Attributes don't know their parent Context, adding this would make Attribute larger. Instead, we add hasParentContext that answers whether this Attribute belongs to a particular LLVMContext by checking for itself inside the context's FoldingSet. Same with AttributeSet and AttributeList. The Verifier checks them with the Module context.
Differential Revision: https://reviews.llvm.org/D99362
This patch prevents phi-node-elimination from generating a COPY
operation for the register defined by t2WhileLoopStartLR, as it is a
terminator that defines a value.
This happens because of the presence of phi-nodes in the loop body (the
Preheader of which is the block containing the t2WhileLoopStartLR). If
this is not done, the COPY is generated above/before the terminator
(t2WhileLoopStartLR here), and since it uses the value defined by
t2WhileLoopStartLR, MachineVerifier throws a 'use before define' error.
This essentially adds on to the change in differential D91887/D97729.
Differential Revision: https://reviews.llvm.org/D100376
The implementation supports static schedule for Fortran do loops. This
implements the dynamic variant of the same concept.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D97393
Add the `IsText` argument to `GetFile` and `GetFileOrSTDIN` which will help z/OS distinguish between text and binary correctly. This is an extension to [this patch](https://reviews.llvm.org/D97785)
Reviewed By: abhina.sreeskantharajan, amccarth
Differential Revision: https://reviews.llvm.org/D100488
This is an alternative to D99759 to avoid the compile-time explosion seen in:
https://llvm.org/PR49785
Another potential solution would make the exclusion logic stronger to avoid
blowing up, but note that we reduced the complexity of the exclusion mechanism
in D16204 because it was too costly.
So I'm questioning the need for recursion/exclusion entirely - what is the
optimization value vs. cost of recursively computing known bits based on
assumptions?
This was built into the implementation from the start with 60db058,
and we have kept adding code/cost to deal with that capability.
By clearing the query's AssumptionCache inside computeKnownBitsFromAssume(),
this patch retains all existing assume functionality except refining known
bits based on even more assumptions.
We have 1 regression test that shows a difference in optimization power.
Differential Revision: https://reviews.llvm.org/D100573
Sometimes LV has to produce really wide vectors,
and sometimes they end up being not powers of two.
As it can be seen from the diff, the cost computation
is currently completely non-sensical in those cases.
Instead of just scalarizing everything, split/factorize the wide vector
into a number of subvectors, each one having a power-of-two elements,
recurse to get the cost of op on this subvector. Also, check how we'd
legalize this subvector, and if the legalized type is scalar,
also account for the scalarization cost.
Note that for sub-vector loads, we might be able to do better,
when the vectors are properly aligned.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D100099
On Windows, we want to open a file in Binary mode if OF_CRLF bit is not set. On z/OS, we want to open a file in Binary mode if the OF_Text bit is not set.
This patch creates two new functions called ChangeStdinMode and ChangeStdoutMode which will take OpenFlags as an arg to determine which mode to set stdin and stdout to. This will enable patches like https://reviews.llvm.org/D100056 to not affect Windows when setting the OF_Text flag for raw_fd_streams.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D100130
Combine sub 0, csinc X, Y, CC to csinv -X, Y, CC providing that the
negation of X is cheap, currently just handling constants. This comes up
during the splat of an i1 to a predicate, where we now generate csetm,
as opposed to cset; rsb.
Differential Revision: https://reviews.llvm.org/D99940
It has to save all caller-saved registers before a call in the handler.
So don't emit a call that save/restore registers.
Reviewed By: simoncook, luismarques, asb
Differential Revision: https://reviews.llvm.org/D100532
Part of the code related to ds_read/ds_write ISel is refactored, and the
corresponding comment is re-written for better readability, which would help
while implementing any future ds_read/ds_write ISel related modifications.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D100300
These were misleading, they're more of a "clear" than an "invalidate".
We shouldn't be individually clearing analysis results. Either we clear
all analyses when some IR becomes invalid, or we properly go through
invalidation.
There was only one use of this, which can be simulated with
AM.invalidate(F, PA).
Reviewed By: mtrofin
Differential Revision: https://reviews.llvm.org/D100519
str(n)cat appends a copy of the second argument to the end of the first
argument. To find the end of the first argument, str(n)cat has to read
from it until it finds the terminating 0. So it should not be marked as
writeonly. I think this means the argument should not be marked as
writeonly.
(This is causing a mis-compile with legacy DSE, before it got removed)
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D100601
When we pass a AArch64 Homogeneous Floating-Point
Aggregate (HFA) argument with increased alignment
requirements, for example
struct S {
__attribute__ ((__aligned__(16))) double v[4];
};
Clang uses `[4 x double]` for the parameter, which is passed
on the stack at alignment 8, whereas it should be at
alignment 16, following Rule C.4 in
AAPCS (https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#642parameter-passing-rules)
Currently we don't have a way to express in LLVM IR the
alignment requirements of the function arguments. The align
attribute is applicable to pointers only, and only for some
special ways of passing arguments (e..g byval). When
implementing AAPCS32/AAPCS64, clang resorts to dubious hacks
of coercing to types, which naturally have the needed
alignment. We don't have enough types to cover all the
cases, though.
This patch introduces a new use of the stackalign attribute
to control stack slot alignment, when and if an argument is
passed in memory.
The attribute align is left as an optimizer hint - it still
applies to pointer types only and pertains to the content of
the pointer, whereas the alignment of the pointer itself is
determined by the stackalign attribute.
For byval arguments, the stackalign attribute assumes the
role, previously perfomed by align, falling back to align if
stackalign` is absent.
On the clang side, when passing arguments using the "direct"
style (cf. `ABIArgInfo::Kind`), now we can optionally
specify an alignment, which is emitted as the new
`stackalign` attribute.
Patch by Momchil Velikov and Lucas Prates.
Differential Revision: https://reviews.llvm.org/D98794
Move some utility functions which are used within LDS lowering pass to a separate utils
file so that other LDS related passes can make use of them when required.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D100526
This generalizes RVInstIShift/RVInstIShiftW to take the upper
5 or 7 bits of the immediate as an input instead of only bit 30. Then
we can share them.
For RVInstIShift I left a hardcoded 0 at bit 26 where RV128 gets
a 7th bit for the shift amount.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D100424
Avoid visiting repeated instructions for processHeaderPhiOperands as it can cause a scenario of endless loop. Test case is attached and can be ran with `opt -basic-aa -tbaa -loop-unroll-and-jam -allow-unroll-and-jam -unroll-and-jam-count=4`.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D97407
Being lazy with printing the banner seems hard to reason with, we should print it
unconditionally first (it could also lead to duplicate banners if we
have multiple functions in -filter-print-funcs).
The printIR() functions were doing too many things. I separated out the
call from PrintPassInstrumentation since we were essentially doing two
completely separate things in printIR() from different callers.
There were multiple ways to generate the name of some IR. That's all
been moved to getIRName(). The printing of the IR name was also
inconsistent, now it's always "IR Dump on $foo" where "$foo" is the
name. For a function, it's the function name. For a loop, it's what's
printed by Loop::print(), which is more detailed. For an SCC, it's the
list of functions in parentheses. For a module it's "[module]", to
differentiate between a possible SCC with a function called "module".
To preserve D74814, we have to check if we're going to print anything at
all first. This is unfortunate, but I would consider this a special
case that shouldn't be handled in the core logic.
Reviewed By: jamieschmeiser
Differential Revision: https://reviews.llvm.org/D100231
There are four new PowerPC instructions that are introduced in
Power 10. They are hashst, hashchk, hashstp, hashchkp.
These instructions will be used for ROP Protection.
This patch adds the four instructions.
Reviewed By: nemanjai, amyk, #powerpc
Differential Revision: https://reviews.llvm.org/D99375
This patch changed the isLegalUse check to ensure that
LSRInstance::GenerateConstantOffsetsImpl generates an
offset that results in a legal addressing mode and
formula. The check is changed to look similar to the
assert check used for illegal formulas.
Differential Revision: https://reviews.llvm.org/D100383
Change-Id: Iffb9e32d59df96b8f072c00f6c339108159a009a
Value::replaceUsesOutsideBlock doesn't replace debug uses which leads to an
unnecessary reduction in variable location coverage. Fix this, add a unittest for
it, and add a regression test demonstrating the change through instcombine's
replacedSelectWithOperand.
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D99169
The `e_flags` contains a mixture of bitfields and regular ones, ensure all of them can be serialized and deserialized.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D100250
Returning in memory is not supported, so fall back to sret.
Also, extend i1 and i16 to i32. Otherwise, they would be passed through
memory.
Differential Revision: https://reviews.llvm.org/D100543
If we are truncating from a i32 source before comparing the result against zero, then see if we can directly compare the source value against zero.
If the upper (truncated) bits are known to be zero then we can compare against that, hopefully increasing the chances of us folding the compare into a EFLAG result of the source's operation.
Fixes PR49028.
Differential Revision: https://reviews.llvm.org/D100491
With this patch vbslq_f32(vnegq_s32(a), b, c) lowers to a BIT instruction.
Co-authored-by: Paul Walker <paul.walker@arm.com>
Differential Revision: https://reviews.llvm.org/D100304
Add an initial version of a helper to determine whether a recipe may
have side-effects.
Reviewed By: a.elovikov
Differential Revision: https://reviews.llvm.org/D100259
There were a few places in widenPHIInstruction where calculations of
offsets were failing to take the runtime calculation of VF into
account for scalable vectors. I've fixed those cases in this patch
as well as adding an assert that we should not be scalarising for
scalable vectors.
Tests are added here:
Transforms/LoopVectorize/AArch64/sve-widen-phi.ll
Differential Revision: https://reviews.llvm.org/D99254
At the moment, getMemoryOpCost returns 1 for all inputs if CostKind is
CodeSize or SizeAndLatency. This fools LoopUnroll into thinking memory
operations on large vectors have a cost of one, even if they will get
expanded to a large number of memory operations in the backend.
This patch updates getMemoryOpCost to return the cost for the type
legalization for both CodeSize and SizeAndLatency. This should more
accurately reflect the number of memory operations required.
I am not sure how latency should properly be included in SizeAndLatency
from the description, but returning the size cost should be clearly more
accurate.
This does not cause any binary changes when building
MultiSource/SPEC2000/SPEC2006 with -O3 -flto for AArch64, likely because
large vector memops are not really formed by code emitted from Clang.
But using the C/C++ matrix extension can easily result in code with very
large vector operations directly from Clang, e.g.
https://clang.godbolt.org/z/6xzxcTGvb
Reviewed By: samparker
Differential Revision: https://reviews.llvm.org/D100291
There are a few places in LoopVectorize.cpp where we have been too
cautious in adding VF.isScalable() asserts and it can be confusing.
It also makes it more difficult to see the genuine places where
work needs doing to improve scalable vectorization support.
This patch changes getMemInstScalarizationCost to return an
invalid cost instead of firing an assert for scalable vectors. Also,
vectorizeInterleaveGroup had multiple asserts all for the same
thing. I have removed all but one assert near the start of the
function, and added a new assert that we aren't dealing with masks
for scalable vectors.
Differential Revision: https://reviews.llvm.org/D99727
On Windows, float arguments are normally passed in float registers
in the calling convention for regular functions. For variable
argument functions, floats are passed in integer registers. This
already was done correctly since many years.
However, the surprising bit was that floats among the fixed arguments
also are supposed to be passed in integer registers, contrary to regular
functions. (This also seems to be the behaviour on ARM though, both
on Windows, but also on e.g. hardfloat linux.)
In the calling convention, don't promote shorter floats to f64, but
convert them to integers of the same length. (Floats passed as part of
the actual variable arguments are promoted to double already on the
C/Clang level; the LLVM vararg calling convention doesn't do any
extra promotion of f32 to f64 - this matches how it works on X86 too.)
Technically, this is an ABI break compared to older LLVM versions,
but it fixes compatibility with the official platform ABI. (In practice,
floats among the fixed arguments in variable argument functions is
a pretty rare construct.)
Differential Revision: https://reviews.llvm.org/D100365
If the PHI-of-ops simplifies to an existing value, no real PHI is
created, which means the dependencies between the
PHI-of-ops and its operands is not materialized in IR. At the
moment, we fail to create a real PHI node for the PHI-of-ops,
because the PHI-of-ops root instruction is not re-visited if
one of the PHI-of-ops operands changes. We need to add the
operands as additional users in this case.
Even with this patch, there are still some dependencies
missing. I will continue tackling the outstanding
reporeted crashes in this area.
Fixes PR36501, PR42422, PR42557.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D66924
Now since LDS uses within non-kernel functions are being handled in the
pass - LowerModuleLDS, we *NO* need to *forcefully* inline non-kernel
functions just because they use LDS. Do forceful inlining only when the
pass - LowerModuleLDS is not enabled. It is enabled by default.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D100481
When DIE is extracted manually, the DieArray is empty. When dump is invoked on aforementioned DIE it tries to extract child, even if Dump options say otherwise. Resulting in crash.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D99698
This reverts commit ab98f2c712 and 98eea392cd.
It includes a fix for the clang test which triggered the revert. I failed to notice this one because there was another AMDGPU llvm test with a similiar name and the exact same text in the error message. Odd. Since only one build bot reported the clang test, I didn't notice that one.
Breaks check-clang, see comments on D100400
Also revert follow-up "[NFC] Move a recently added utility into a location to enable reuse"
This reverts commit 3ce61fb6d6.
This reverts commit 61a85da882.
We have some cases today where attributes can be inferred from another on access, but the result is not explicitly materialized in IR. This change is a step towards changing that.
Why? Two main reasons:
* Human clarity. It's really confusing trying to figure out why a transform is triggering when the IR doesn't appear to have the required attributes.
* This avoids the need to special case declarations in e.g. functionattrs. Since we can assume the attribute is present, we can work directly from attributes (and only attributes) without also needing to query accessors on Function to avoid missing cases due to unannotated (but infered on use) declarations. (This piece will appear must easier to follow once D100226 also lands.)
Differential Revision: https://reviews.llvm.org/D100400
Removes the builtins and intrinsics used to opt in to using these instructions
and replaces them with normal ISel patterns now that they are no longer
prototypes.
Differential Revision: https://reviews.llvm.org/D100402
Currently, the InstCombineCompare is combining two add operations
into a single add operation which always has a nsw flag, without
checking the conditions to see if this flag should be present
according to the original two add operations or not.
This patch will change the InstCombineCompare to emit the nsw or
nuw only when these flags are allowed to be generated according to
the original add operations and remove the possibility of applying
wrong optimization with passes that will perform on the IR later
in the pipeline.
To confirm that the current results are buggy and the results after
proposed patch are the correct IR the following examples from Alive2
are attached; the same results can be seen in the case of nuw flag
and nsw is just used as an example. The following link shows that
the generated IR with current LLVM is a buggy IR when none of the
original add operations have nsw flag.
https://alive2.llvm.org/ce/z/WGaDrm
The following link proves that the generated IR after the patch in
the former case is the correct IR.
https://alive2.llvm.org/ce/z/wQ7G_e
Differential Revision: https://reviews.llvm.org/D100095
SROA shifts TBAA nodes in a way that may present a problem for !tbaa but not !tbaa.struct nodes.
Differential Revision: https://reviews.llvm.org/D99851
Add a custom DAG combine and ISD opcode for detecting patterns like
(uint_to_fp (extract_subvector ...))
before the extract_subvector is expanded to ensure that they will ultimately
lower to f64x2.convert_low_i32x4_{s,u} instructions. Since these instructions
are no longer prototypes and can now be produced via standard IR, this commit
also removes the target intrinsics and builtins that had been used to prototype
the instructions.
Differential Revision: https://reviews.llvm.org/D100425
Just like in the mul nuw case, it's sufficient that the step is
non-zero. If the step is negative, then the values will jump
between positive and negative, "crossing" zero, but the value of
the recurrence is never actually zero.
It's okay if the step is zero, we'll just stay at the same non-zero
value in that case. The valuable part of this is that the step
doesn't even need to be a constant anymore.
This is a service function generally useful for selection
of a FI in an SADDR. NFC for now, needed for future patch.
Differential Revision: https://reviews.llvm.org/D100406
Now that these instructions are no longer prototypes, we do not need to be
careful about keeping them opt-in and can use the standard LLVM infrastructure
for them. This commit removes the bespoke intrinsics we were using to represent
these operations in favor of the corresponding target-independent intrinsics.
The clang builtins are preserved because there is no standard way to easily
represent these operations in C/C++.
For consistency with the scalar codegen in the Wasm backend, the intrinsic used
to represent {f32x4,f64x2}.nearest is @llvm.nearbyint even though
@llvm.roundeven better captures the semantics of the underlying Wasm
instruction. Replacing our use of @llvm.nearbyint with use of @llvm.roundeven is
left to a potential future patch.
Differential Revision: https://reviews.llvm.org/D100411
This transformation is fundamentally broken when it comes to dominance,
it just happened to work when the source of the memcpy can be moved into
the place of the alloca. The bug shows up a lot more often since
077bff39d4 allows the source to be a
switch.
It would be possible to check dominance of the source and all its
operands, but that seems very heavy for instcombine.
Rename the name of "LDS lowering" pass from `amdgpu-disable-lower-module-lds` to
`amdgpu-enable-lower-module-lds` as later is consistent and reads better.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D100441
In the fold SHUFFLE(BINOP(X,Y),BINOP(Z,W)) -> BINOP(SHUFFLE(X,Z),SHUFFLE(Y,W)), check if both X/Z AND Y/W have at least one merge-able shuffle in which case the total number of shuffle should still fall.
Helps with instruction count regressions we saw while fixing PR48823
Only attempt to propagateIRFlags if we have both SelectInst - afaict we shouldn't have matched a min/max reduction without both SelectInst, but static analyzer doesn't know that.
The existing BTI placement pass avoids inserting "BTI c" when the
function has local linkage and is only directly called. However,
even in this case, there is a (small) chance that the linker later
adds a hunk with an indirect call to the function, e.g. if the
function is placed in a separate section and moved far away from
its callers. Make sure to add BTI for these functions too.
Differential Revision: https://reviews.llvm.org/D99417
This refactors SCCP and creates a SCCPSolver interface and class so that it can
be used by other passes and transformations. We will use this in D93838, which
adds a function specialisation pass.
This is based on an early version by Vinay Madhusudan.
Differential Revision: https://reviews.llvm.org/D93762
Stepping through callstacks in the example from D99759 reveals
this potential compile-time improvement.
The savings come from avoiding ValueTracking's computing known
bits if we have already dealt with special-case patterns.
Further improvements in this direction seem possible.
This makes a degenerate test based on PR49785 about 40x faster
(25 sec -> 0.6 sec), but it does not address the larger question
of how to limit computeKnownBitsFromAssume(). Ie, the original
test there is still infinite-time for all practical purposes.
Differential Revision: https://reviews.llvm.org/D100408
Otherwise it reuses the same register for storing the stack slot
offset if the stack slot offset is big.
Differential Revision: https://reviews.llvm.org/D100461
The start value can't be null for something to be a non-zero
recurrence, so hoist that common check out of the switch.
Subsequent checks may be incomplete or over-specified as noted in:
D100408
After 077bff39d4,
isDereferenceableForAllocaSize() can recurse into selects,
which is causing a problem for the new test case,
reduced from https://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20210412/904154.html
because the replacement (the select) is defined after the first use
of an alloca, so we'd end up with a verifier error.
Now, this new check is too restrictive.
We likely can handle *some* cases, by trying to sink all uses of an alloca
to after the the def.
Extension to rG74f98391a7a4, we can also include any of the upper (known zero) bits in the comparison in the shuffle removal fold, just as long as we demand all the elements of the movmsk source vector.
This fixes breakage on Windows/ARM64 after D94355.
Modelled after the corresponding code for X86; not entirely familiar
with those aspects of that layer otherwise.
Differential Revision: https://reviews.llvm.org/D99572
Patchpoint instructions have operands which is actually zero cost
(or the same as register) to use the value from the stack.
In terms of statistic it makes same to separate them.
Move from computation instructions related to stack spill/reload to
number of stack slot referenced.
Reviewers: reames, MatzeB, anemet, thegameg
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D100016
Statepoint instruction has a deopt section which is actually live-through the call.
Currently this is handled by special post pass after RA - fixup-statepoint-caller-saved.
This change teaches Greedy RA that if segment of live interval is ended with statepoint
instruction and its reg is used in deopt bundle then this live interval interferes regmask of this statepoint
and as a result caller-saved register cannot be assigned to this live interval.
Reviewers: reames, dantrushin
Reviewed By: reames
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D100296
M68kAsmParser uses `llvm::getTheM68kTarget` from M68kInfo, therefore we
should put M68kInfo as its direct dependency. Otherwise the build will
fail when building LLVM libraries as shared objects (building LLVM
libraries statically won't have this problem though).
This is a follow up of D99010. We didn't consider the live range of shape registers when hoist ldtilecfg. There maybe risks, e.g. we happen to insert it to an invalid range of some registers and get unexpected error.
This patch fixes this problem by storing the value to corresponding stack place of ldtilecfg after all its definition immediately.
This patch also fix a problem in previous code: If we don't have a ldtilecfg which dominates all AMX instructions, we cannot initialize shapes for other ldtilecfg.
There're still some optimization points left. E.g. eliminate unused mov instructions, break the def-use dependency before RA etc.
Reviewed By: LuoYuanke, xiangzhangllvm
Differential Revision: https://reviews.llvm.org/D99966
The VSX tablegen file has some rather eggregious uses of
COPY_TO_REGCLASS even in situations where it needs to use
SUBREG_TO_REG. While this produces correct code, it often doesn't
allow the register coalescer to coalesce copies and the resulting
code ends up being suboptimal. This patch just changes over
patterns that should use SUBREG_TO_REG.
This fixes the resolution of Rec10.Zero in ListSlices.td.
As part of this, correct the definition of complete for ListInit such that
it's complete iff all the elements in the list are complete rather than
always being complete regardless of the elements. This is the reason
Rec10.TwoFive from ListSlices.td previously resolved despite being
incomplete like Rec10.Zero was
Depends on D100247
Reviewed By: Paul-C-Anagnostopoulos
Differential Revision: https://reviews.llvm.org/D100253
- Add support for HLASM style integers. These are the decimal integers [0-9].
- HLASM does not support the additional prefixed integers like, `0b`, `0x`, octal integers and Masm style integers.
- To achieve this, a field `LexHLASMStyleIntegers` (similar to the `LexMasmStyleIntegers` field) is introduced in `MCAsmLexer.h` as well as a corresponding setter.
Note: This field could also go into MCAsmInfo.h. I used the previous precedent set by the `LexMasmIntegers` field.
Depends on https://reviews.llvm.org/D99286
Reviewed By: epastor
Differential Revision: https://reviews.llvm.org/D99374
Currently, for any extern variable, if it doesn't have
section attribution, it will be put into a default ".extern"
btf DataSec. The initial design is to put every extern
variable in a DataSec so libbpf can use it.
But later on, libbpf actually requires extern variables
to put into special sections, e.g., ".kconfig", ".ksyms", etc.
so they can be used properly based on section name.
Andrii mentioned since ".extern" variables are
not actually used, it makes sense to remove it from
the compiler so libbpf does not need to deal with it,
esp. for static linking. The BTF for these extern variables
is still generated.
With this patch, I tested kernel selftests/bpf and all tests
passed. Indeed, removing ".extern" DataSec seems having no
impact.
Differential Revision: https://reviews.llvm.org/D100392
I've run into some cases where a large fraction of compile-time is
spent invalidating SCEV. One of the causes is forgetLoop(), which
walks all values that are def-use reachable from the loop header
phis. When invalidating a topmost loop, that might be close to all
values in a function. Additionally, it's fairly common for there to
not actually be anything to invalidate, but we'll still be performing
this walk again and again.
My first thought was that we don't need to continue walking the uses
if the current value doesn't have a SCEV expression. However, this
isn't quite right, because SCEV construction can skip over values
(e.g. for a chain of adds, we might only create a SCEV expression
for the final value).
What this patch does instead is to only walk the (full) def-use chain
of loop phis that have a SCEV expression. If there's no expression
for a phi, then we also don't have any dependent expressions to
invalidate.
Differential Revision: https://reviews.llvm.org/D100264
We already allow the comparison of the upper bits of 'IsAllOf' (allbits) patterns, but we can safely compare the known zero bits for 'IsAnyOf' (zerobits) patterns as well.
This fixes an issues where we are comparing a type wide than the number of vector elements, which avoids a regression mentioned in rGbaadbe04bf75.
- In the SystemZAsmParser, there will be a few queries to the type of dialect it is (AD_ATT, AD_HLASM) in future patches.
- It would be nice to have two small helper functions `isParsingATT()` and `isParsingHLASM()`
- Putting this as a separate smaller patch allows us to remove its definitions from other dependent patches.
Reviewed By: uweigand, abhina.sreeskantharajan
Differential Revision: https://reviews.llvm.org/D99891
For a global weak symbol defined as below:
char g __attribute__((weak)) = 2;
LLVM generates an allocated global with WeakAnyLinkage,
for which BPF backend generates proper BTF info.
For the above example, if a modifier "const" is added like
const char g __attribute__((weak)) = 2;
LLVM generates an allocated global with WeakODRLinkage,
for which BPF backend didn't generate any BTF as it
didn't handle WeakODRLinkage.
This patch addes support for WeakODRLinkage and proper
BTF info can be generated for weak symbol defined with
"const" modifier.
Differential Revision: https://reviews.llvm.org/D100362
- Currently, MCAsmInfo provides a CommentString attribute, that various targets can set, so that the AsmLexer can appropriately lex a string as a comment based on the set value of the attribute.
- However, AsmLexer also supports a few additional comment syntaxes, in addition to what's specified as a CommentString attribute. This includes regular C-style block comments (/* ... */), regular C-style line comments (// .... ) and #. While I'm not sure as to why this behaviour exists, I am assuming it does to maintain backward compatibility with GNU AS (see https://sourceware.org/binutils/docs/as/Comments.html#Comments for reference)
For example:
Consider a target which sets the CommentString attribute to '*'.
The following strings are all lexed as comments.
```
"# abc" -> comment
"// abc" -> comment
"/* abc */ -> comment
"* abc" -> comment
```
- In HLASM however, only "*" is accepted as a comment string, and nothing else.
- To achieve this, an additional attribute (`AllowAdditionalComments`) has been added to MCAsmInfo. If this attribute is set to false, then only the string specified by the CommentString attribute is used as a possible comment string to be lexed by the AsmLexer. The regular C-style block comments, line comments and "#" are disabled. As a final note, "#" will still be treated as a comment, if the CommentString attribute is set to "#".
Depends on https://reviews.llvm.org/D99277
Reviewed By: abhina.sreeskantharajan, myiwanch
Differential Revision: https://reviews.llvm.org/D99286
The IR stack protector pass must insert stack checks before the call instead of
between it and the return.
Similarly, SDAG one should recognize that ADJCALLFRAME instructions could be
part of the terminal sequence of a tail call. In this case because such call
frames cannot be nested in LLVM the stack protection code must skip over the
whole sequence (or risk clobbering argument registers).
This patch adds attributes corresponding to
implicits to functions/kernels if
1. it has an indirect call OR
2. it's address is taken.
Once such attributes are set, rest of the codegen would work
out-of-box for indirect calls. This patch eliminates
the potential overhead -fixed-abi imposes even though indirect functions
calls are not used.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D99347
As a side-effect of the change to default HoistCommonInsts to false
early in the pipeline, we fail to convert conditional branch & phis to
selects early on, which prevents vectorization for loops that contain
conditional branches that effectively are selects (or if the loop gets
vectorized, it will get vectorized very inefficiently).
This patch updates SimplifyCFG to perform hoisting if the only
instruction in both BBs is an equal branch. In this case, the only
additional instructions are selects for phis, which should be cheap.
Even though we perform hoisting, the benefits of this kind of hoisting
should by far outweigh the negatives.
For example, the loop in the code below will not get vectorized on
AArch64 with the current default, but will with the patch. This is a
fundamental pattern we should definitely vectorize. Besides that, I
think the select variants should be easier to use for reasoning across
other passes as well.
https://clang.godbolt.org/z/sbjd8Wshx
```
double clamp(double v) {
if (v < 0.0)
return 0.0;
if (v > 6.0)
return 6.0;
return v;
}
void loop(double* X, double *Y) {
for (unsigned i = 0; i < 20000; i++) {
X[i] = clamp(Y[i]);
}
}
```
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D100329
This is a work-in-progress implementation of an assembler for M68k.
Outstanding work:
- Updating existing tests assembly syntax
- Writing new tests for the assembler (and disassembler)
I've left those until there's consensus that this approach is okay (I hope that's okay!).
Questions I'm aware of:
- Should this use Motorola or gas syntax? (At the moment it uses Motorola syntax.)
- The disassembler produces a table at runtime for disassembly generated from the code beads. Is this okay? (This is less than ideal but as I mentioned in my llvm-dev post, it's quite complicated to write a table-gen parser for code beads.)
Depends on D98519
Depends on D98532
Depends on D98534
Depends on D98535
Depends on D98536
Differential Revision: https://reviews.llvm.org/D98537
Prep work for adding intrinsics in the future.
Left an assert that the input is constant in ReplaceNodeResults,
as the intrinsic shouldn't go through that path.
We should consider the feeder user number when we do reverse memory
operation transformation. Otherwise, we may get negative impact.
Reviewed By: nemanjai
Differential Revision: https://reviews.llvm.org/D100166
Lookup tables generate non PIC-friendly code, which requires dynamic relocation as described in:
https://bugs.llvm.org/show_bug.cgi?id=45244
This patch adds a new pass that converts lookup tables to relative lookup tables to make them PIC-friendly.
Differential Revision: https://reviews.llvm.org/D94355
Jump threading can replace select then unconditional branch with
conditional branch, but when doing so loses debug info.
This destructive transform is eventually leading to a failed Verifier
run during full LTO builds of the Linux kernel with CFI and KCOV
enabled, as reported in PR39531.
ModuleSanitizerCoveragePass will insert calls to
__sanitizer_cov_trace_pc, and sometimes split critical edges,
using whatever debug info may or may not exist for the branch for
the added libcall. Since we can inline calls to
__sanitizer_cov_trace_pc due to LTO, this can lead to the error
observed in PR39531 when the debug info isn't propagated to
the libcall, because of prior destructive transforms that failed to
retain debug info.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D100137
Turning on -fstrict-vtable-pointers in Chrome caused an extra global
initializer. Turns out that a llvm.strip.invariant.group intrinsic was
causing GlobalOpt to fail to step through some simple code.
We can treat *.invariant.group uses as simply their operand.
Value::stripPointerCastsForAliasAnalysis() does exactly this. This
should be safe because the Evaluator does not skip memory accesses due
to invariants or alias analysis.
However, we don't want to leak that we've stripped arbitrary pointer
casts to users of Evaluator, so we bail out if we evaluate a function to
any constant, since we may have looked through *.invariant.group calls
and aliasing pointers cannot be arbitrarily substituted.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D98843
Instruction::getDebugLoc can return an invalid DebugLoc. For such cases
where metadata was accidentally removed from the libcall insertion
point, simply insert a DILocation with line 0 scoped to the caller. When
we can inline the libcall, such as during LTO, then we won't fail a
Verifier check that all calls to functions with debug metadata
themselves must have debug metadata.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D100158
Currently the ARM backend only accpets constant expressions as the
immediate operand in load and store instructions. This allows the
result of symbolic expressions to be used in memory instructions. For
example,
0:
.space 2048
strb r2, [r0, #(.-0b)]
would be assembled into the following instructions.
strb r2, [r0, #2048]
This only adds support to ldr, ldrb, str, and strb in arm mode to
address the build failure of Linux kernel for now, but should facilitate
adding support to similar instructions in the future if the need arises.
Link:
https://github.com/ClangBuiltLinux/linux/issues/1329
Reviewed By: peter.smith, nickdesaulniers
Differential Revision: https://reviews.llvm.org/D98916
Retry of 330619a3a6 that includes a clang test update.
Original commit message:
If we run passes before lowering llvm.expect intrinsics to metadata,
then those passes have no way to act on the hints provided by llvm.expect.
SimplifyCFG is the known offender, and we made it smarter about profile
metadata in D98898 <https://reviews.llvm.org/D98898>.
In the motivating example from https://llvm.org/PR49336 , this means we
were ignoring the recommended method for a programmer to tell the compiler
that a compare+branch is expensive. This change appears to solve that case -
the metadata survives to the backend, the compare order is as expected in IR,
and the backend does not do anything to reverse it.
We make the same change to the old pass manager to keep things synchronized.
Differential Revision: https://reviews.llvm.org/D100213
-filter-print-funcs -print-changed was crashing after the filter func
was removed by a pass with
Assertion failed: After.find("*** IR Dump") == 0 && "Unexpected banner format."
We weren't printing the banner because when we have -filter-print-funcs,
we print each function separately, letting the print function filter out
unwanted functions.
Reviewed By: jamieschmeiser
Differential Revision: https://reviews.llvm.org/D100237
SROA can handle invariant group intrinsics, let the inliner know that
for better heuristics when the intrinsics are present.
This fixes size issues in a couple files when turning on
-fstrict-vtable-pointers in Chrome.
Reviewed By: rnk, mtrofin
Differential Revision: https://reviews.llvm.org/D100249
This patch removes all uses of `std::iterator`, which was deprecated in C++17.
While this isn't currently an issue while compiling LLVM, it's useful for those using LLVM as a library.
For some reason there're a few places that were seemingly able to use `std` functions unqualified, which no longer works after this patch. I've updated those places, but I'm not really sure why it worked in the first place.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D67586
This patch adds more optimized codegen for the above SETCC forms,
by matching the '.vi' vector forms when the immediate is a 5-bit signed
immediate plus 1. The immediate can be decremented and the corresponding
SET[U]LE or SET[U]GT forms can be matched.
This work was left as a TODO from D94168.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D100096
D24453 enabled libcalls simplication for ARM PCS. This may cause
caller/callee calling conventions mismatch in some situations such as
LTO. This patch makes instcombine aware that the compatible calling
conventions differences are benign (not emitting undef idom).
Differential Revision: https://reviews.llvm.org/D99773
If we run passes before lowering llvm.expect intrinsics to metadata,
then those passes have no way to act on the hints provided by llvm.expect.
SimplifyCFG is the known offender, and we made it smarter about profile
metadata in D98898.
In the motivating example from https://llvm.org/PR49336 , this means we
were ignoring the recommended method for a programmer to tell the compiler
that a compare+branch is expensive. This change appears to solve that case -
the metadata survives to the backend, the compare order is as expected in IR,
and the backend does not do anything to reverse it.
We make the same change to the old pass manager to keep things synchronized.
Differential Revision: https://reviews.llvm.org/D100213
Add a number of intrinsics which natively lower to MVE operations to the
lane interleaving pass, allowing it to efficiently interleave the lanes
of chucks of operations containing these intrinsics.
Differential Revision: https://reviews.llvm.org/D97293
Fixes the issues noted in PR48768, where the and/or/xor instruction had been promoted to avoid i8/i16 partial-dependencies, but the test against zero had not.
We can almost certainly relax this fold to work for any truncation, although it breaks a number of existing folds (notable movmsk folds which tend to rely on the truncate to determine the demanded bits/elts in the source vector).
There is a reverse combine in TargetLowering.SimplifySetCC so we must wait until after legalization before attempting this.
The previous code calculated the first ldtilecfg by dominating all AMX registers' def. This may result in the ldtilecfg being inserted into a loop.
This patch try to calculate the nearest point where all shapes of AMX registers are reachable.
Reviewed By: LuoYuanke
Differential Revision: https://reviews.llvm.org/D99010
FP16 to FP32 converts can be handled in MVE lane interleaving, much like
the sext/zext lowering we do. This expands the pass with fpext and
fptrunc handling, and basic fp operations allowing more efficient
lowering of fp vectors.
Differential Revision: https://reviews.llvm.org/D97292
The patch makes two updates to the arm-block-placement pass:
- Handle arbitrarily nested loops
- Extends the search (for t2WhileLoopStartLR) to the predecessor of the
preHeader.
Differential Revision: https://reviews.llvm.org/D99649
This reverts commit cca9b5985c.
Buildbot reported an error for CodeGen/AArch64/machine-combiner-fmul-dup.mir:
*** Bad machine code: Virtual register killed in block, but needed live out. ***
- function: indexed_2s
- basic block: %bb.0 entry (0x640fee8)
Virtual register %7 is used after the block.
*** Bad machine code: Virtual register defs don't dominate all uses. ***
- function: indexed_2s
- v. register: %7
LLVM ERROR: Found 2 machine code errors.
This patch adds DUP+FMUL => FMUL_indexed pattern to InstCombiner.
FMUL_indexed is normally selected during instruction selection, but it
does not work in cases when VDUP and VMUL are in different basic
blocks.
Differential Revision: https://reviews.llvm.org/D99662
Spilling the fp or bp to scratch could overwrite VGPRs of inactive
lanes. Fix that by using only the active lanes of the scavenged VGPR.
This builds on the assumptions that
1. a function is never called with exec=0
2. lanes do not die in a function, i.e. exec!=0 in the function epilog
3. no new lanes are active when exiting the function, i.e. exec in the
epilog is a subset of exec in the prolog.
Differential Revision: https://reviews.llvm.org/D96869
Spilling SGPRs to scratch uses a temporary VGPR. LLVM currently cannot
determine if a VGPR is used in other lanes or not, so we need to save
all lanes of the VGPR. We even need to save the VGPR if it is marked as
dead.
The generated code depends on two things:
- Can we scavenge an SGPR to save EXEC?
- And can we scavenge a VGPR?
If we can scavenge an SGPR, we
- save EXEC into the SGPR
- set the needed lane mask
- save the temporary VGPR
- write the spilled SGPR into VGPR lanes
- save the VGPR again to the target stack slot
- restore the VGPR
- restore EXEC
If we were not able to scavenge an SGPR, we do the same operations, but
everytime the temporary VGPR is written to memory, we
- write VGPR to memory
- flip exec (s_not exec, exec)
- write VGPR again (previously inactive lanes)
Surprisingly often, we are able to scavenge an SGPR, even though we are
at the brink of running out of SGPRs.
Scavenging a VGPR does not have a great effect (saves three instructions
if no SGPR was scavenged), but we need to know if the VGPR we use is
live before or not, otherwise the machine verifier complains.
Differential Revision: https://reviews.llvm.org/D96336
This patch adds the memory operands for indexed loads so
that certain optimizations can take place.
Differential Revision: https://reviews.llvm.org/D100215/
Change-Id: I539fcf046ca4ad1e7df1d893f57d751419d8364d
We saw some big compiling time impact after enabling the debug entry value
feature for X86 platform(D73534). Compiling time goes from 900s->1600s with
our testcase. It is caused by allocating/freeing the memory busily.
'using FwdRegWorklist = MapVector<unsigned, SmallVector<FwdRegParamInfo, 2>>;'
The value for this map is vector, and we miss the reference when access the
element. The same happens for `auto CalleesMap = MF->getCallSitesInfo();` which is a DenseMap.
Reviewed by: djtodoro, flychen50
Differential Revision: https://reviews.llvm.org/D100162
Say we have
%1=min(%a,%b)
%2=min(%b,%c)
%3=min(%2,%a)
The optimization will try to reassociate the later one so that we can rewrite it to %3=min(%1, %c) and remove %2.
But if %2 has another uses outside of %3 then we can't remove %2 and end up with:
%1=min(%a,%b)
%2=min(%b,%c)
%3=min(%1, %c)
This doesn't harm by itself except it is not profitable and changes IR for no good reason.
What is bad it triggers next iteration which finds out that optimization is applicable to %2 and %3 and generates:
%1=min(%a,%b)
%2=min(%b,%c)
%3=min(%1,%c)
%4=min(%2,%a)
and so on...
The solution is to prevent optimization in the first place if intermediate result (%2) has side uses and
known to be not removed.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D100170
XSCMPUQP is not available for pre-P9 subtargets. This patch will lower
them into libcall for correct behavior on power7/power8.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D92083
First, we don't need vector-ness for the predecessor lists.
Secondly, like elsewhere, do insertions before deletions.
Lastly, the check that we actually need to insert an edge,
that it doesn't exist already, is backwards. Instead of
looking at successors of every single 'PredOfBB',
just always look at predecessors of the 'Succ'.
The result is always the same, but we avoid *really* inefficient code.
While, indeed, we may end up pushing less updates that we'd reserve space
for, self-dominating updates aren't often enough for that to matter.
But this should matter for normal updates.
Improve AVX512 mask inversion, rG38c799bce801 exposed some missing opportunities to move scalar not() back onto the boolvector types for folding with setcc etc.
In the final SIMD spec, there is only a single v128.any_true instruction, rather
than one for each lane interpretation because the semantics do not depend on the
lane interpretation.
Differential Revision: https://reviews.llvm.org/D100241
Followup to D100177, handle an similar (demorgan inverse style) case from PR47797 as well
The AVX512 test cases could be further improved if we folded not(iX bitcast(vXi1)) -> (iX bitcast(not(vXi1)))
Alive2: https://alive2.llvm.org/ce/z/AnA_-W
The first source has the same EEW as the destination and the other
source is a scalar so the overlap constraints don't apply to
the unmasked version.
For the masked version we have a constraint that the destination
can't be V0 so that covers the only overlap issue there.
Reviewed By: khchen
Differential Revision: https://reviews.llvm.org/D100217
It breaks up the function pass manager in the codegen pipeline.
With empty parameters, it looks at the -mllvm flag -rewrite-map-file.
This is likely not in use.
Add a check that we only have one function pass manager in the codegen
pipeline.
This required reverting commit 9583a3f2625818b78c0cf6d473cdedb9f23ad82c:
"[AsmPrinter] Delete dead takeDeletedSymbsForFunction()".
This was not NFC as initially thought. By coalescing two function
psas managers, this exposed the reverted code as necessary.
addr-label.ll was crashing due to an emitted blockaddress's block being
removed but the label not emitted.
Some tests relied on the fact that we had a module pass somewhere in the
codegen pipeline.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D99707
Check the cache before calling isLoopSimplifyForm(). Otherwise we'd
always perform the check for the innermost loop and only skip it
for dominating loops.
This patch fixed the following issues along side with some refactoring:
1. Fix bugs where StringRef for context string out live the underlying std::string. We now keep string table in profile generator to hold std::strings. We also do the same for bracketed context strings in profile writer.
2. Make sure profile output strictly follow (total sample, name) order. Previously, there's inconsistency between ProfileMap's key and FunctionSamples's name, leading to inconsistent ordering. This is now fixed by introducing context profile canonicalization. Assertions are also added to make sure ProfileMap's key and FunctionSamples's name are always consistent.
3. Enhanced error handling for profile writing to make sure we bubble up errors properly for both llvm-profgen and llvm-profdata when string table is not populated correctly for extended binary profile.
4. Keep all internal context representation bracket free. This avoids creating new strings for context trimming, merging and preinline. getNameWithContext API is now simplied accordingly.
5. Factor out the code for context trimming and merging into SampleContextTrimmer in SampleProf.cpp. This enables llvm-profdata to use the trimmer when merging profiles. Changes in llvm-profgen will be in separate patch.
Differential Revision: https://reviews.llvm.org/D100090
The default is likely wrong.
Out of all the callees, only a single one needs to pass-in false (JumpThread),
everything else either already passes true, or should pass true.
Until the default is flipped, at least make it harder to unintentionally
add new callees with UseBlockValue=false.
"Does the predicate hold between two ranges?"
Not very surprisingly, some places were already doing this check,
without explicitly naming the algorithm, cleanup them all.
"Does the predicate hold between two ranges?"
Not very surprisingly, some places were already doing this check,
without explicitly naming the algorithm, cleanup them all.
Added cost estimation for switch instruction, updated costs of branches, fixed
phi cost.
Had to increase `-amdgpu-unroll-threshold-if` default value since conditional
branch cost (size) was corrected to higher value.
Test renamed to "control-flow.ll".
Removed redundant code in `X86TTIImpl::getCFInstrCost()` and
`PPCTTIImpl::getCFInstrCost()`.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D96805