During store promotion, we check whether the pointer was captured
to exclude potential reads from other threads. However, we're only
interested in captures before or inside the loop. Check this using
PointerMayBeCapturedBefore against the loop header.
Differential Revision: https://reviews.llvm.org/D100706
As noted in the FIXME there's a sort of agreement that the any
extra bits stored will be 0.
The generated code is pretty terrible. I was really hoping we
could use a tail undisturbed trick, but tail undisturbed no
longer applies to masked destinations in the current draft
spec.
Fingers crossed that it isn't common to do this. I doubt IR
from clang or the vectorizer would ever create this kind of store.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D100618
This is a partial port of AArch64TargetLowering::LowerCTPOP.
This custom lowering tries to uses NEON instructions to give a more efficient
CTPOP lowering when possible.
In the non-NEON/noimplicitfloat case, this should use the generic lowering
(see: https://godbolt.org/z/GcaPvWe4x). I think that's worth implementing after
implementing the widening code for s16/s8 though.
Differential Revision: https://reviews.llvm.org/D100399
These constraints are machine agnostic; there's no reason to handle
these per-arch. If arches don't support these constraints, then they
will fail elsewhere during instruction selection. We don't need virtual
calls to look these up; TargetLowering::getInlineAsmMemConstraint should
only be overridden by architectures with additional unique memory
constraints.
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D100416
It turns out we actually import a bunch of selection code for intrinsics. The
imported code checks that the register banks on the G_INTRINSIC instruction
are correct. If so, it goes ahead and selects it.
This adds code to AArch64RegisterBankInfo to allow us to correctly determine
register banks on intrinsics which have known register bank constraints.
For now, this only handles @llvm.aarch64.neon.uaddlv. This is necessary for
porting AArch64TargetLowering::LowerCTPOP.
Also add a utility for getting the intrinsic ID from a G_INTRINSIC instruction.
This seems a little nicer than having to know about how intrinsic instructions
are structured.
Differential Revision: https://reviews.llvm.org/D100398
I guess this case hasn't come up thus far, and i'm not sure if it can
really happen for the existing usages, thus no test in *this* commit.
But, the following commit adds test coverage,
there we'd expirience a crash without this fix.
Currently, InsertNoopCastOfTo() would implicitly insert that cast,
but now that we have SCEVPtrToIntExpr, i'm hoping we could stop
InsertNoopCastOfTo() from doing that. But first all users must be fixed.
Move <string> include to ImportedFunctionsInliningStatistics.cpp and add missing <memory> include as we have explicit uses of std::unique_ptr in the header.
Remove the MachineDCE pass after the first SIFoldOperands pass now
that SIFoldOperands deletes its own dead instructions.
Reapply after fixing dependent change D100188.
Differential Revision: https://reviews.llvm.org/D100189
This is fairly cheap to implement and means less work for future
passes like MachineDCE.
Reapply with a fix for using InstToErase after it had been erased.
Differential Revision: https://reviews.llvm.org/D100188
This is similar to the subvector extractions,
except that the 0'th subvector isn't free to insert,
because we generally don't know whether or not
the upper elements need to be preserved:
https://godbolt.org/z/rsxP5W4sW
This is needed to avoid regressions in D100684
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D100698
This patch extends the lowering of RVV fixed-length vector shuffles to
avoid the default stack expansion and instead lower to vrgather
instructions.
For "permute"-style shuffles where one vector is swizzled, we can lower
to one vrgather. For shuffles involving two vector operands, we lower to
one unmasked vrgather (or splat, where appropriate) followed by a masked
vrgather which blends in the second half.
On occasion, when it's not possible to create a legal BUILD_VECTOR for
the indices, we use vrgatherei16 instructions with 16-bit index types.
For 8-bit element vectors where we may have indices over 255, we have a
fairly blunt fallback to the stack expansion to avoid custom-splitting
of the vector types.
To enable the selection of masked vrgather instructions, this patch
extends the various RISCVISD::VRGATHER nodes to take a passthru operand.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D100549
Value::replaceUsesOutsideBlock doesn't replace debug uses which leads to an
unnecessary reduction in variable location coverage. Fix this, add a unittest for
it, and add a regression test demonstrating the change through instcombine's
replacedSelectWithOperand.
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D99169
Move the findDbg* functions into lib/IR/DebugInfo.cpp from
lib/Transforms/Utils/Local.cpp.
D99169 adds a call to a function (findDbgUsers) that lives in
lib/Transforms/Utils/Local.cpp (LLVMTransformUtils) from lib/IR/Value.cpp
(LLVMCore). The Core lib doesn't include TransformUtils. The builtbots caught
this here: https://lab.llvm.org/buildbot/#/builders/109/builds/12664. This patch
moves the function, and the 3 similar ones for consistency, into DebugInfo.cpp
which is part of LLVMCore.
Reviewed By: dblaikie, rnk
Differential Revision: https://reviews.llvm.org/D100632
When trying to clamp a constant index into a scalable vector we can
test if the index is less than the minimum number of elements in the
vector. If so, we can simply return the index because we know it is
guaranteed to fit inside the vector.
Differential Revision: https://reviews.llvm.org/D100639
Greedy RA adds copies of virtual registers when splitting live interval.
This stat might be useful.
Reviewers: reames, MatzeB, anemet, thegameg
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D100017
If Virtual Register is alive in landing pad its def must be
before the call causing the exception or it should be statepoint instruction itself and
in this case def actually means the relocation of gc pointer and is alive in
landing pad.
The test shows the triggering this check for an option under development
use-registers-for-gc-values-in-landing-pad which is off by default until
it is functionally correct.
Reviewers: reames, void, jyknight, nickdesaulniers, efriedma, arsenm, rnk
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D100525
Recently processMinMaxIntrinsic has been added and we started to observe a number of analysis get invalidated after CVP. The problem is CVP conservatively returns 'true' even if there were no modifications to IR. I found one more place besides processMinMaxIntrinsic which has the same problem. I think processMinMaxIntrinsic and similar should better have boolean return status to prevent similar issue reappear in future.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D100538
This reverts commit fa6b54c44a.
The commited patch broke mlir tests. It seems that mlir tests depend on coroutine function properties set in CoroEarly pass.
Presplit coroutines cannot be inlined. During AlwaysInliner we check if a function is a presplit coroutine, if so we skip inlining.
The presplit coroutine attributes are set in CoroEarly pass.
However in O0 pipeline, AlwaysInliner runs before CoroEarly, so the attribute isn't set yet and will still inline the coroutine.
This causes Clang to crash: https://bugs.llvm.org/show_bug.cgi?id=49920
To fix this, we set the attributes in the Clang front-end instead of in CoroEarly pass.
Reviewed By: rjmccall, ChuanqiXu
Differential Revision: https://reviews.llvm.org/D100282
Presplit coroutines cannot be inlined. During AlwaysInliner we check if a function is a presplit coroutine, if so we skip inlining.
The presplit coroutine attributes are set in CoroEarly pass.
However in O0 pipeline, AlwaysInliner runs before CoroEarly, so the attribute isn't set yet and will still inline the coroutine.
This causes Clang to crash: https://bugs.llvm.org/show_bug.cgi?id=49920
Differential Revision: https://reviews.llvm.org/D100282
As being discussed in https://reviews.llvm.org/D100721,
this modelling is lossy, we can't reconstruct `ash`/`ashr exact`
from it, which means that whenever we actually expand the IR,
we've just pessimized the code..
It would be good to model this pattern, after all it comes up every time
you want to compute a distance between two pointers, but not at this cost.
This reverts commit ec54867df5.
The internalization pass only internalizes global variables
with no users. If the global variable has some dead user,
the internalization pass will not internalize it.
To be able to internalize global variables with dead
users, a global dce pass is needed before the
internalization pass.
This patch adds that.
Reviewed by: Artem Belevich, Matt Arsenault
Differential Revision: https://reviews.llvm.org/D98783
Debug intrinsics are free to hoist and should be skipped when looking
for terminator-only blocks. As a consequence, we have to delegate to the
main hoisting loop to hoist any dbg intrinsics instead of jumping to the
terminator case directly.
This fixes PR49982.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D100640
It will not do anything useful for them, as we already know that
they don't modref with any accessible memory.
In particular, this prevents noalias metadata from being placed
on noalias.scope.decl intrinsics. This reduces the amount of
metadata needed, and makes it more likely that unnecessary decls
can be eliminated.
Such attributes can either be unset, or set to "true" or "false" (as string).
throughout the codebase, this led to inelegant checks ranging from
if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
to
if (Fn->hasAttribute("no-jump-tables") && Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
Introduce a getValueAsBool that normalize the check, with the following
behavior:
no attributes or attribute set to "false" => return false
attribute set to "true" => return true
Differential Revision: https://reviews.llvm.org/D99299
If we have a nobuiltin function, we can't assume we know anything about the implementation.
I noticed this when tracing through a log from an in the wild miscompile (https://github.com/emscripten-core/emscripten/issues/9443) triggered after 8666463. We were incorrectly assuming that a custom allocator could not free. (It's not clear yet this is the only problem in said issue.)
I also noticed something similiar mentioned in the commit message of ab243e when scrolling back through history. Through, from what I can tell, that commit fixed symptom not root cause.
The interface we have for library function detection is extremely error prone, but given the interaction between ``nobuiltin`` decls and ``builtin`` callsites, it's really hard to imagine something much cleaner. I may iterate on that, but it'll be invasive enough I didn't want to hold an obvious functional fix on it.
Have funcattrs expand all implied attributes into the IR. This expands the infrastructure from D100400, but for definitions not declarations this time.
Somewhat subtly, this mostly isn't semantic. Because the accessors did the inference, any client which used the accessor was already getting the stronger result. Clients that directly checked presence of attributes (there are some), will see a stronger result now.
The old behavior can end up quite confusing for two reasons:
* Without this change, we have situations where function-attrs appears to fail when inferring an attribute (as seen by a human reading IR), but that consuming code will see that it should have been implied. As a human trying to sanity check test results and study IR for optimization possibilities, this is exceeding error prone and confusing. (I'll note that I wasted several hours recently because of this.)
* We can have transforms which trigger without the IR appearing (on inspection) to meet the preconditions. This change doesn't prevent this from happening (as the accessors still involve multiple checks), but it should make it less frequent.
I'd argue in favor of deleting the extra checks out of the accessors after this lands, but I want that in it's own review as a) it's purely stylistic, and b) I already know there's some disagreement.
Once this lands, I'm also going to do a cleanup change which will delete some now redundant duplicate predicates in the inference code, but again, that deserves to be a change of it's own.
Differential Revision: https://reviews.llvm.org/D100226
Instead of managing memory by hand, delegate it to std::vector. This makes the
code much simpler, and also avoids repeatedly computing the storage size.
According to valgrind --tool=callgrind, this also slightly decreases the
instruction count, but by a small margin.
This is a recommit of 82f0e3d3ea with one usage
fixed in llvm/lib/CodeGen/RegisterScavenging.cpp.
Not the slight API change: BitVector::clear() now has the same behavior as any
other container: it does not free memory, but indeed sets the size of the
BitVector to 0. It is thus incorrect to access its content right afterwards, a
scenario which wasn't enforced in previous implementation.
Differential Revision: https://reviews.llvm.org/D100387
These lines set the value to what it already was,
so they are redundant. NFC
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D100664
Change-Id: Ibf6f27d50a7fa1f76c127f01b799821378bfd3b3
Gives reasoning for convertDPP8.
Also corrects typo in Operand type comment.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D100665
Change-Id: I33ff269db8072d83e5e0ecdbfb731d6000fc26c4
Use the target-independent @llvm.fptosi and @llvm.fptoui intrinsics instead.
This includes removing the instrinsics for i32x4.trunc_sat_zero_f64x2_{s,u},
which are now represented in IR as a saturating truncation to a v2i32 followed by
a concatenation with a zero vector.
Differential Revision: https://reviews.llvm.org/D100596
This patch clarifies the semantics of the nofree function attribute to make clear that it provides an "as if" semantic. That is, a nofree function is guaranteed not to free memory which existed before the call, but might allocate and then deallocate that same memory within the lifetime of the callee.
This is the result of the discussion on llvm-dev under the thread "Ambiguity in the nofree function attribute".
The most important part of this change is the LangRef wording. The rest is minor comment changes to emphasize the new semantics where code was accidentally consistent, and fix one place which wasn't consistent. That one place is currently narrowly used as it is primarily part of the ongoing (and not yet enabled) deref-at-point semantics work.
Differential Revision: https://reviews.llvm.org/D100141
Attributes don't know their parent Context, adding this would make Attribute larger. Instead, we add hasParentContext that answers whether this Attribute belongs to a particular LLVMContext by checking for itself inside the context's FoldingSet. Same with AttributeSet and AttributeList. The Verifier checks them with the Module context.
Differential Revision: https://reviews.llvm.org/D99362
This patch prevents phi-node-elimination from generating a COPY
operation for the register defined by t2WhileLoopStartLR, as it is a
terminator that defines a value.
This happens because of the presence of phi-nodes in the loop body (the
Preheader of which is the block containing the t2WhileLoopStartLR). If
this is not done, the COPY is generated above/before the terminator
(t2WhileLoopStartLR here), and since it uses the value defined by
t2WhileLoopStartLR, MachineVerifier throws a 'use before define' error.
This essentially adds on to the change in differential D91887/D97729.
Differential Revision: https://reviews.llvm.org/D100376
The implementation supports static schedule for Fortran do loops. This
implements the dynamic variant of the same concept.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D97393
Add the `IsText` argument to `GetFile` and `GetFileOrSTDIN` which will help z/OS distinguish between text and binary correctly. This is an extension to [this patch](https://reviews.llvm.org/D97785)
Reviewed By: abhina.sreeskantharajan, amccarth
Differential Revision: https://reviews.llvm.org/D100488
This is an alternative to D99759 to avoid the compile-time explosion seen in:
https://llvm.org/PR49785
Another potential solution would make the exclusion logic stronger to avoid
blowing up, but note that we reduced the complexity of the exclusion mechanism
in D16204 because it was too costly.
So I'm questioning the need for recursion/exclusion entirely - what is the
optimization value vs. cost of recursively computing known bits based on
assumptions?
This was built into the implementation from the start with 60db058,
and we have kept adding code/cost to deal with that capability.
By clearing the query's AssumptionCache inside computeKnownBitsFromAssume(),
this patch retains all existing assume functionality except refining known
bits based on even more assumptions.
We have 1 regression test that shows a difference in optimization power.
Differential Revision: https://reviews.llvm.org/D100573
Sometimes LV has to produce really wide vectors,
and sometimes they end up being not powers of two.
As it can be seen from the diff, the cost computation
is currently completely non-sensical in those cases.
Instead of just scalarizing everything, split/factorize the wide vector
into a number of subvectors, each one having a power-of-two elements,
recurse to get the cost of op on this subvector. Also, check how we'd
legalize this subvector, and if the legalized type is scalar,
also account for the scalarization cost.
Note that for sub-vector loads, we might be able to do better,
when the vectors are properly aligned.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D100099
On Windows, we want to open a file in Binary mode if OF_CRLF bit is not set. On z/OS, we want to open a file in Binary mode if the OF_Text bit is not set.
This patch creates two new functions called ChangeStdinMode and ChangeStdoutMode which will take OpenFlags as an arg to determine which mode to set stdin and stdout to. This will enable patches like https://reviews.llvm.org/D100056 to not affect Windows when setting the OF_Text flag for raw_fd_streams.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D100130
Combine sub 0, csinc X, Y, CC to csinv -X, Y, CC providing that the
negation of X is cheap, currently just handling constants. This comes up
during the splat of an i1 to a predicate, where we now generate csetm,
as opposed to cset; rsb.
Differential Revision: https://reviews.llvm.org/D99940
It has to save all caller-saved registers before a call in the handler.
So don't emit a call that save/restore registers.
Reviewed By: simoncook, luismarques, asb
Differential Revision: https://reviews.llvm.org/D100532
Part of the code related to ds_read/ds_write ISel is refactored, and the
corresponding comment is re-written for better readability, which would help
while implementing any future ds_read/ds_write ISel related modifications.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D100300
These were misleading, they're more of a "clear" than an "invalidate".
We shouldn't be individually clearing analysis results. Either we clear
all analyses when some IR becomes invalid, or we properly go through
invalidation.
There was only one use of this, which can be simulated with
AM.invalidate(F, PA).
Reviewed By: mtrofin
Differential Revision: https://reviews.llvm.org/D100519
str(n)cat appends a copy of the second argument to the end of the first
argument. To find the end of the first argument, str(n)cat has to read
from it until it finds the terminating 0. So it should not be marked as
writeonly. I think this means the argument should not be marked as
writeonly.
(This is causing a mis-compile with legacy DSE, before it got removed)
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D100601
When we pass a AArch64 Homogeneous Floating-Point
Aggregate (HFA) argument with increased alignment
requirements, for example
struct S {
__attribute__ ((__aligned__(16))) double v[4];
};
Clang uses `[4 x double]` for the parameter, which is passed
on the stack at alignment 8, whereas it should be at
alignment 16, following Rule C.4 in
AAPCS (https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#642parameter-passing-rules)
Currently we don't have a way to express in LLVM IR the
alignment requirements of the function arguments. The align
attribute is applicable to pointers only, and only for some
special ways of passing arguments (e..g byval). When
implementing AAPCS32/AAPCS64, clang resorts to dubious hacks
of coercing to types, which naturally have the needed
alignment. We don't have enough types to cover all the
cases, though.
This patch introduces a new use of the stackalign attribute
to control stack slot alignment, when and if an argument is
passed in memory.
The attribute align is left as an optimizer hint - it still
applies to pointer types only and pertains to the content of
the pointer, whereas the alignment of the pointer itself is
determined by the stackalign attribute.
For byval arguments, the stackalign attribute assumes the
role, previously perfomed by align, falling back to align if
stackalign` is absent.
On the clang side, when passing arguments using the "direct"
style (cf. `ABIArgInfo::Kind`), now we can optionally
specify an alignment, which is emitted as the new
`stackalign` attribute.
Patch by Momchil Velikov and Lucas Prates.
Differential Revision: https://reviews.llvm.org/D98794
Move some utility functions which are used within LDS lowering pass to a separate utils
file so that other LDS related passes can make use of them when required.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D100526
This generalizes RVInstIShift/RVInstIShiftW to take the upper
5 or 7 bits of the immediate as an input instead of only bit 30. Then
we can share them.
For RVInstIShift I left a hardcoded 0 at bit 26 where RV128 gets
a 7th bit for the shift amount.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D100424
Avoid visiting repeated instructions for processHeaderPhiOperands as it can cause a scenario of endless loop. Test case is attached and can be ran with `opt -basic-aa -tbaa -loop-unroll-and-jam -allow-unroll-and-jam -unroll-and-jam-count=4`.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D97407
Being lazy with printing the banner seems hard to reason with, we should print it
unconditionally first (it could also lead to duplicate banners if we
have multiple functions in -filter-print-funcs).
The printIR() functions were doing too many things. I separated out the
call from PrintPassInstrumentation since we were essentially doing two
completely separate things in printIR() from different callers.
There were multiple ways to generate the name of some IR. That's all
been moved to getIRName(). The printing of the IR name was also
inconsistent, now it's always "IR Dump on $foo" where "$foo" is the
name. For a function, it's the function name. For a loop, it's what's
printed by Loop::print(), which is more detailed. For an SCC, it's the
list of functions in parentheses. For a module it's "[module]", to
differentiate between a possible SCC with a function called "module".
To preserve D74814, we have to check if we're going to print anything at
all first. This is unfortunate, but I would consider this a special
case that shouldn't be handled in the core logic.
Reviewed By: jamieschmeiser
Differential Revision: https://reviews.llvm.org/D100231
There are four new PowerPC instructions that are introduced in
Power 10. They are hashst, hashchk, hashstp, hashchkp.
These instructions will be used for ROP Protection.
This patch adds the four instructions.
Reviewed By: nemanjai, amyk, #powerpc
Differential Revision: https://reviews.llvm.org/D99375
This patch changed the isLegalUse check to ensure that
LSRInstance::GenerateConstantOffsetsImpl generates an
offset that results in a legal addressing mode and
formula. The check is changed to look similar to the
assert check used for illegal formulas.
Differential Revision: https://reviews.llvm.org/D100383
Change-Id: Iffb9e32d59df96b8f072c00f6c339108159a009a
Value::replaceUsesOutsideBlock doesn't replace debug uses which leads to an
unnecessary reduction in variable location coverage. Fix this, add a unittest for
it, and add a regression test demonstrating the change through instcombine's
replacedSelectWithOperand.
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D99169
The `e_flags` contains a mixture of bitfields and regular ones, ensure all of them can be serialized and deserialized.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D100250
Returning in memory is not supported, so fall back to sret.
Also, extend i1 and i16 to i32. Otherwise, they would be passed through
memory.
Differential Revision: https://reviews.llvm.org/D100543
If we are truncating from a i32 source before comparing the result against zero, then see if we can directly compare the source value against zero.
If the upper (truncated) bits are known to be zero then we can compare against that, hopefully increasing the chances of us folding the compare into a EFLAG result of the source's operation.
Fixes PR49028.
Differential Revision: https://reviews.llvm.org/D100491
With this patch vbslq_f32(vnegq_s32(a), b, c) lowers to a BIT instruction.
Co-authored-by: Paul Walker <paul.walker@arm.com>
Differential Revision: https://reviews.llvm.org/D100304
Add an initial version of a helper to determine whether a recipe may
have side-effects.
Reviewed By: a.elovikov
Differential Revision: https://reviews.llvm.org/D100259
There were a few places in widenPHIInstruction where calculations of
offsets were failing to take the runtime calculation of VF into
account for scalable vectors. I've fixed those cases in this patch
as well as adding an assert that we should not be scalarising for
scalable vectors.
Tests are added here:
Transforms/LoopVectorize/AArch64/sve-widen-phi.ll
Differential Revision: https://reviews.llvm.org/D99254
At the moment, getMemoryOpCost returns 1 for all inputs if CostKind is
CodeSize or SizeAndLatency. This fools LoopUnroll into thinking memory
operations on large vectors have a cost of one, even if they will get
expanded to a large number of memory operations in the backend.
This patch updates getMemoryOpCost to return the cost for the type
legalization for both CodeSize and SizeAndLatency. This should more
accurately reflect the number of memory operations required.
I am not sure how latency should properly be included in SizeAndLatency
from the description, but returning the size cost should be clearly more
accurate.
This does not cause any binary changes when building
MultiSource/SPEC2000/SPEC2006 with -O3 -flto for AArch64, likely because
large vector memops are not really formed by code emitted from Clang.
But using the C/C++ matrix extension can easily result in code with very
large vector operations directly from Clang, e.g.
https://clang.godbolt.org/z/6xzxcTGvb
Reviewed By: samparker
Differential Revision: https://reviews.llvm.org/D100291
There are a few places in LoopVectorize.cpp where we have been too
cautious in adding VF.isScalable() asserts and it can be confusing.
It also makes it more difficult to see the genuine places where
work needs doing to improve scalable vectorization support.
This patch changes getMemInstScalarizationCost to return an
invalid cost instead of firing an assert for scalable vectors. Also,
vectorizeInterleaveGroup had multiple asserts all for the same
thing. I have removed all but one assert near the start of the
function, and added a new assert that we aren't dealing with masks
for scalable vectors.
Differential Revision: https://reviews.llvm.org/D99727
On Windows, float arguments are normally passed in float registers
in the calling convention for regular functions. For variable
argument functions, floats are passed in integer registers. This
already was done correctly since many years.
However, the surprising bit was that floats among the fixed arguments
also are supposed to be passed in integer registers, contrary to regular
functions. (This also seems to be the behaviour on ARM though, both
on Windows, but also on e.g. hardfloat linux.)
In the calling convention, don't promote shorter floats to f64, but
convert them to integers of the same length. (Floats passed as part of
the actual variable arguments are promoted to double already on the
C/Clang level; the LLVM vararg calling convention doesn't do any
extra promotion of f32 to f64 - this matches how it works on X86 too.)
Technically, this is an ABI break compared to older LLVM versions,
but it fixes compatibility with the official platform ABI. (In practice,
floats among the fixed arguments in variable argument functions is
a pretty rare construct.)
Differential Revision: https://reviews.llvm.org/D100365
If the PHI-of-ops simplifies to an existing value, no real PHI is
created, which means the dependencies between the
PHI-of-ops and its operands is not materialized in IR. At the
moment, we fail to create a real PHI node for the PHI-of-ops,
because the PHI-of-ops root instruction is not re-visited if
one of the PHI-of-ops operands changes. We need to add the
operands as additional users in this case.
Even with this patch, there are still some dependencies
missing. I will continue tackling the outstanding
reporeted crashes in this area.
Fixes PR36501, PR42422, PR42557.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D66924
Now since LDS uses within non-kernel functions are being handled in the
pass - LowerModuleLDS, we *NO* need to *forcefully* inline non-kernel
functions just because they use LDS. Do forceful inlining only when the
pass - LowerModuleLDS is not enabled. It is enabled by default.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D100481
When DIE is extracted manually, the DieArray is empty. When dump is invoked on aforementioned DIE it tries to extract child, even if Dump options say otherwise. Resulting in crash.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D99698
This reverts commit ab98f2c712 and 98eea392cd.
It includes a fix for the clang test which triggered the revert. I failed to notice this one because there was another AMDGPU llvm test with a similiar name and the exact same text in the error message. Odd. Since only one build bot reported the clang test, I didn't notice that one.
Breaks check-clang, see comments on D100400
Also revert follow-up "[NFC] Move a recently added utility into a location to enable reuse"
This reverts commit 3ce61fb6d6.
This reverts commit 61a85da882.
We have some cases today where attributes can be inferred from another on access, but the result is not explicitly materialized in IR. This change is a step towards changing that.
Why? Two main reasons:
* Human clarity. It's really confusing trying to figure out why a transform is triggering when the IR doesn't appear to have the required attributes.
* This avoids the need to special case declarations in e.g. functionattrs. Since we can assume the attribute is present, we can work directly from attributes (and only attributes) without also needing to query accessors on Function to avoid missing cases due to unannotated (but infered on use) declarations. (This piece will appear must easier to follow once D100226 also lands.)
Differential Revision: https://reviews.llvm.org/D100400
Removes the builtins and intrinsics used to opt in to using these instructions
and replaces them with normal ISel patterns now that they are no longer
prototypes.
Differential Revision: https://reviews.llvm.org/D100402
Currently, the InstCombineCompare is combining two add operations
into a single add operation which always has a nsw flag, without
checking the conditions to see if this flag should be present
according to the original two add operations or not.
This patch will change the InstCombineCompare to emit the nsw or
nuw only when these flags are allowed to be generated according to
the original add operations and remove the possibility of applying
wrong optimization with passes that will perform on the IR later
in the pipeline.
To confirm that the current results are buggy and the results after
proposed patch are the correct IR the following examples from Alive2
are attached; the same results can be seen in the case of nuw flag
and nsw is just used as an example. The following link shows that
the generated IR with current LLVM is a buggy IR when none of the
original add operations have nsw flag.
https://alive2.llvm.org/ce/z/WGaDrm
The following link proves that the generated IR after the patch in
the former case is the correct IR.
https://alive2.llvm.org/ce/z/wQ7G_e
Differential Revision: https://reviews.llvm.org/D100095
SROA shifts TBAA nodes in a way that may present a problem for !tbaa but not !tbaa.struct nodes.
Differential Revision: https://reviews.llvm.org/D99851
Add a custom DAG combine and ISD opcode for detecting patterns like
(uint_to_fp (extract_subvector ...))
before the extract_subvector is expanded to ensure that they will ultimately
lower to f64x2.convert_low_i32x4_{s,u} instructions. Since these instructions
are no longer prototypes and can now be produced via standard IR, this commit
also removes the target intrinsics and builtins that had been used to prototype
the instructions.
Differential Revision: https://reviews.llvm.org/D100425
Just like in the mul nuw case, it's sufficient that the step is
non-zero. If the step is negative, then the values will jump
between positive and negative, "crossing" zero, but the value of
the recurrence is never actually zero.
It's okay if the step is zero, we'll just stay at the same non-zero
value in that case. The valuable part of this is that the step
doesn't even need to be a constant anymore.
This is a service function generally useful for selection
of a FI in an SADDR. NFC for now, needed for future patch.
Differential Revision: https://reviews.llvm.org/D100406
Now that these instructions are no longer prototypes, we do not need to be
careful about keeping them opt-in and can use the standard LLVM infrastructure
for them. This commit removes the bespoke intrinsics we were using to represent
these operations in favor of the corresponding target-independent intrinsics.
The clang builtins are preserved because there is no standard way to easily
represent these operations in C/C++.
For consistency with the scalar codegen in the Wasm backend, the intrinsic used
to represent {f32x4,f64x2}.nearest is @llvm.nearbyint even though
@llvm.roundeven better captures the semantics of the underlying Wasm
instruction. Replacing our use of @llvm.nearbyint with use of @llvm.roundeven is
left to a potential future patch.
Differential Revision: https://reviews.llvm.org/D100411
This transformation is fundamentally broken when it comes to dominance,
it just happened to work when the source of the memcpy can be moved into
the place of the alloca. The bug shows up a lot more often since
077bff39d4 allows the source to be a
switch.
It would be possible to check dominance of the source and all its
operands, but that seems very heavy for instcombine.
Rename the name of "LDS lowering" pass from `amdgpu-disable-lower-module-lds` to
`amdgpu-enable-lower-module-lds` as later is consistent and reads better.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D100441
In the fold SHUFFLE(BINOP(X,Y),BINOP(Z,W)) -> BINOP(SHUFFLE(X,Z),SHUFFLE(Y,W)), check if both X/Z AND Y/W have at least one merge-able shuffle in which case the total number of shuffle should still fall.
Helps with instruction count regressions we saw while fixing PR48823
Only attempt to propagateIRFlags if we have both SelectInst - afaict we shouldn't have matched a min/max reduction without both SelectInst, but static analyzer doesn't know that.
The existing BTI placement pass avoids inserting "BTI c" when the
function has local linkage and is only directly called. However,
even in this case, there is a (small) chance that the linker later
adds a hunk with an indirect call to the function, e.g. if the
function is placed in a separate section and moved far away from
its callers. Make sure to add BTI for these functions too.
Differential Revision: https://reviews.llvm.org/D99417
This refactors SCCP and creates a SCCPSolver interface and class so that it can
be used by other passes and transformations. We will use this in D93838, which
adds a function specialisation pass.
This is based on an early version by Vinay Madhusudan.
Differential Revision: https://reviews.llvm.org/D93762
Stepping through callstacks in the example from D99759 reveals
this potential compile-time improvement.
The savings come from avoiding ValueTracking's computing known
bits if we have already dealt with special-case patterns.
Further improvements in this direction seem possible.
This makes a degenerate test based on PR49785 about 40x faster
(25 sec -> 0.6 sec), but it does not address the larger question
of how to limit computeKnownBitsFromAssume(). Ie, the original
test there is still infinite-time for all practical purposes.
Differential Revision: https://reviews.llvm.org/D100408
Otherwise it reuses the same register for storing the stack slot
offset if the stack slot offset is big.
Differential Revision: https://reviews.llvm.org/D100461
The start value can't be null for something to be a non-zero
recurrence, so hoist that common check out of the switch.
Subsequent checks may be incomplete or over-specified as noted in:
D100408
After 077bff39d4,
isDereferenceableForAllocaSize() can recurse into selects,
which is causing a problem for the new test case,
reduced from https://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20210412/904154.html
because the replacement (the select) is defined after the first use
of an alloca, so we'd end up with a verifier error.
Now, this new check is too restrictive.
We likely can handle *some* cases, by trying to sink all uses of an alloca
to after the the def.
Extension to rG74f98391a7a4, we can also include any of the upper (known zero) bits in the comparison in the shuffle removal fold, just as long as we demand all the elements of the movmsk source vector.
This fixes breakage on Windows/ARM64 after D94355.
Modelled after the corresponding code for X86; not entirely familiar
with those aspects of that layer otherwise.
Differential Revision: https://reviews.llvm.org/D99572
Patchpoint instructions have operands which is actually zero cost
(or the same as register) to use the value from the stack.
In terms of statistic it makes same to separate them.
Move from computation instructions related to stack spill/reload to
number of stack slot referenced.
Reviewers: reames, MatzeB, anemet, thegameg
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D100016
Statepoint instruction has a deopt section which is actually live-through the call.
Currently this is handled by special post pass after RA - fixup-statepoint-caller-saved.
This change teaches Greedy RA that if segment of live interval is ended with statepoint
instruction and its reg is used in deopt bundle then this live interval interferes regmask of this statepoint
and as a result caller-saved register cannot be assigned to this live interval.
Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D100296
M68kAsmParser uses `llvm::getTheM68kTarget` from M68kInfo, therefore we
should put M68kInfo as its direct dependency. Otherwise the build will
fail when building LLVM libraries as shared objects (building LLVM
libraries statically won't have this problem though).
This is a follow up of D99010. We didn't consider the live range of shape registers when hoist ldtilecfg. There maybe risks, e.g. we happen to insert it to an invalid range of some registers and get unexpected error.
This patch fixes this problem by storing the value to corresponding stack place of ldtilecfg after all its definition immediately.
This patch also fix a problem in previous code: If we don't have a ldtilecfg which dominates all AMX instructions, we cannot initialize shapes for other ldtilecfg.
There're still some optimization points left. E.g. eliminate unused mov instructions, break the def-use dependency before RA etc.
Reviewed By: LuoYuanke, xiangzhangllvm
Differential Revision: https://reviews.llvm.org/D99966
The VSX tablegen file has some rather eggregious uses of
COPY_TO_REGCLASS even in situations where it needs to use
SUBREG_TO_REG. While this produces correct code, it often doesn't
allow the register coalescer to coalesce copies and the resulting
code ends up being suboptimal. This patch just changes over
patterns that should use SUBREG_TO_REG.
This fixes the resolution of Rec10.Zero in ListSlices.td.
As part of this, correct the definition of complete for ListInit such that
it's complete iff all the elements in the list are complete rather than
always being complete regardless of the elements. This is the reason
Rec10.TwoFive from ListSlices.td previously resolved despite being
incomplete like Rec10.Zero was
Depends on D100247
Reviewed By: Paul-C-Anagnostopoulos
Differential Revision: https://reviews.llvm.org/D100253
- Add support for HLASM style integers. These are the decimal integers [0-9].
- HLASM does not support the additional prefixed integers like, `0b`, `0x`, octal integers and Masm style integers.
- To achieve this, a field `LexHLASMStyleIntegers` (similar to the `LexMasmStyleIntegers` field) is introduced in `MCAsmLexer.h` as well as a corresponding setter.
Note: This field could also go into MCAsmInfo.h. I used the previous precedent set by the `LexMasmIntegers` field.
Depends on https://reviews.llvm.org/D99286
Reviewed By: epastor
Differential Revision: https://reviews.llvm.org/D99374
Currently, for any extern variable, if it doesn't have
section attribution, it will be put into a default ".extern"
btf DataSec. The initial design is to put every extern
variable in a DataSec so libbpf can use it.
But later on, libbpf actually requires extern variables
to put into special sections, e.g., ".kconfig", ".ksyms", etc.
so they can be used properly based on section name.
Andrii mentioned since ".extern" variables are
not actually used, it makes sense to remove it from
the compiler so libbpf does not need to deal with it,
esp. for static linking. The BTF for these extern variables
is still generated.
With this patch, I tested kernel selftests/bpf and all tests
passed. Indeed, removing ".extern" DataSec seems having no
impact.
Differential Revision: https://reviews.llvm.org/D100392