Adding sample-profile-suffix-elision-policy attribute to functions whose linkage names are uniquefied so that their unique name suffix won't be trimmed when applying AutoFDO profiles.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D94455
LoopVectorize uses some utilities on LoopVersioning, but doesn't actually use it for, you know, versioning. As a result, the precondition LoopVersioning expects is too strong for this user. At the moment, LoopVectorize supports any loop with a unique exit block, so check the same precondition here.
Really, the whole class structure here is a mess. We should separate the actual versioning from the metadata updates, but that's a bigger problem.
When DomTreeUpdater is in lazy update mode, the blocks
that were scheduled to be removed, won't be removed
until the updates are flushed, e.g. by asking
DomTreeUpdater for a up-to-date DomTree.
From the function's current code, it is pretty evident
that the support for the lazy mode is an afterthought,
see e.g. how we roll-back NumRemoved statistic..
So instead of considering all the unreachable blocks
as the blocks-to-be-removed, simply additionally skip
all the blocks that are already scheduled to be removed
When we are adding edges to the terminator and potentially turning it
into a switch (if it wasn't already), it is possible that the
case we're adding will share it's destination with one of the
preexisting cases, in which case there is no domtree edge to add.
Indeed, this change does not have a test coverage change.
This failure has been exposed in an existing test coverage
by a follow-up patch that switches to lazy domtreeupdater mode,
and removes domtree verification from
SimplifyCFGOpt::simplifyOnce()/SimplifyCFGOpt::run(),
IOW it does not appear feasible to add dedicated test coverage here.
BB was already always branching to EdgeBB, there is no edge to add.
Indeed, this change does not have a test coverage change.
This failure has been exposed in an existing test coverage
by a follow-up patch that switches to lazy domtreeupdater mode,
and removes domtree verification from
SimplifyCFGOpt::simplifyOnce()/SimplifyCFGOpt::run(),
IOW it does not appear feasible to add dedicated test coverage here.
SI is the terminator of BB, so the edge we are adding obviously already existed.
Indeed, this change does not have a test coverage change.
This failure has been exposed in an existing test coverage
by a follow-up patch that switches to lazy domtreeupdater mode,
and removes domtree verification from
SimplifyCFGOpt::simplifyOnce()/SimplifyCFGOpt::run(),
IOW it does not appear feasible to add dedicated test coverage here.
Functions that are renamed under -funique-internal-linkage-names have their debug linkage name updated as well.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D93747
Please see D93747 for more context which tries to make linkage names of internal
linkage functions to be the uniqueified names. This causes a problem with gdb
because breaking using the demangled function name will not work if the new
uniqueified name cannot be demangled. The problem is the generated suffix which
is a mix of integers and letters which do not demangle. The demangler accepts
either all numbers or all letters. This patch simply converts the hash to decimal.
There is no loss of uniqueness by doing this as the precision is maintained.
The symbol names get longer by a few characters though.
Differential Revision: https://reviews.llvm.org/D94154
Loop peeling as a last step triggers loop simplification and this
can change the loop structure. As a result all cashed values like
latch branch becomes invalid.
Patch re-structure the code to take into account the possible
changes caused by peeling.
Reviewers: dmgreen, Meinersbur, etiotto, fhahn, efriedma, bmahjour
Reviewed By: Meinersbur, fhahn
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D93686
This is a resubmit of dd6bb367 (which was reverted due to stage2 build failures in 7c63aac), with the additional restriction added to the transform to only consider outer most loops.
As shown in the added test case, ensuring LCSSA is up to date when deleting an inner loop is tricky as we may actually need to remove blocks from any outer loops, thus changing the exit block set. For the moment, just avoid transforming this case. I plan to return to this case in a follow up patch and see if we can do better.
Original commit message follows...
The basic idea is that if SCEV can prove the backedge isn't taken, we can go ahead and get rid of the backedge (and thus the loop) while leaving the rest of the control in place. This nicely handles cases with dispatch between multiple exits and internal side effects.
Differential Revision: https://reviews.llvm.org/D93906
Currently make_early_inc_range cannot be used with iterators with
operator* implementations that do not return a reference.
Most notably in the LLVM codebase, this means the User iterator ranges
cannot be used with make_early_inc_range, which slightly simplifies
iterating over ranges while elements are removed.
Instead of directly using BaseT::reference as return type of operator*,
this patch uses decltype to get the actual return type of the operator*
implementation in WrappedIteratorT.
This patch also updates a few places to use make use of
make_early_inc_range.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D93992
Currently SimplifyCFG drops the debug locations of 'bonus' instructions.
Such instructions are moved before the first branch. The reason for the
current behavior is that this could lead to surprising debug stepping,
if the block that's folded is dead.
In case the first branch and the instructions to be folded have the same
debug location, this shouldn't be an issue and we can keep the debug
location.
Reviewed By: vsk
Differential Revision: https://reviews.llvm.org/D93662
We have modules with metadata on declarations, and out-of-tree passes
use that metadata, and we need to clone those modules. We really expect
such metadata is kept during the clone operation.
Reviewed by: arsenm, aprantl
Differential Revision: https://reviews.llvm.org/D93451
We need to handle this case before dealing with the case of constant
branch condition, because if the destinations match, latter fold
would try to remove the DomTree edge that would still be present.
This allows to make that particular DomTree update non-permissive
I have added it in d15d81c because it *seemed* correct, was holding
for all the tests so far, and was validating the fix added in the same
commit, but as David Major is pointing out (with a reproducer),
the assertion isn't really correct after all. So remove it.
Note that the d15d81c still fine.
Summary:
Currently SplitEdge does not support passing in parameter which allows you to
name the newly created BasicBlock.
This patch updates the function such that the name of the block can be passed
in, if users of this utility decide to do so.
Reviewed By: Whitney, bmahjour, asbirlea, jamieschmeiser
Differential Revision: https://reviews.llvm.org/D94176
Add support for mixed pre/post CFG views.
Update usages of the MemorySSAUpdater to use the new DT API by
requesting the DT updates to be done by the MSSAUpdater.
Differential Revision: https://reviews.llvm.org/D93371
Previously when trying to support CoroSplit's function splitting, we
added in a hack that simply added the new function's node into the
original function's SCC (https://reviews.llvm.org/D87798). This is
incorrect since it might be in its own SCC.
Now, more similar to the previous design, we have callers explicitly
notify the LazyCallGraph that a function has been split out from another
one.
In order to properly support CoroSplit, there are two ways functions can
be split out.
One is the normal expected "outlining" of one function into a new one.
The new function may only contain references to other functions that the
original did. The original function must reference the new function. The
new function may reference the original function, which can result in
the new function being in the same SCC as the original function. The
weird case is when the original function indirectly references the new
function, but the new function directly calls the original function,
resulting in the new SCC being a parent of the original function's SCC.
This form of function splitting works with CoroSplit's Switch ABI.
The second way of splitting is more specific to CoroSplit. CoroSplit's
Retcon and Async ABIs split the original function into multiple
functions that all reference each other and are referenced by the
original function. In order to keep the LazyCallGraph in a valid state,
all new functions must be processed together, else some nodes won't be
populated. To keep things simple, this only supports the case where all
new edges are ref edges, and every new function references every other
new function. There can be a reference back from any new function to the
original function, putting all functions in the same RefSCC.
This also adds asserts that all nodes in a (Ref)SCC can reach all other
nodes to prevent future incorrect hacks.
The original hacks in https://reviews.llvm.org/D87798 are no longer
necessary since all new functions should have been registered before
calling updateCGAndAnalysisManagerForPass.
This fixes all coroutine tests when opt's -enable-new-pm is true by
default. This also fixes PR48190, which was likely due to the previous
hack breaking SCC invariants.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D93828
* Update valueCoversEntireFragment to use TypeSize.
* Add a regression test.
* Assertions have been added to protect untested codepaths.
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D91806
If the predecessor is a switch, and BB is not the default destination,
multiple cases could have the same destination. and it doesn't
make sense to re-process the predecessor, because we won't make any changes,
once is enough.
I'm not sure this can be really tested, other than via the assertion
being added here, which fires without the fix.
One would hope that it would have been already canonicalized into an
unconditional branch, but that isn't really guaranteed to happen
with SimplifyCFG's visitation order.
... which requires not removing a DomTree edge if the switch's default
still points at that destination, because it can't be removed;
... and not processing the same predecessor more than once.
From C11 and C++11 onwards, a forward-progress requirement has been
introduced for both languages. In the case of C, loops with non-constant
conditionals that do not have any observable side-effects (as defined by
6.8.5p6) can be assumed by the implementation to terminate, and in the
case of C++, this assumption extends to all functions. The clang
frontend will emit the `mustprogress` function attribute for C++
functions (D86233, D85393, D86841) and emit the loop metadata
`llvm.loop.mustprogress` for every loop in C11 or later that has a
non-constant conditional.
This patch modifies LoopDeletion so that only loops with
the `llvm.loop.mustprogress` metadata or loops contained in functions
that are required to make progress (`mustprogress` or `willreturn`) are
checked for observable side-effects. If these loops do not have an
observable side-effect, then we delete them.
Loops without observable side-effects that do not satisfy the above
conditions will not be deleted.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86844
... which requires not deleting an edge that just got deleted,
because we could be dealing with a block that didn't go through
ConstantFoldTerminator() yet, and thus has a degenerate cond br
with matching true/false destinations.
Notably, this doesn't switch *every* case, remaining cases
don't actually pass sanity checks in non-permissve mode,
and therefore require further analysis.
Note that SimplifyCFG still defaults to not preserving DomTree by default,
so this is effectively a NFC change.