
2018-07-16 06:56:09 +00:00
Chandler Carruth bc46bca99e [x86/SLH] Fix an unused variable warning in release builds after
r337144.

llvm-svn: 337145
2018-07-16 04:42:27 +00:00
Chandler Carruth cdf0addc65 [x86/SLH] Teach speculative load hardening to correctly harden the
indices used by AVX2 and AVX-512 gather instructions.

The index vector is hardened by broadcasting the predicate state
into a vector register and then or-ing. We don't even have to worry
about EFLAGS here.

I've added a test for all of the gather intrinsics to make sure that we
don't miss one. A particularly interesting creation is the gather
prefetch, which needs to be marked as potentially "loading" to get the
correct behavior. It's a memory access in many ways, and is actually
relevant for SLH. Based on discussion with Craig in review, I've moved
it to be `mayLoad` and `mayStore` rather than generic side effects. This
matches how we model other prefetch instructions.

Many thanks to Craig for the review here.

Differential Revision: https://reviews.llvm.org/D49336

llvm-svn: 337144
2018-07-16 04:17:51 +00:00
Chandler Carruth 3ffcc0383e [x86/SLH] Extract one of the bits of logic to its own function. NFC.
This is just a refactoring to start cleaning up the code here and make
it more readable and approachable.

llvm-svn: 337138
2018-07-15 23:46:36 +00:00
Craig Topper cdb0ed2910 [X86] Add custom execution domain fixing for 128/256-bit integer logic operations with AVX512F, but not AVX512DQ.
AVX512F only has integer domain logic instructions. AVX512DQ added FP domain logic instructions.

Execution domain fixing runs before EVEX->VEX. So if we have AVX512F and not AVX512DQ we fail to do execution domain switching of the logic operations. This leads to mismatches in execution domain and more test differences.

This patch adds custom domain fixing that switches EVEX integer logic operations to VEX fp logic operations if XMM16-31 are not used.

llvm-svn: 337137
2018-07-15 23:32:36 +00:00
Craig Topper d553ff3e2e [X86] Add load patterns for cases where we select X86Movss/X86Movsd to blend instructions.
This allows us to fold the load during isel without waiting for the peephole pass to do it.

llvm-svn: 337136
2018-07-15 21:49:01 +00:00
Craig Topper ec0038398a [X86] Use 128-bit blends instead vmovss/vmovsd for 512-bit vzmovl patterns to match AVX.
llvm-svn: 337135
2018-07-15 18:51:08 +00:00
Craig Topper 8f34858779 [X86] Use 128-bit ops for 256-bit vzmovl patterns.
128-bit ops implicitly zero the upper bits. This should address the comment about domain crossing for the integer version without AVX2 since we can use a 128-bit VBLENDW without AVX2.

The only bad thing I see here is that we failed to reuse an vxorps in some of the tests, but I think that's already known issue.

llvm-svn: 337134
2018-07-15 18:51:07 +00:00
Andrea Di Biagio ff630c2cdc [llvm-mca][BtVer2] teach how to identify false dependencies on partially written
registers.

The goal of this patch is to improve the throughput analysis in llvm-mca for the
case where instructions perform partial register writes.

On x86, partial register writes are quite difficult to model, mainly because
different processors tend to implement different register merging schemes in
hardware.

When the code contains partial register writes, the IPC (instructions per
cycles) estimated by llvm-mca tends to diverge quite significantly from the
observed IPC (using perf).

Modern AMD processors (at least, from Bulldozer onwards) don't rename partial
registers. Quoting Agner Fog's microarchitecture.pdf:
" The processor always keeps the different parts of an integer register together.
For example, AL and AH are not treated as independent by the out-of-order
execution mechanism. An instruction that writes to part of a register will
therefore have a false dependence on any previous write to the same register or
any part of it."

This patch is a first important step towards improving the analysis of partial
register updates. It changes the semantic of RegisterFile descriptors in
tablegen, and teaches llvm-mca how to identify false dependences in the presence
of partial register writes (for more details: see the new code comments in
include/Target/TargetSchedule.h - class RegisterFile).

This patch doesn't address the case where a write to a part of a register is
followed by a read from the whole register.  On Intel chips, high8 registers
(AH/BH/CH/DH)) can be stored in separate physical registers. However, a later
(dirty) read of the full register (example: AX/EAX) triggers a merge uOp, which
adds extra latency (and potentially affects the pipe usage).
This is a very interesting article on the subject with a very informative answer
from Peter Cordes:
https://stackoverflow.com/questions/45660139/how-exactly-do-partial-registers-on-haswell-skylake-perform-writing-al-seems-to

In future, the definition of RegisterFile can be extended with extra information
that may be used to identify delays caused by merge opcodes triggered by a dirty
read of a partial write.

Differential Revision: https://reviews.llvm.org/D49196

llvm-svn: 337123
2018-07-15 11:01:38 +00:00
Craig Topper 60ce856134 [X86] Add some optsize patterns for 256-bit X86vzmovl.
These patterns use VMOVSS/SD. Without optsize we use BLENDI instead.

llvm-svn: 337119
2018-07-15 06:03:19 +00:00
Chandler Carruth fb503ac027 [x86/SLH] Fix an issue where we wouldn't harden any loads if we found
no conditions.

This is only valid to do if we're hardening calls and rets with LFENCE
which results in an LFENCE guarding the entire entry block for us.

llvm-svn: 337089
2018-07-14 09:32:37 +00:00
Craig Topper 7426cf6717 [X86] Fix a subtle bug in the custom execution domain fixing for blends.
The code tried to find the immediate by using getNumOperands() on the MachineInstr, but there might be implicit-defs after the immediate that get counted.

Instead use getNumOperands() from the instruction description which will only count the operands that are defined in the td file.

llvm-svn: 337088
2018-07-14 06:30:30 +00:00
Craig Topper f0b164415c [X86] Prefer blendi over movss/sd when avx512 is enabled unless optimizing for size.
AVX512 doesn't have an immediate controlled blend instruction. But blend throughput is still better than movss/sd on SKX.

This commit changes AVX512 to use the AVX blend instructions instead of MOVSS/MOVSD. This constrains the register allocation since it won't be able to use XMM16-31, but hopefully the increased throughput and reduced port 5 pressure makes up for that.

llvm-svn: 337083
2018-07-14 02:05:08 +00:00
Chandler Carruth a24fe067c0 [x86/SLH] Add an assert to catch if we ever end up trying to harden
post-load a register that isn't valid for use with OR or SHRX.

llvm-svn: 337078
2018-07-14 00:52:09 +00:00
Craig Topper 8315667d99 [X86][SLH] Remove PDEP and PEXT from isDataInvariantLoad
Ryzen has something like an 18 cycle latency on these based on Agner's data. AMD's own xls is blank. So it seems like there might be something tricky here.

Agner's data for Intel CPUs indicates these are a single uop there.

Probably safest to remove them. We never generate them without an intrinsic so this should be ok.

Differential Revision: https://reviews.llvm.org/D49315

llvm-svn: 337067
2018-07-13 22:41:52 +00:00
Craig Topper 41fa858262 [X86][SLH] Add VEX and EVEX conversion instructions to isDataInvariantLoad
-Drop the intrinsic versions of conversion instructions. These should be handled when we do vectors. They shouldn't show up in scalar code.
-Add the float<->double conversions which were missing.
-Add the AVX512 and AVX version of the conversion instructions including the unsigned integer conversions unique to AVX512

Differential Revision: https://reviews.llvm.org/D49313

llvm-svn: 337066
2018-07-13 22:41:50 +00:00
Craig Topper 445abf700d [X86][SLH] Regroup the instructions in isDataInvariantLoad a little. NFC
-Move BSF/BSR to the same group as TZCNT/LZCNT/POPCNT.
-Split some of the bit manipulation instructions away from TZCNT/LZCNT/POPCNT. These are things like 'x & (x - 1)' which are composed of a few simple arithmetic operations. These aren't nearly as complicated/surprising as counting bits.
-Move BEXTR/BZHI into their own group. They aren't like a simple arithmethic op or the bit manipulation instructions. They're more like a shift+and.

Differential Revision: https://reviews.llvm.org/D49312

llvm-svn: 337065
2018-07-13 22:41:46 +00:00
Craig Topper 2260e4149a [X86] Use the correct types in some recently added isel patterns.
These were supposed to be integer types since we are selecting integer instructions.

Found while preparing to remove these patterns for another patch.

llvm-svn: 337057
2018-07-13 22:27:53 +00:00
Craig Topper da424ba1c5 [X86][FastISel] Support uitofp with avx512.
llvm-svn: 337055
2018-07-13 22:09:30 +00:00
Fangrui Song dcdc9ac7a2 [X86] Correct comment of TEST elimination in BSF/TZCNT
llvm-svn: 337052
2018-07-13 21:40:08 +00:00
Craig Topper f0831eef0b [X86][FastISel] Add EVEX support to sitofp handling.
llvm-svn: 337045
2018-07-13 21:03:43 +00:00
Fangrui Song 90d9c201dc [X86] Try fixing r336768
llvm-svn: 337043
2018-07-13 20:54:24 +00:00
Joel Galenson 06e7e5798f [cfi-verify] Support AArch64.
This patch adds support for AArch64 to cfi-verify.

This required three changes to cfi-verify.  First, it generalizes checking if an instruction is a trap by adding a new isTrap flag to TableGen (and defining it for x86 and AArch64).  Second, the code that ensures that the operand register is not clobbered between the CFI check and the indirect call needs to allow a single dereference (in x86 this happens as part of the jump instruction).  Third, we needed to ensure that return instructions are not counted as indirect branches.  Technically, returns are indirect branches and can be covered by CFI, but LLVM's forward-edge CFI does not protect them, and x86 does not consider them, so we keep that behavior.

In addition, we had to improve AArch64's code to evaluate the branch target of a MCInst to handle calls where the destination is not the first operand (which it often is not).

Differential Revision: https://reviews.llvm.org/D48836

llvm-svn: 337007
2018-07-13 15:19:33 +00:00
Erich Keane ac8cb22ad5 Add parens to silence Wparentheses warning, introduced by 336990
llvm-svn: 337002
2018-07-13 14:43:20 +00:00
Chandler Carruth 90358e1ef1 [SLH] Introduce a new pass to do Speculative Load Hardening to mitigate
Spectre variant #1 for x86.

There is a lengthy, detailed RFC thread on llvm-dev which discusses the
high level issues. High level discussion is probably best there.

I've split the design document out of this patch and will land it
separately once I update it to reflect the latest edits and updates to
the Google doc used in the RFC thread.

This patch is really just an initial step. It isn't quite ready for
prime time and is only exposed via debugging flags. It has two major
limitations currently:
1) It only supports x86-64, and only certain ABIs. Many assumptions are
   currently hard-coded and need to be factored out of the code here.
2) It doesn't include any options for more fine-grained control, either
   of which control flow edges are significant or which loads are
   important to be hardened.
3) The code is still quite rough and the testing lighter than I'd like.

However, this is enough for people to begin using. I have had numerous
requests from people to be able to experiment with this patch to
understand the trade-offs it presents and how to use it. We would also
like to encourage work to similar effect in other toolchains.

The ARM folks are actively developing a system based on this for
AArch64. We hope to merge this with their efforts when both are far
enough along. But we also don't want to block making this available on
that effort.

Many thanks to the *numerous* people who helped along the way here. For
this patch in particular, both Eric and Craig did a ton of review to
even have confidence in it as an early, rough cut at this functionality.

Differential Revision: https://reviews.llvm.org/D44824

llvm-svn: 336990
2018-07-13 11:13:58 +00:00
Chandler Carruth caa7b03a50 [x86] Teach the EFLAGS copy lowering to handle much more complex control
flow patterns including forks, merges, and even cyles.

This tries to cover a reasonably comprehensive set of patterns that
still don't require PHIs or PHI placement. The coverage was inspired by
the amazing variety of patterns produced when copy EFLAGS and restoring
it to implement Speculative Load Hardening. Without this patch, we
simply cannot make such complex and invasive changes to x86 instruction
sequences due to EFLAGS.

I've added "just" one test, but this test covers many different
complexities and corner cases of this approach. It is actually more
comprehensive, as far as I can tell, than anything that I have
encountered in the wild on SLH.

Because the test is so complex, I've tried to give somewhat thorough
comments and an ASCII-art diagram of the control flows to make it a bit
easier to read and maintain long-term.

Differential Revision: https://reviews.llvm.org/D49220

llvm-svn: 336985
2018-07-13 09:39:10 +00:00
Craig Topper a8efe59a0a [X86] Prefer MOVSS/SD over BLEND under optsize in isel.
Previously we iseled to blend, commuted to another blend, and then commuted back to movss/movsd or blend depending on optsize. Now we do it directly.

llvm-svn: 336976
2018-07-13 06:25:31 +00:00
Craig Topper 2ab325ba23 [X86] Remove isel patterns that turns packed add/sub/mul/div+movss/sd into scalar intrinsic instructions.
This is not an optimization we should be doing in isel. This is more suitable for a DAG combine.

My main concern is a future time when we support more FPENV. Changing a packed op to a scalar op could cause us to miss some exceptions that should have occured if we had done a packed op. A DAG combine would be better able to manage this.

llvm-svn: 336971
2018-07-13 04:50:39 +00:00
Craig Topper 3a13477214 [X86] Add AVX512 equivalents of some isel patterns so we get EVEX instructions.
These are the patterns for matching fceil, ffloor, and sqrt to intrinsic instructions if they have a MOVSS/SD.

llvm-svn: 336954
2018-07-12 22:14:10 +00:00
Craig Topper b0053b79d6 Revert r336950 and r336951 "[X86] Add AVX512 equivalents of some isel patterns so we get EVEX instructions." and "foo"
One of them had a bad title and they should have been squashed.

llvm-svn: 336953
2018-07-12 21:58:03 +00:00
Craig Topper 3b837b6b63 [X86] Add AVX512 equivalents of some isel patterns so we get EVEX instructions.
These are the patterns for matching fceil, ffloor, and sqrt to intrinsic instructions if they have a MOVSS/SD.

llvm-svn: 336951
2018-07-12 21:53:23 +00:00
Craig Topper b01a355354 foo
llvm-svn: 336950
2018-07-12 21:53:07 +00:00
Craig Topper 57c4585bab [X86][FastISel] Support EVEX version of sqrt.
llvm-svn: 336939
2018-07-12 19:58:06 +00:00
Craig Topper abc307e6fa [X86] Connect the flags user from PCMPISTR instructions to the correct node from the instruction.
We were accidentally connecting it to result 0 instead of result 1. This was caught by the machine verifier that noticed the flags were dead, but we were using them somehow. I'm still not clear what actually happened downstream.

llvm-svn: 336925
2018-07-12 18:04:05 +00:00
Craig Topper d43f58231c [X86][FastISel] Choose EVEX instructions when possible when lowering x86_sse_cvttss2si and similar intrinsics.
This should fix a machine verifier error.

llvm-svn: 336924
2018-07-12 18:03:56 +00:00
Simon Pilgrim 44b89fa900 [X86][SSE] Utilize ZeroableElements for canWidenShuffleElements
canWidenShuffleElements can do a better job if given a mask with ZeroableElements info. Apparently, ZeroableElements was being only used to identify AllZero candidates, but possibly we could plug it into more shuffle matchers.

Original Patch by Zvi Rackover @zvi

Differential Revision: https://reviews.llvm.org/D42044

llvm-svn: 336903
2018-07-12 13:29:41 +00:00
Simon Pilgrim 8a463897e9 [X86][AVX] Use Zeroable mask to improve shuffle mask widening
Noticed while updating D42044, lowerV2X128VectorShuffle can improve the shuffle mask with the zeroable data to create a target shuffle mask to recognise more 'zero upper 128' patterns.

NOTE: lowerV4X128VectorShuffle could benefit as well but the code needs refactoring first to discriminate between SM_SentinelUndef and SM_SentinelZero for negative shuffle indices.

Differential Revision: https://reviews.llvm.org/D49092

llvm-svn: 336900
2018-07-12 13:03:58 +00:00
Craig Topper 73c7dceffd [X86] Remove i128 type from FR128 regclass.
i128 isn't a legal type in our x86 implementation today. So remove this and the few patterns that used it until it becomes necessary.

llvm-svn: 336889
2018-07-12 07:30:01 +00:00
Craig Topper 73347ec081 [X86] Remove patterns and ISD nodes for the old scalar FMA intrinsic lowering.
We now use llvm.fma.f32/f64 or llvm.x86.fmadd.f32/f64 intrinsics that use scalar types rather than vector types. So we don't these special ISD nodes that operate on the lowest element of a vector.

llvm-svn: 336883
2018-07-12 03:42:41 +00:00
Chandler Carruth b4faf4ce08 [x86] Fix another trivial bug in x86 flags copy lowering that has been
there for a long time.

The boolean tracking whether we saw a kill of the flags was supposed to
be per-block we are scanning and instead was outside that loop and never
cleared. It requires a quite contrived test case to hit this as you have
to have multiple levels of successors and interleave them with kills.
I've included such a test case here.

This is another bug found testing SLH and extracted to its own focused
patch.

llvm-svn: 336876
2018-07-12 01:43:21 +00:00
Craig Topper be996bd2d9 [X86] Add patterns to use VMOVSS/SD zero masking for scalar f32/f64 select with zero.
These showed up in some of the upgraded FMA code. We really need to improve these test cases more, but this helps for now.

llvm-svn: 336875
2018-07-12 00:54:40 +00:00
Chandler Carruth 1c8234f639 [x86] Fix EFLAGS copy lowering to correctly handle walking past uses in
multiple successors where some of the uses end up killing the EFLAGS
register.

There was a bug where rather than skipping to the next basic block
queued up with uses once we saw a kill, we stopped processing the blocks
entirely. =/

Test case produces completely nonsensical code w/o this tiny fix.

This was found testing Speculative Load Hardening and split out of that
work.

Differential Revision: https://reviews.llvm.org/D49211

llvm-svn: 336874
2018-07-12 00:52:50 +00:00
Craig Topper 034adf2683 [X86] Remove and autoupgrade the scalar fma intrinsics with masking.
This converts them to what clang is now using for codegen. Unfortunately, there seem to be a few kinks to work out still. I'll try to address with follow up patches.

llvm-svn: 336871
2018-07-12 00:29:56 +00:00
Craig Topper 38b290f7d7 [X86] Remove patterns for inserting a load into a zero vector.
We can instead block the load folding isProfitableToFold. Then isel will emit a register->register move for the zeroing part and a separate load. The PostProcessISelDAG should be able to remove the register->register move.

This saves us patterns and fixes the fact that we only had unaligned load patterns. The test changes show places where we should have been using an aligned load.

llvm-svn: 336828
2018-07-11 18:09:04 +00:00
Andrea Di Biagio 483db141e3 [X86] Fix MayLoad/HasSideEffect flag for (V)MOVLPSrm instructions.
Before revision 336728, the "mayLoad" flag for instruction (V)MOVLPSrm was
inferred directly from the "default" pattern associated with the instruction
definition.

r336728 removed special node X86Movlps, and all the patterns associated to it.
Now instruction (V)MOVLPSrm doesn't have a pattern associated to it, and the
'mayLoad/hasSideEffects' flags are left unset.

When the instruction info is emitted by tablegen, method
CodeGenDAGPatterns::InferInstructionFlags() sees that (V)MOVLPSrm doesn't have a
pattern, and flags are undefined. So, it conservatively sets the
"hasSideEffects" flag for it.

As a consequence, we were losing the 'mayLoad' flag, and we were gaining a
'hasSideEffect' flag in its place.
This patch fixes the issue (originally reported by Michael Holmen).

The mca tests show the differences in the instruction info flags.  Instructions
that were affected by this problem were: MOVLPSrm/VMOVLPSrm/VMOVLPSZ128rm.

Differential Revision: https://reviews.llvm.org/D49182

llvm-svn: 336818
2018-07-11 15:27:50 +00:00
Craig Topper 02867f0fa3 [X86] The TEST instruction is eliminated when BSF/TZCNT is used
Summary:
These changes cover the PR#31399.
Now the ffs(x) function is lowered to (x != 0) ? llvm.cttz(x) + 1 : 0
and it corresponds to the following llvm code:
  %cnt = tail call i32 @llvm.cttz.i32(i32 %v, i1 true)
  %tobool = icmp eq i32 %v, 0
  %.op = add nuw nsw i32 %cnt, 1
  %add = select i1 %tobool, i32 0, i32 %.op
and x86 asm code:
  bsfl     %edi, %ecx
  addl     $1, %ecx
  testl    %edi, %edi
  movl     $0, %eax
  cmovnel  %ecx, %eax
In this case the 'test' instruction can't be eliminated because
the 'add' instruction modifies the EFLAGS, namely, ZF flag
that is set by the 'bsf' instruction when 'x' is zero.

We now produce the following code:
  bsfl     %edi, %ecx
  movl     $-1, %eax
  cmovnel  %ecx, %eax
  addl     $1, %eax

Patch by Ivan Kulagin

Reviewers: davide, craig.topper, spatel, RKSimon

Reviewed By: craig.topper

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D48765

llvm-svn: 336768
2018-07-11 06:57:42 +00:00
Craig Topper 1d6a80cd95 [X86] Remove some composite MOVSS/MOVSD isel patterns.
These patterns looked for a MOVSS/SD followed by a scalar_to_vector. Or a scalar_to_vector followed by a load.

In both cases we emitted a MOVSS/SD for the MOVSS/SD part, a REG_CLASS for the scalar_to_vector, and a MOVSS/SD for the load.

But we have patterns that do each of those 3 things individually so there's no reason to build large patterns.

Most of the test changes are just reorderings. The one test that had a meaningful change is pr30430.ll and it appears to be a regression. But its doing -O0 so I think it missed a lot of opportunities and was just getting lucky before.

llvm-svn: 336762
2018-07-11 04:51:40 +00:00
Craig Topper 27c77fe4ce [X86] Remove AddedComplexity from all patterns that use X86vzmovl as their root.
Some added 20 and some added 15. Its unclear when to use which value and whether they are required at all.

This patch removes them all. If we start finding real world issues we may need to add them back with proper tests.

llvm-svn: 336735
2018-07-10 22:23:54 +00:00
Craig Topper 860ab496d3 [X86] Teach X86InstrInfo::commuteInstructionImpl to use MOVSD/MOVSS for BLEND under optsize when the immediate allows it.
Isel currently emits movss/movsd a lot of the time and an accidental double commute turns it into a blend.

Ideally we'd select blend directly in isel under optspeed and not rely on the double commute to create blend.

llvm-svn: 336731
2018-07-10 22:02:23 +00:00
Craig Topper dea0b88b04 [X86] Remove X86ISD::MOVLPS and X86ISD::MOVLPD. NFCI
These ISD nodes try to select the MOVLPS and MOVLPD instructions which are special load only instructions. They load data and merge it into the lower 64-bits of an XMM register. They are logically equivalent to our MOVSD node plus a load.

There was only one place in X86ISelLowering that used MOVLPD and no places that selected MOVLPS. The one place that selected MOVLPD had to choose between it and MOVSD based on whether there was a load. But lowering is too early to tell if the load can really be folded. So in isel we have patterns that use MOVSD for MOVLPD if we can't find a load.

We also had patterns that select the MOVLPD instruction for a MOVSD if we can find a load, but didn't choose the MOVLPD ISD opcode for some reason.

So it seems better to just standardize on MOVSD ISD opcode and manage MOVSD vs MOVLPD instruction with isel patterns.

llvm-svn: 336728
2018-07-10 21:00:22 +00:00
Craig Topper fb302d0198 [X86] Remove dead SDNode object from X86InstrFragmentsSIMD.td. NFC
It points to an opcode that doesn't exist.

llvm-svn: 336720
2018-07-10 20:03:51 +00:00
Craig Topper 04ded1ac1f [X86] Remove AddedComplexity from register form of NOT. NFCI
I believe isProfitableToFold will stop the load folding that this was intended to overcome.

Given an (xor load, -1), isProfitableToFold will see that the immediate can be folded with the xor using a one byte immediate since it can be sign extended. It doesn't know about NOT, but the one byte immediate check is enough to stop the fold.

llvm-svn: 336712
2018-07-10 19:09:00 +00:00
Craig Topper 0f6275ab43 [X86] Remove AddedComplexity from MMX_X86movw2d patterns.
There were only 3 patterns with this node as a root and they all the same AddedComplexity. So this doesn't really do anything.

llvm-svn: 336711
2018-07-10 18:41:58 +00:00
Alexander Ivchenko 48ca0550dd [GlobalISel][X86_64] Support for G_SITOFP
The instruction selection is automatically handled by tablegen

llvm-svn: 336703
2018-07-10 16:38:35 +00:00
Simon Pilgrim d32ca2c0b7 [X86][SSE] Prefer BLEND(SHL(v,c1),SHL(v,c2)) over MUL(v, c3)
Now that rL336250 has landed, we should prefer 2 immediate shifts + a shuffle blend over performing a multiply. Despite the increase in instructions, this is quicker (especially for slow v4i32 multiplies), avoid loads and constant pool usage. It does mean however that we increase register pressure. The code size will go up a little but by less than what we save on the constant pool data.

This patch also adds support for v16i16 to the BLEND(SHIFT(v,c1),SHIFT(v,c2)) combine, and also prevents blending on pre-SSE41 shifts if it would introduce extra blend masks/constant pool usage.

Differential Revision: https://reviews.llvm.org/D48936

llvm-svn: 336642
2018-07-10 07:58:33 +00:00
Craig Topper 08b81a5508 [X86] Use IsProfitableToFold to block vinsertf128rm in favor of insert_subreg instead of artifically increasing pattern complexity to give priority.
This is a much more direct way to solve the issue than just giving extra priority.

llvm-svn: 336639
2018-07-10 06:19:54 +00:00
Craig Topper db73f56489 [X86] Remove some seemingly unnecessary patterns.
We're missing the EVEX equivalents of these patterns and seem to get along fine.

I think we end up with X86vzload for the obvious IR cases that would produce this DAG.

llvm-svn: 336638
2018-07-10 05:31:42 +00:00
Craig Topper 866a377e91 [X86] Correct vfixupimm load patterns to look for an integer load, not a floating point load bitcasted to integer.
DAG combine wouldn't let a floating point load bitcasted to integer exist. It would just be an integer load.

llvm-svn: 336626
2018-07-10 00:49:49 +00:00
Craig Topper e4f46e4f31 [X86] Remove FloatVT from X86VectorVTInfo in X86InstrAVX512.td
The only places it was used where places where VT was the same as FloatVT. So switch those uses to VT and drop it.

llvm-svn: 336624
2018-07-10 00:49:45 +00:00
Roman Lebedev 5ccae1750b [X86][TLI] DAGCombine: Unfold variable bit-clearing mask to two shifts.
Summary:
This adds a reverse transform for the instcombine canonicalizations
that were added in D47980, D47981.

As discussed later, that was worse at least for the code size,
and potentially for the performance, too.

https://rise4fun.com/Alive/Zmpl

Reviewers: craig.topper, RKSimon, spatel

Reviewed By: spatel

Subscribers: reames, llvm-commits

Differential Revision: https://reviews.llvm.org/D48768

llvm-svn: 336585
2018-07-09 19:06:42 +00:00
Craig Topper 47170b3153 [X86] In combineFMA, make sure we bitcast the result of isFNEG back the expected type before creating the new FMA node.
Previously, we were creating malformed SDNodes, but nothing noticed because the type constraints prevented isel from noticing.

llvm-svn: 336566
2018-07-09 17:43:24 +00:00
Craig Topper e9cff7d47b [X86] Remove some patterns that include a bitcast of a floating point load to an integer type.
DAG combine should have converted the type of the load.

llvm-svn: 336557
2018-07-09 16:03:02 +00:00
Craig Topper 16ee4b4957 [X86] Remove some patterns that seems to be unreachable.
These patterns mapped (v2f64 (X86vzmovl (v2f64 (scalar_to_vector FR64:$src)))) to a MOVSD and an zeroing XOR. But the complexity of a pattern for (v2f64 (X86vzmovl (v2f64))) that selects MOVQ is artificially and hides this MOVSD pattern.

Weirder still, the SSE version of the pattern was explicitly blocked on SSE41, but yet we had copied it to AVX and AVX512.

llvm-svn: 336556
2018-07-09 16:03:01 +00:00
Craig Topper 22330c700b [X86] Remove some seemingly unnecessary AddedComplexity lines.
Looking at the generated tables this didn't seem to make an obvious difference in pattern priority.

llvm-svn: 336555
2018-07-09 16:02:59 +00:00
Craig Topper b8145ec667 [X86] Improve the message for some asserts. Remove an if that is guaranteed true by said asserts.
This replaces some asserts in lowerV2F64VectorShuffle with the similar asserts from lowerVIF64VectorShuffle which are more readable. The original asserts mentioned a blend, but there's no guarantee that it is a blend.

Also remove an if that the asserts prove is always true. Mask[0] is always less than 2 and Mask[1] is always at least 2. Therefore (Mask[0] >= 2) + (Mask[1] >= 2) == 1 must wlays be true.

llvm-svn: 336517
2018-07-09 01:52:56 +00:00
Craig Topper c98c675f03 [X86] Remove an AddedComplexity line that seems unnecessary.
It only existed on SSE and AVX version. AVX512 version didn't have it.

I checked the generated table and this didn't seem necessary to creat a match preference.

llvm-svn: 336516
2018-07-08 22:57:33 +00:00
Roman Lebedev 75ce45376b [X86][Nearly NFC] Split SHLD/SHRD into their own WriteShiftDouble class
Summary:
{F6603964}
While there is still some discrepancies within that new group,
it is clearly separate from the other shifts.
And Agner's tables agree, these double shifts are clearly
different from the normal shifts/rotates.

I'm guessing `FeatureSlowSHLD` is related.

Indeed, a basic sched pair is *not* the /best/ match.
But keeping it in the WriteShift is /clearly/ not ideal either.
This can and likely will be fine-tuned later.

This is purely mechanical change, it does not change any numbers,
as the [lack of the change of] mca tests show.

Reviewers: craig.topper, RKSimon, andreadb

Reviewed By: craig.topper

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D49015

llvm-svn: 336515
2018-07-08 19:01:55 +00:00
Craig Topper 9e17073c21 [X86] Enhance combineFMA to look for FNEG behind an EXTRACT_VECTOR_ELT.
llvm-svn: 336514
2018-07-08 18:04:00 +00:00
Simon Pilgrim 2eced71ecf [X86][SSE] Combine v16i8 SHL by constants to multiplies
Pre-AVX512 (which can perform a quick extend/shift/truncate), extending to 2 v8i16 for the PMULLW and then truncating is more performant than relying on the generic PBLENDVB vXi8 shift path and uses a similar amount of mask constant pool data.

Differential Revision: https://reviews.llvm.org/D48963

llvm-svn: 336513
2018-07-08 12:47:50 +00:00
Simon Pilgrim 1795870bb8 [X86] Set scheduler classes to unsupported. NFCI.
While looking at PR36895 I noticed how much of the atom model was still setting schedules for unsupported SSE4+ instructions.

llvm-svn: 336512
2018-07-08 10:32:07 +00:00
Roman Lebedev fa988853bd [X86][Basically NFC] Sched: split WriteBitScan into WriteBSF/WriteBSR.
Summary:
Motivation: {F6597954}

This only does the mechanical splitting, does not actually change
any numbers, as the tests added in previous revision show.

Reviewers: craig.topper, RKSimon, courbet

Reviewed By: craig.topper

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D48998

llvm-svn: 336511
2018-07-08 09:50:25 +00:00
Craig Topper f1a981c705 [X86] Add back some intrinsic table entries lost in r336506.
llvm-svn: 336508
2018-07-08 01:23:49 +00:00
Craig Topper fdf3f1ff82 [X86] Add new scalar fma intrinsics with rounding mode that use f32/f64 types.
This allows us to handle masking in a very similar way to the default rounding version that uses llvm.fma.

I had to add new rounding mode CodeGenOnly instructions to support isel when we can't find a movss to grab the upper bits from to use the b_Int instruction.

Fast-isel tests have been updated to match new clang codegen.

We are currently having trouble folding fneg into the new intrinsic. I'm going to correct that in a follow up patch to keep the size of this one down.

A future patch will also remove the old intrinsics.

llvm-svn: 336506
2018-07-08 01:10:43 +00:00
Simon Pilgrim 23f9eddabe [SelectionDAG] Split float and integer isKnownNeverZero tests
Splits off isKnownNeverZeroFloat to handle +/- 0 float cases.

This will make it easier to be more aggressive with the integer isKnownNeverZero tests (similar to ValueTracking), use computeKnownBits etc.

Differential Revision: https://reviews.llvm.org/D48969

llvm-svn: 336492
2018-07-07 18:17:14 +00:00
Simon Pilgrim dc113dc7ed [CostModel][X86] Add SREM/UREM general and constant costs (PR38056)
We penalize general SDIV/UDIV costs but don't do the same for SREM/UREM.

This patch makes general vector SREM/UREM x20 as costly as scalar, the same approach as we do for SDIV/UDIV. The patch also extends the existing SDIV/UDIV constant costs for SREM/UREM - at the moment this means the additional cost of a MUL+SUB (see D48975).

Differential Revision: https://reviews.llvm.org/D48980

llvm-svn: 336486
2018-07-07 16:53:30 +00:00
Craig Topper 2c27e33a58 [X86] Merge INTR_TYPE_3OP_RM with INTR_TYPE_3OP. Remove unused INTR_TYPE_1OP_RM.
llvm-svn: 336476
2018-07-07 01:04:22 +00:00
Vedant Kumar b3091da3af Use Type::isIntOrPtrTy where possible, NFC
It's a bit neater to write T.isIntOrPtrTy() over `T.isIntegerTy() ||
T.isPointerTy()`.

I used Python's re.sub with this regex to update users:

  r'([\w.\->()]+)isIntegerTy\(\)\s*\|\|\s*\1isPointerTy\(\)'

llvm-svn: 336462
2018-07-06 20:17:42 +00:00
Craig Topper f61c631b25 [X86] Remove patterns for MOVLPD/MOVLPS nodes with integer types.
Lowering shouldn't generate these. If we need to use them for integer types, it should use a bitcast.

llvm-svn: 336458
2018-07-06 18:47:57 +00:00
Craig Topper 77edbffabd [X86] Add more FMA3 memory folding patterns. Remove patterns that are no longer needed.
We've removed the legacy FMA3 intrinsics and are now using llvm.fma and extractelement/insertelement. So we don't need patterns for the nodes that could only be created by the old intrinscis. Those ISD opcodes still exist because we haven't dropped the AVX512 intrinsics yet, but those should go to EVEX instructions.

llvm-svn: 336457
2018-07-06 18:47:55 +00:00
Craig Topper c60e1807b3 [X86] Remove FMA4 scalar intrinsics. Use llvm.fma intrinsic instead.
The intrinsics can be implemented with a f32/f64 llvm.fma intrinsic and an insert into a zero vector.

There are a couple regressions here due to SelectionDAG not being able to pull an fneg through an extract_vector_elt. I'm not super worried about this though as InstCombine should be able to do it before we get to SelectionDAG.

llvm-svn: 336416
2018-07-06 07:14:41 +00:00
Craig Topper 7b35585ff1 [X86] Remove all of the avx512 masked packed fma intrinsics. Use llvm.fma or unmasked 512-bit intrinsics with rounding mode.
This upgrades all of the intrinsics to use fneg instructions to convert fma into fmsub/fnmsub/fnmadd/fmsubadd. And uses a select instruction for masking.

This matches how clang uses the intrinsics these days.

llvm-svn: 336409
2018-07-06 03:42:09 +00:00
Maksim Panchenko 89e4abe7b7 [X86][Disassembler] Fix LOCK prefix disassembler support
Summary:
If LOCK prefix is not the first prefix in an instruction, LLVM
disassembler silently drops the prefix.

The fix is to select a proper instruction with a builtin LOCK prefix if
one exists.

Reviewers: craig.topper

Reviewed By: craig.topper

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D49001

llvm-svn: 336400
2018-07-05 23:32:42 +00:00
Craig Topper 88d361e976 [X86] Remove the last of the 'x86.fma.' intrinsics and autoupgrade them to 'llvm.fma'. Add upgrade tests for all.
Still need to remove the AVX512 masked versions.

llvm-svn: 336383
2018-07-05 18:43:58 +00:00
Craig Topper 4fe321d1ce [X86] Add SHUF128 to target shuffle decoding.
Differential Revision: https://reviews.llvm.org/D48954

llvm-svn: 336376
2018-07-05 17:10:17 +00:00
Simon Pilgrim 8c3765dc6b [CostModel][X86] Add UDIV/UREM by pow2 costs
Normally InstCombine would have simplified these to SRL/AND instructions but we may still see these during SLP vectorization etc.

llvm-svn: 336371
2018-07-05 16:56:28 +00:00
Craig Topper 350c5f1881 [X86] Remove X86 specific scalar FMA intrinsics and upgrade to tart independent FMA and extractelement/insertelement.
llvm-svn: 336315
2018-07-05 06:52:55 +00:00
Craig Topper 2db909cfae [X86] Remove some isel patterns for X86ISD::SELECTS that specifically looked for the v1i1 mask to have come from a scalar_to_vector from GR8.
We have patterns for SELECTS that top at v1i1 and we have a pattern for (v1i1 (scalar_to_vector GR8)). The patterns being removed here do the same thing as the two other patterns combined so there is no need for them.

llvm-svn: 336305
2018-07-05 03:01:29 +00:00
Craig Topper 95eb88abfe [X86] Add support for combining FMSUB/FNMADD/FNMSUB ISD nodes with an fneg input.
Previously we could only negate the FMADD opcodes. This used to be mostly ok when we lowered FMA intrinsics during lowering. But with the move to llvm.fma from target specific intrinsics, we can combine (fneg (fma)) to (fmsub) earlier. So if we start with (fneg (fma (fneg))) we would get stuck at (fmsub (fneg)).

This patch fixes that so we can also combine things like (fmsub (fneg)).

llvm-svn: 336304
2018-07-05 02:52:56 +00:00
Craig Topper e4b9257b69 [X86] Remove some of the packed FMA3 intrinsics since we no longer use them in clang.
There's a regression in here due to inability to combine fneg inputs of X86ISD::FMSUB/FNMSUB/FNMADD nodes.

More removals to come, but I wanted to stop and fix the regression that showed up in this first.

llvm-svn: 336303
2018-07-05 02:52:54 +00:00
Yvan Roux eaececf5e0 [MachineOutliner] Fix typo in getOutliningCandidateInfo function name
getOutlininingCandidateInfo -> getOutliningCandidateInfo

Differential Revision: https://reviews.llvm.org/D48867

llvm-svn: 336285
2018-07-04 15:37:08 +00:00
Simon Pilgrim c3e1617bf9 [X86][SSE] Blend any v8i16/v4i32 shift with 2 shift unique values (REAPPLIED)
We were only doing this for basic blends, despite shuffle lowering now being good enough to handle more complex blends. This means that the two v8i16 splat shifts are performed in parallel instead of serially as the general shift case.

Reapplied with a fixed (extra null tests) version of rL336113 after reversion in rL336189 - extra test case added at rL336247.

llvm-svn: 336250
2018-07-04 09:12:48 +00:00
Fangrui Song 78ab286aa0 [X86][AsmParser] Fix inconsistent declaration parameter name in r336218
llvm-svn: 336232
2018-07-03 21:40:03 +00:00
Craig Topper e317533dcf [X86] Remove repeated 'the' from multiple comments that have been copy and pasted. NFC
llvm-svn: 336226
2018-07-03 20:39:55 +00:00
Craig Topper adc51ae425 [X86][AsmParser] Rework the in/out (%dx) hack one more time.
This patch adds a new token type specifically for (%dx). We will now always create this token when we parse (%dx). After all operands have been parsed, if the mnemonic is in/out we'll morph this token to a regular register token. Otherwise we keep it as the special DX token which won't match any instructions.

This removes the need for passing Mnemonic through the parsing functions. It also seems closer to gas where when its used on the wrong instruction it just gets diagnosed as an invalid operand rather than a bad memory address.

llvm-svn: 336218
2018-07-03 18:07:30 +00:00
Craig Topper bc598f0d61 [X86][AsmParser] Don't consider %eip as a valid register outside of 32-bit mode.
This might make the error message added in r335668 unneeded, but I'm not sure yet.

The check for RIP is technically unnecessary since RIP is in GR64, but that fact is kind of surprising so be explicit.

llvm-svn: 336217
2018-07-03 17:40:51 +00:00
Benjamin Kramer fd171f2f89 Revert "[X86][SSE] Blend any v8i16/v4i32 shift with 2 shift unique values"
This reverts commit r336113. It causes crashes.

llvm-svn: 336189
2018-07-03 11:15:17 +00:00
Krzysztof Parzyszek fd97494984 [X86] Add phony registers for high halves of regs with low halves
Add registers still missing after r328016 (D43353):
- for bits 15-8  of SI, DI, BP, SP (*H), and R8-R15 (*BH),
- for bits 31-16 of R8-R15 (*WH).

Thanks to Craig Topper for pointing it out.

llvm-svn: 336134
2018-07-02 19:05:09 +00:00
Craig Topper 56440b9745 [X86] Don't use aligned load/store instructions for fp128 if the load/store isn't aligned.
Similarily, don't fold fp128 loads into SSE instructions if the load isn't aligned. Unless we're targeting an AMD CPU that doesn't check alignment on arithmetic instructions.

Should fix PR38001

llvm-svn: 336121
2018-07-02 17:01:54 +00:00
Simon Pilgrim 2bc8e079f2 [X86][SSE] Blend any v8i16/v4i32 shift with 2 shift unique values
We were only doing this for basic blends, despite shuffle lowering now being good enough to handle more complex blends. This means that the two v8i16 splat shifts are performed in parallel instead of serially as the general shift case.

llvm-svn: 336113
2018-07-02 15:14:07 +00:00
Alex Bradbury c48908781d [X86] Use addAliasForDirective to support the .word directive (reland)
The X86 asm parser currently has custom parsing logic for .word. Rather than
use this custom logic, we can just use addAliasForDirective to enable the
reuse of AsmParser::parseDirectiveValue.

See also similar changes to Sparc (rL333078), AArch64 (rL333077), and Hexagon
(rL332607) backends.

Differential Revision: https://reviews.llvm.org/D47004

This is a fixed reland of rL336100. This should have been caught in 
pre-commit testing so apologies for the noise.

llvm-svn: 336104
2018-07-02 13:49:52 +00:00
Alex Bradbury c000e4dcb5 Revert r336100
This was a bad change. .word == 2byte on x86.

llvm-svn: 336103
2018-07-02 13:43:45 +00:00
Alex Bradbury 42485ec9ca [X86] Use addAliasForDirective to support the .word directive
The X86 asm parser currently has custom parsing logic for .word. Rather than 
use this custom logic, we can just use addAliasForDirective to enable the 
reuse of AsmParser::parseDirectiveValue.

See also similar changes to Sparc (rL333078), AArch64 (rL333077), and Hexagon 
(rL332607) backends.

Differential Revision: https://reviews.llvm.org/D47004

llvm-svn: 336100
2018-07-02 13:37:15 +00:00
Simon Pilgrim e389434a8a [X86][BtVer2] Added Jaguar FPU Pipe0/1 uop counters to permit basic llvm-exegesis uop testing
We don't have PMCs to cover many of the Jaguar resources but we can at least monitor the FPU issue pipes which give an indication of the fpu uop count, just not the execution resources.

llvm-svn: 336089
2018-07-02 09:15:01 +00:00
Craig Topper e06dabd3ca [X86] Put some cases in switch statements back on one line to be more compact and make it easier to see the similarities. NFC
It looks like someone ran clang-format over this entire file which reformatted these switches into a multiline form. But I think the single line form is more useful here.

llvm-svn: 336077
2018-07-02 06:42:42 +00:00
Craig Topper 0661f67296 [X86] Remove FMA3Info DenseMap. Break into sorted tables that we can binary search.
I separated out the rounding and broadcast groups into their own tables because it made the ordering in the main table easier.

Further splitting of the tables might make it possible to directly index using bits from the TSFlags, but its probably not worth it right now.

llvm-svn: 336075
2018-07-02 06:23:39 +00:00
Craig Topper c004aa6c5f [X86] Remove the places that return nullptr from X86InstrInfo::commuteInstructionImpl.
findCommutedOpIndices does the pre-checking for whether commuting is possible. There should be no reason left to fail in commuteInstructionImpl. There was a missing pre-check that I've added there and changed the check to an assert in commuteInstructionImpl.

llvm-svn: 336070
2018-07-01 23:27:41 +00:00
Craig Topper 4d8ec92fb0 [X86][Disassembler] Remove TYPE_BNDR from translateImmediate.
I've check the disassembler tables and this shouldn't be reachable. Which is good since if it was reachable there should have been a 'return' after the addOperand line.

llvm-svn: 336066
2018-07-01 17:50:29 +00:00
Craig Topper a2d30b3134 [X86] Remove unnecessary include. NFC
Leftover from when the pass contained a DenseMap before it switched to binary search.

llvm-svn: 336057
2018-07-01 05:54:22 +00:00
Craig Topper 4e78213ae4 [X86] Move the memory unfolding table creation into its own class and make it a ManagedStatic.
Also move the static folding tables, their search functions and the new class into new cpp/h files.

The unfolding table is effectively static data. It's just a different ordering and a subset of the static folding tables.

By putting it in a separate ManagedStatic we ensure we only have one copy instead of one per X86InstrInfo object. This way also makes it only get initialized when really needed.

llvm-svn: 336056
2018-07-01 05:47:49 +00:00
Craig Topper 84199deb17 [X86] Move the X86InstrFMA3Info class into the cpp file. Expose only a getFMA3Group free function. NFCI
The class only exists to hold a DenseMap and is only created as a ManagedStatic. It used to expose a single static method that outside code was expected to use.

This patch moves that static function out of the class and moves it implementation into the cpp file. It can now access the ManagedStatic directly by name without the need for the other static method that accessed the ManagedStatic.

llvm-svn: 336055
2018-06-30 22:38:42 +00:00
Craig Topper 731740744f [X86] Remove the AsmName from the HAX,HDX,HCX,HBX,HSI,HDI,HBP,HSP,HIP artificial registers so they can't be parsed by the assembly parser.
There are no instructions that use them so they weren't causing any bad matches. But they weren't being diagnosed as "invalid register name" if they were used and would instead trigger some form of invalid operand.

llvm-svn: 336054
2018-06-30 22:38:41 +00:00
Craig Topper 1b7b9b8596 [X86] Use MVT::i8 for scalar shift amounts since that is what they ultimately need to legalize to.
I believe all of these are constants so legalizing them should be pretty trivial, but this saves a step.

In one case it looks like we may have been creating a shift amount larger than the shift input itself.

llvm-svn: 336052
2018-06-30 18:30:31 +00:00
Craig Topper 5f28d50d27 [X86] When combining load to BZHI, make sure we create the shift instruction with an i8 type.
This combine runs pretty late and causes us to introduce a shift after the op legalization phase has run. We need to be sure we create the shift with the proper type for the shift amount. If we don't do this, we will still re-legalize the operation properly, but we won't get a chance to fully optimize the truncate that gets inserted.

So this patch adds the necessary truncate when the shift is created. I've also narrowed the subtract that gets created to always be an i32 type. The truncate would have trigered SimplifyDemandedBits to optimize it anyway. But using a more appropriate VT here is free and saves an optimization step.

llvm-svn: 336051
2018-06-30 17:49:42 +00:00
Craig Topper 59f2f38fe0 [X86] Remove masking from avx512 rotate intrinsics. Use select in IR instead.
llvm-svn: 336035
2018-06-30 01:32:04 +00:00
Craig Topper 87b107dd69 [X86] Limit the number of target specific nodes emitted in LowerShiftParts
The important part is the creation of the SHLD/SHRD nodes. The compare and the conditional move can use target independent nodes that can be legalized on their own. This gives some opportunities to trigger the optimizations present in the lowering for those things. And its just better to limit the number of places we emit target specific nodes.

The changed test cases still aren't optimal.

Differential Revision: https://reviews.llvm.org/D48619

llvm-svn: 335998
2018-06-29 17:24:07 +00:00
Craig Topper 7c96f051d2 [X86] Use a std::vector for the memory unfolding table.
Previously we used a DenseMap which is costly to set up due to multiple full table rehashes as the size increases and causes the table to be reallocated.

This patch changes the table to a vector of structs. We now walk the reg->mem tables and push new entries in the mem->reg table for each row not marked TB_NO_REVERSE. Once all the table entries have been created, we sort the vector. Then we can use a binary search for lookups.

Differential Revision: https://reviews.llvm.org/D48585

llvm-svn: 335994
2018-06-29 17:11:26 +00:00
Simon Pilgrim aab8660e23 [X86][SSE] Support v16i8/v32i8 vector rotations
This uses the same technique as for shifts - split the rotation into 4/2/1-bit partial rotations and select those partials based on the amount bit, making use of PBLENDVB if available. This halves the use of PBLENDVB compared to expanding to shifts, which can be a slow op.

Unfortunately I haven't found a decent way to share much of this code with the shift equivalent.

Differential Revision: https://reviews.llvm.org/D48655

llvm-svn: 335957
2018-06-29 09:36:39 +00:00
Craig Topper 875e9f8fa4 [X86] Remove masking from the avx512 packed sqrt intrinsics. Use select in IR instead.
While there improve the coverage of the intrinsic testing and add fast-isel tests.

llvm-svn: 335944
2018-06-29 05:43:26 +00:00
Craig Topper 90317d1d94 [X86] Suppress load folding into and/or/xor if it will prevent matching btr/bts/btc.
This is a follow up to r335753. At the time I forgot about isProfitableToFold which makes this pretty easy.

Differential Revision: https://reviews.llvm.org/D48706

llvm-svn: 335895
2018-06-28 17:58:01 +00:00
Jonas Devlieghere b757fc3878 Revert "Re-land r335297 "[X86] Implement more of x86-64 large and medium PIC code models""
Reverting because this is causing failures in the LLDB test suite on
GreenDragon.

  LLVM ERROR: unsupported relocation with subtraction expression, symbol
  '__GLOBAL_OFFSET_TABLE_' can not be undefined in a subtraction
  expression

llvm-svn: 335894
2018-06-28 17:56:43 +00:00
Jessica Paquette dafa198c96 [MachineOutliner] Define MachineOutliner support in TargetOptions
Targets should be able to define whether or not they support the outliner
without the outliner being added to the pass pipeline. Before this, the
outliner pass would be added, and ask the target whether or not it supports the
outliner.

After this, it's possible to query the target in TargetPassConfig, before the
outliner pass is created. This ensures that passing -enable-machine-outliner
will not modify the pass pipeline of any target that does not support it.

https://reviews.llvm.org/D48683

llvm-svn: 335887
2018-06-28 17:45:43 +00:00
Matthias Braun da5e7e11d1 SelectionDAGBuilder, mach-o: Skip trap after noreturn call (for Mach-O)
Add NoTrapAfterNoreturn target option which skips emission of traps
behind noreturn calls even if TrapUnreachable is enabled.

Enable the feature on Mach-O to save code size; Comments suggest it is
not possible to enable it for the other users of TrapUnreachable.

rdar://41530228

DifferentialRevision: https://reviews.llvm.org/D48674
llvm-svn: 335877
2018-06-28 17:00:45 +00:00
Hans Wennborg a257376003 s/TablesChecked/TableChecked/ after r335823
llvm-svn: 335831
2018-06-28 10:24:38 +00:00
Benjamin Kramer f9613b2995 Unify sorted asserts to use the existing atomic pattern
These are all benign races and only visible in !NDEBUG. tsan complains
about it, but a simple atomic bool is sufficient to make it happy.

llvm-svn: 335823
2018-06-28 10:03:45 +00:00
Craig Topper ec5d568ac1 [X86] Use PatFrag with hardcoded numbers for FROUND_NO_EXC/FROUND_CURRENT instead of ImmLeafs with predicates where one of the two numbers was hardcoded.
This more efficient for the isel table generator since we can use CheckChildInteger instead of MoveChild, CheckPredicate, MoveParent. This reduced the table size by 1-2K.

I wish there was a way to share the values with X86BaseInfo.h and still use a PatFrag like this. These numbers are fixed by the X86 intrinsic spec going back many years and we should never need to change them. So we shouldn't waste table bytes to support sharing.

llvm-svn: 335806
2018-06-28 01:45:44 +00:00
Craig Topper ab70f58891 [X86] Change how we prefer shift by immediate over folding a load into a shift.
BMI2 added new shift by register instructions that have the ability to fold a load.

Normally without doing anything special isel would prefer folding a load over folding an immediate because the load folding pattern has higher "complexity". This would require an instruction to move the immediate into a register. We would rather fold the immediate instead and have a separate instruction for the load.

We used to enforce this priority by artificially lowering the complexity of the load pattern.

This patch changes this to instead reject the load fold in isProfitableToFoldLoad if there is an immediate. This is more consistent with other binops and feels less hacky.

llvm-svn: 335804
2018-06-28 00:47:41 +00:00
Benjamin Kramer e214f046af [X86] Make folding table checking threadsafe
This is a benign race, but tsan likes to complain about it. Just make it
happy.

llvm-svn: 335788
2018-06-27 21:01:53 +00:00
Craig Topper 880e34ed45 [X86] In X86DAGToDAGISel::PreprocessISelDAG, make sure we don't access N after we delete it.
If we turn X86ISD::AND into ISD::AND, we delete N. But we were continuing onto the next block of code even though N no longer existed.

Just happened to notice it. I assume asan didn't notice it because we explicitly unpoison deleted nodes and give them a DELETE_NODE opcode.

llvm-svn: 335787
2018-06-27 20:58:46 +00:00
Fangrui Song b0d57a535b [X86] Fix unmatched parenthesis in r335768
llvm-svn: 335769
2018-06-27 19:12:07 +00:00
Craig Topper 6bea2c7f9b [X86] Teach the disassembler to use %eiz/%riz instead of NoRegister when the SIB byte is present, but doesn't encode an index register and there was another shorter encoding that would achieve the same result.
The %eiz/%riz are dummy registers that force the encoder to emit a SIB byte when it normally wouldn't. By emitting them in the disassembly output we ensure that assembling the disassembler output would also produce a SIB byte.

This should match the behavior of objdump from binutils.

llvm-svn: 335768
2018-06-27 19:03:36 +00:00
Craig Topper 812fcb35e7 [X86] Use bts/btr/btc for single bit set/clear/complement of a variable bit position
If we are just modifying a single bit at a variable bit position we can use the BT* instructions to make the change instead of shifting a 1(or rotating a -1) and doing a binop. These instruction also ignore the upper bits of their index input so we can also remove an and if one is present on the index.

Fixes PR37938.

llvm-svn: 335754
2018-06-27 16:47:39 +00:00
Craig Topper 31cbe75b3b [X86] Rename the autoupgraded of packed fp compare and fpclass intrinsics that don't take a mask as input to exclude '.mask.' from their name.
I think the intrinsics named 'avx512.mask.' should refer to the previous behavior of taking a mask argument in the intrinsic instead of using a 'select' or 'and' instruction in IR to accomplish the masking. This is more consistent with the goal that eventually we will have no intrinsics that have masking builtin. When we reach that goal, we should have no intrinsics named "avx512.mask".

llvm-svn: 335744
2018-06-27 15:57:53 +00:00
Craig Topper 33aba0eb4c [X86] Don't store register and memory FMA3 opcodes in the same X86InstrFMA3Group.
Nothing was using this relationship. By splitting them we no longer need to worry about register or memory entries being empty in a group.

The memory folding tables in X86InstrInfo.cpp can be used to access this relationship if needed.

llvm-svn: 335694
2018-06-27 00:42:24 +00:00
Jessica Paquette 67599c2e1e [X86][AsmParser] Recommit r335658
Recommit of r335658 so that it does not change the behaviour of any
existing error output.

llvm-svn: 335668
2018-06-26 21:30:34 +00:00
Jessica Paquette 0a80af0761 Revert "[X86][AsmParser] Emit an error when RIP-relative instructions are used in 32-bit mode"
This reverts commit 4850a9aae8b38c7deadc103d634ec7397e6c323b.

It caused MC/X86/x86_errors.s to fail. Will fix and recommit shortly.

llvm-svn: 335660
2018-06-26 20:57:19 +00:00
Jessica Paquette 0e40d4bfc3 [X86][AsmParser] Emit an error when RIP-relative instructions are used in 32-bit mode
Right now, when we use RIP-relative instructions in 32-bit mode, we'll just
assert and crash.

This adds an error message which tells the user that they can't do that in
32-bit mode, so that we don't crash (and also can see the issue outside of
assert builds).

llvm-svn: 335658
2018-06-26 20:33:46 +00:00
Simon Pilgrim aa2bf2be31 [TargetLowering] isVectorClearMaskLegal - use ArrayRef<int> instead of const SmallVectorImpl<int>&
This is more generic and matches isShuffleMaskLegal.

Differential Revision: https://reviews.llvm.org/D48591

llvm-svn: 335605
2018-06-26 14:15:31 +00:00
Than McIntosh 3190993a02 [X86,ARM] Retain split-stack prolog check for sibling calls
Summary:
If a routine with no stack frame makes a sibling call, we need to
preserve the stack space check even if the local stack frame is empty,
since the call target could be a "no-split" function (in which case
the linker needs to be able to fix up the prolog sequence in order to
switch to a larger stack).

This fixes PR37807.

Reviewers: cherry, javed.absar

Subscribers: srhines, llvm-commits

Differential Revision: https://reviews.llvm.org/D48444

llvm-svn: 335604
2018-06-26 14:11:30 +00:00
Simon Pilgrim bfaa09220b [X86] Just use ArrayRef instead of SmallVectorImpl in a few static method arguments. NFCI.
llvm-svn: 335590
2018-06-26 10:45:41 +00:00
Craig Topper 08dae1682d [X86] Don't use getScalarShiftAmountTy to get the immediate type for target specific VSHLDQ/VSRLDQ nodes.
These opcodes have a fixed type of i8 for their immediate and shouldn't have anything to do with the scalar shift amount used by target independent shift nodes.

llvm-svn: 335578
2018-06-26 04:53:42 +00:00
Craig Topper c42ed4e3c4 [X86] Use XOR for SUB (C, X) during isel if will help fold an immediate
Summary:
Same idea as D48529, but restricted to X86 and done very late to avoid any surprises where subtract might be better for DAG combining.

This seems like the safest way to do this trick. And we consider doing it as a DAG combine later.

Reviewers: spatel, RKSimon

Reviewed By: spatel

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D48557

llvm-svn: 335575
2018-06-26 03:11:15 +00:00
Craig Topper 689e363ff2 [X86] Redefine avx512 packed fpclass intrinsics to return a vXi1 mask and implement the mask input argument using an 'and' IR instruction.
This recommits r335562 and 335563 as a single commit.

The frontend will surround the intrinsic with the appropriate marshalling to/from a scalar type to match the sigature of the builtin that software expects.

By exposing the vXi1 type directly in the llvm intrinsic we make it available to optimizers much earlier. This can enable the scalar marshalling code to be optimized away.

llvm-svn: 335568
2018-06-26 01:37:02 +00:00
Craig Topper 6f4fdfa9af Revert r335562 and 335563 "[X86] Redefine avx512 packed fpclass intrinsics to return a vXi1 mask and implement the mask input argument using an 'and' IR instruction."
These were supposed to have been squashed to a single commit.

llvm-svn: 335566
2018-06-26 01:31:53 +00:00
Craig Topper 9b4322ce31 foo
llvm-svn: 335562
2018-06-26 00:43:34 +00:00
Craig Topper 913abc8b58 [X86] Simplify intrinsic table binary search to not require a temporary struct.
std::lower_bound doesn't require the thing to search for to be the same type as the table entries. We just need to define an appropriate comparison function that can take an table entry and an intrinsic number.

llvm-svn: 335518
2018-06-25 20:27:46 +00:00
Craig Topper 614f192471 [X86] Add comment about the sorting of the memory folding tables added in r335501.
llvm-svn: 335517
2018-06-25 20:11:16 +00:00
Reid Kleckner 88fee5fdbc Re-land r335297 "[X86] Implement more of x86-64 large and medium PIC code models"
The large code model allows code and data segments to exceed 2GB, which
means that some symbol references may require a displacement that cannot
be encoded as a displacement from RIP. The large PIC model even relaxes
the assumption that the GOT itself is within 2GB of all code. Therefore,
we need a special code sequence to materialize it:
  .LtmpN:
    leaq .LtmpN(%rip), %rbx
    movabsq $_GLOBAL_OFFSET_TABLE_-.LtmpN, %rax # Scratch
    addq %rax, %rbx # GOT base reg

From that, non-local references go through the GOT base register instead
of being PC-relative loads. Local references typically use GOTOFF
symbols, like this:
    movq extern_gv@GOT(%rbx), %rax
    movq local_gv@GOTOFF(%rbx), %rax

All calls end up being indirect:
    movabsq $local_fn@GOTOFF, %rax
    addq %rbx, %rax
    callq *%rax

The medium code model retains the assumption that the code segment is
less than 2GB, so calls are once again direct, and the RIP-relative
loads can be used to access the GOT. Materializing the GOT is easy:
    leaq _GLOBAL_OFFSET_TABLE_(%rip), %rbx # GOT base reg

DSO local data accesses will use it:
    movq local_gv@GOTOFF(%rbx), %rax

Non-local data accesses will use RIP-relative addressing, which means we
may not always need to materialize the GOT base:
    movq extern_gv@GOTPCREL(%rip), %rax

Direct calls are basically the same as they are in the small code model:
They use direct, PC-relative addressing, and the PLT is used for calls
to non-local functions.

This patch adds reasonably comprehensive testing of LEA, but there are
lots of interesting folding opportunities that are unimplemented.

I restricted the MCJIT/eh-lg-pic.ll test to Linux, since the large PIC
code model is not implemented for MachO yet.

Differential Revision: https://reviews.llvm.org/D47211

llvm-svn: 335508
2018-06-25 18:16:27 +00:00
Craig Topper 3cc6cb1d35 [X86] Sort the static memory folding tables by reg opcode. Remove the reg->mem DenseMaps in favor of binary search.
With the static tables sorted we can binary search them directly for reg->mem lookups. This removes 6 DenseMaps that had to be created when X86InstrInfo is constructed.

We still have one Mem->Reg DenseMap for the reverse direction. This is created just as before by walking the reg->mem arrays to populate it.

Differential Revision: https://reviews.llvm.org/D48527

llvm-svn: 335501
2018-06-25 17:26:56 +00:00
Craig Topper b9cb88a4b0 [X86] Allow base and index for gather instructions to appear in other order for Intel syntax.
llvm-svn: 335500
2018-06-25 17:26:51 +00:00
Craig Topper facea6b4a6 [X86] Block commuting operand 1 of FMA*_Int instructions in findThreeSrcCommutedOpIndices. Remove uncommutable returns from getThreeSrcCommuteCase/getFMA3OpcodeToCommuteOperands.
We should be blocking the operand while we are in the routine that tries to find commutable operand indices. Doing it later means we might have missed out on another valid set of operands we could have commuted.

The intrinsic case was the only case that could really prevent commuting in getFMA3OpcodeToCommuteOperands. All the other cases in getThreeSrcCommuteCase were not reachable conditions as they were protected by findThreeSrcCommutedOpIndices.

With that abort case pushed earlier, we can remove all the abort checks and replace with asserts.

llvm-svn: 335446
2018-06-25 06:05:37 +00:00
Craig Topper 3b18bdc46d [X86] Simplify some code by using isOneConstant. NFC
llvm-svn: 335437
2018-06-25 01:01:47 +00:00
Craig Topper 4331d6218d [X86] Remove the changes to combineScalarToVector made in r335037.
They appear to be untested other than the test case for p37879.ll and I believe we should be using SimplifyDemandedElts here to handle these cases.

llvm-svn: 335436
2018-06-25 00:21:53 +00:00
Craig Topper ecf7c5b75f [X86] Reduce the number of patterns needed for masked scalar ceil/floor isel.
The scalar to vector on the mask register should not be part of the patterns.

llvm-svn: 335435
2018-06-25 00:05:09 +00:00
Craig Topper 03523f6741 [X86] Regroup some isel patterns. NFC
For some reason the 64-bit patterns were separated from their 8/16/32-bit friends, but only for add/sub/mul. For and/or/xor they were together.

llvm-svn: 335429
2018-06-24 06:56:49 +00:00
Craig Topper 19772c89c7 [X86] Rename VFPCLASSSS and VFPCLASSSD internal instruction names to include a Z to match other EVEX instructions.
llvm-svn: 335428
2018-06-24 06:29:50 +00:00
Craig Topper d8d64a56b5 [X86] Make %eiz usage in 64-bit mode, force a 0x67 address size prefix. Fix some test CHECK lines.
llvm-svn: 335414
2018-06-23 06:15:04 +00:00
Craig Topper 2545529034 [X86] Teach disassembler to use %eip instead of %rip when 0x67 prefix is used on a rip-relative address.
llvm-svn: 335413
2018-06-23 06:03:48 +00:00
Craig Topper 68d64e3859 [X86][AsmParser] Improve base/index register checks.
-Ensure EIP isn't used with an index reigster.
-Ensure EIP isn't used as index register.
-Ensure base register isn't a vector register.
-Ensure eiz/riz usage matches the size of their base register.

llvm-svn: 335412
2018-06-23 05:53:00 +00:00
Craig Topper abdbb2c67a [X86][AsmParser] Rework that allows (%dx) to be used in place of %dx with in/out instructions.
Previously, to support (%dx) we left a wide open hole in our 16-bit memory address checking. This let this address value be used with any instruction without error in the parser. It would later fail in the encoder with an assertion failure on debug builds and who knows what on release builds.

This patch passes the mnemonic down to the memory operand parsing function so we can allow the (%dx) form only on specific instructions.

llvm-svn: 335403
2018-06-23 00:03:20 +00:00
Craig Topper 10e2f73793 [X86][AsmParser] Keep track of whether an explicit scale was specified while parsing an address in Intel syntax. Use it for improved error checking.
This allows us to check these:
-16-bit addressing doesn't support scale so we should error if we find one there.
-Multiplying ESP/RSP by a scale even if the scale is 1 should be an error because ESP/RSP can't be an index.

llvm-svn: 335398
2018-06-22 22:28:39 +00:00
Craig Topper 1d707539e4 [X86][AsmParser] In Intel syntax make sure we support ESP/RSP being the second register in memory expressions like [EAX+ESP].
By default, the second register gets assigned to the index register slot. But ESP can't be an index register so we need to swap it with the other register.

There's still a slight bug that we allow [EAX+ESP*1]. The existence of the multiply even though its with 1 should force ESP to the index register and trigger an error, but it doesn't currently.

llvm-svn: 335394
2018-06-22 21:57:24 +00:00
Craig Topper 9bc2c059c3 [X86] Don't accept (%si,%bp) 16-bit address expressions.
The second register is the index register and should only be %si or %di if used with a base register. And in that case the base register should be %bp or %bx.

This makes us compatible with gas.

We do still need to support both orders with Intel syntax which uses [bp+si] and [si+bp]

llvm-svn: 335384
2018-06-22 20:20:38 +00:00
Craig Topper c26c62e0e5 [X86][AsmParser] Allow (%bp,%si) and (%bp,%di) to be encoded without using a zero displacement.
(%bp) can't be encoded without a displacement. The encoding is instead used for displacement alone. So a 1 byte displacement of 0 must be used. But if there is an index register we can encode without a displacement.

llvm-svn: 335379
2018-06-22 19:42:21 +00:00
Craig Topper cd18bb523c [X86][AsmParser] Check for invalid 16-bit base register in Intel syntax.
llvm-svn: 335373
2018-06-22 17:50:40 +00:00
Craig Topper 22d1db122a [X86] Don't allow ESP/RSP to be used as an index register in assembly.
Fixes PR37892

llvm-svn: 335370
2018-06-22 17:15:58 +00:00
Mikhail Dvoretckii 0963562083 [X86] Changing the check for valid inputs in combineScalarToVector
Changing the logic of scalar mask folding to check for valid input types rather
than against invalid ones, making it more robust and fixing PR37879.

Differential Revision: https://reviews.llvm.org/D48366

llvm-svn: 335323
2018-06-22 08:28:05 +00:00
Reid Kleckner 3a2fd1c2f3 Revert r335297 "[X86] Implement more of x86-64 large and medium PIC code models"
MCJIT can't handle R_X86_64_GOT64 yet.

llvm-svn: 335300
2018-06-21 22:19:05 +00:00
Reid Kleckner 3286a6c896 [X86] Commit some comments that weren't in the medium code model patch
llvm-svn: 335298
2018-06-21 21:57:44 +00:00
Reid Kleckner 247fe6aeab [X86] Implement more of x86-64 large and medium PIC code models
Summary:
The large code model allows code and data segments to exceed 2GB, which
means that some symbol references may require a displacement that cannot
be encoded as a displacement from RIP. The large PIC model even relaxes
the assumption that the GOT itself is within 2GB of all code. Therefore,
we need a special code sequence to materialize it:
  .LtmpN:
    leaq .LtmpN(%rip), %rbx
    movabsq $_GLOBAL_OFFSET_TABLE_-.LtmpN, %rax # Scratch
    addq %rax, %rbx # GOT base reg

From that, non-local references go through the GOT base register instead
of being PC-relative loads. Local references typically use GOTOFF
symbols, like this:
    movq extern_gv@GOT(%rbx), %rax
    movq local_gv@GOTOFF(%rbx), %rax

All calls end up being indirect:
    movabsq $local_fn@GOTOFF, %rax
    addq %rbx, %rax
    callq *%rax

The medium code model retains the assumption that the code segment is
less than 2GB, so calls are once again direct, and the RIP-relative
loads can be used to access the GOT. Materializing the GOT is easy:
    leaq _GLOBAL_OFFSET_TABLE_(%rip), %rbx # GOT base reg

DSO local data accesses will use it:
    movq local_gv@GOTOFF(%rbx), %rax

Non-local data accesses will use RIP-relative addressing, which means we
may not always need to materialize the GOT base:
    movq extern_gv@GOTPCREL(%rip), %rax

Direct calls are basically the same as they are in the small code model:
They use direct, PC-relative addressing, and the PLT is used for calls
to non-local functions.

This patch adds reasonably comprehensive testing of LEA, but there are
lots of interesting folding opportunities that are unimplemented.

Reviewers: chandlerc, echristo

Subscribers: hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D47211

llvm-svn: 335297
2018-06-21 21:55:08 +00:00
Mikhail Dvoretckii 22c82af5c8 [x86] Lower some trunc + shuffle patterns to vpmov[q|d][b|w]
This should help in lowering the following four intrinsics:
 _mm256_cvtepi32_epi8
 _mm256_cvtepi64_epi16
 _mm256_cvtepi64_epi8
 _mm512_cvtepi64_epi8

Differential Revision: https://reviews.llvm.org/D46957

llvm-svn: 335238
2018-06-21 14:16:45 +00:00