Use -0.0 instead of 0.0 as the start value. The previous use of 0.0
was fine for all existing uses of this function though, as it is
always generated with fast flags right now, and thus nsz.
This patch changes MergeBlockIntoPredecessor to skip the call to
RemoveRedundantDbgInstrs, in effect partially reverting D71480 due to
some compile-time issues spotted in LoopUnroll and SimplifyCFG.
The call to RemoveRedundantDbgInstrs appears to have changed the
worst-case behavior of the merging utility. Loosely speaking, it seems
to have gone from O(#phis) to O(#insts).
It might not be possible to mitigate this by scanning a block to
determine whether there are any debug intrinsics to remove, since such a
scan costs O(#insts).
So: skip the call to RemoveRedundantDbgInstrs. There's surprisingly
little fallout from this, and most of it can be addressed by doing
RemoveRedundantDbgInstrs later. The exception is (the block-local
version of) SimplifyCFG, where it might just be too expensive to call
RemoveRedundantDbgInstrs.
Differential Revision: https://reviews.llvm.org/D88928
CallInst::updateProfWeight() creates branch_weights with i64 instead of i32.
To be more consistent everywhere and remove lots of casts from uint64_t
to uint32_t, use i64 for branch_weights.
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D88609
Prepend the module name hash with a fixed string ".__uniq." which helps tools
that consume sampled profiles and attribute it to functions to understand
that this symbol belongs to a unique internal linkage type symbol.
Symbols with suffixes can result from various optimizations in the compiler.
Function Multiversioning, function splitting, parameter constant propogation,
unique internal linkage names.
External tools like sampled profile aggregators combine profiles from multiple
runs of a binary. They use various heuristics with symbols that have suffixes
to try and attribute the profile to the right function instance. For instance
multi-versioned symbols like foo.avx, foo.sse4.2, etc even though different
should be attributed to the same source function if a single function is
versioned, using attribute target_clones (supported in GCC but yet to land in
LLVM). Similarly, functions that are split (split part having a .cold suffix)
could have profiles for both the original and split symbols but would be
aggregated and attributed to the original function that was split.
Unique internal linkage functions however have different source instances and
the aggregator must not put them together but attribute it to the appropriate
function instance. To be sure that we are dealing with a symbol of a unique
internal linkage function, we would like to prepend the hash with a known
string ".__uniq." which these tools can check to understand the suffix type.
Differential Revision: https://reviews.llvm.org/D89617
The exit blocks of the versioned and non-versioned loops are not dedicated and thus the two loops are not in simplify form.
Insert dummy exit blocks after loop versioning with `formDedicatedExits()` to preserve the simplify form for subsequence passes.
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D89569
This change introduces a GC parseable lowering for element atomic
memcpy/memmove intrinsics. This way runtime can provide an
implementation which can take a safepoint during copy operation.
See "GC-parseable element atomic memcpy/memmove" thread on llvm-dev
for the background and details:
https://groups.google.com/g/llvm-dev/c/NnENHzmX-b8/m/3PyN8Y2pCAAJ
Differential Revision: https://reviews.llvm.org/D88861
It's currently ambiguous in IR whether the source language explicitly
did not want a stack a stack protector (in C, via function attribute
no_stack_protector) or doesn't care for any given function.
It's common for code that manipulates the stack via inline assembly or
that has to set up its own stack canary (such as the Linux kernel) would
like to avoid stack protectors in certain functions. In this case, we've
been bitten by numerous bugs where a callee with a stack protector is
inlined into an __attribute__((__no_stack_protector__)) caller, which
generally breaks the caller's assumptions about not having a stack
protector. LTO exacerbates the issue.
While developers can avoid this by putting all no_stack_protector
functions in one translation unit together and compiling those with
-fno-stack-protector, it's generally not very ergonomic or as
ergonomic as a function attribute, and still doesn't work for LTO. See also:
https://lore.kernel.org/linux-pm/20200915172658.1432732-1-rkir@google.com/https://lore.kernel.org/lkml/20200918201436.2932360-30-samitolvanen@google.com/T/#u
Typically, when inlining a callee into a caller, the caller will be
upgraded in its level of stack protection (see adjustCallerSSPLevel()).
By adding an explicit attribute in the IR when the function attribute is
used in the source language, we can now identify such cases and prevent
inlining. Block inlining when the callee and caller differ in the case that one
contains `nossp` when the other has `ssp`, `sspstrong`, or `sspreq`.
Fixes pr/47479.
Reviewed By: void
Differential Revision: https://reviews.llvm.org/D87956
This patch copies @vsk's fix to instcombine from D85555 over to mem2reg. The
motivation and rationale are exactly the same: When mem2reg removes an alloca,
it erases the dbg.{addr,declare} instructions which refer to the alloca. It
would be better to instead remove all debug intrinsics which describe the
contents of the dead alloca, namely all dbg.value(<dead alloca>, ...,
DW_OP_deref)'s.
As far as I can tell, prior to D80264 these `dbg.value+deref`s would have been
silently dropped instead of being made `undef`, so we're just returning to
previous behaviour with these patches.
Testing:
`llvm-lit llvm/test` and `ninja check-clang` gave no unexpected failures. Added
3 tests, each of which covers a dbg.value deletion path in mem2reg:
mem2reg-promote-alloca-1.ll
mem2reg-promote-alloca-2.ll
mem2reg-promote-alloca-3.ll
The first is based on the dexter test inlining.c from D89543. This patch also
improves the debugging experience for loop.c from D89543, which suffers
similarly after arg promotion instead of inlining.
Use isKnownXY comparators when one of the operands can be with
scalable vectors or getFixedSize() for all the other cases.
This patch also does bug fixes for getPrimitiveSizeInBits by using
getFixedSize() near the places with the TypeSize comparison.
Differential Revision: https://reviews.llvm.org/D89703
This reverts commit 26ee8aff2b.
It's necessary to insert bitcast the pointer operand of a lifetime
marker if it has an opaque pointer type.
rdar://70560161
This adds the LLVM IR attribute `mustprogress` as defined in LangRef through D86233. This attribute will be applied to functions with in languages like C++ where forward progress is guaranteed. Functions without this attribute are not required to make progress.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D85393
The main tricky thing here is forward-declaring the enum:
we have to specify it's underlying data type.
In particular, this avoids the danger of switching over the SCEVTypes,
but actually switching over an integer, and not being notified
when some case is not handled.
I have updated most of such switches to be exaustive and not have
a default case, where it's pretty obvious to be the intent,
however not all of them.
If we switch over an enum, compiler can easily issue a diagnostic
if some case is not handled. However with an if cascade that isn't so.
Experimental evidence suggests new behavior to be superior.
All existing SCEV cast types operate on integers.
D89456 will add SCEVPtrToIntExpr cast expression type.
I believe this is best for consistency.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D89455
This is an initial cleanup of the way LoopVersioning interacts with LAA.
Currently LoopVersioning has 2 ways of initializing things:
1. Passing LAI and passing UseLAIChecks = true
2. Passing UseLAIChecks = false, followed by calling setSCEVChecks and
setAliasChecks.
Both ways of initializing lead to the same result and the duplication
seems more complicated than necessary.
This patch removes the UseLAIChecks flag from the constructor and the
setSCEVChecks & setAliasChecks helpers and move initialization
exclusively to the constructor.
This simplifies things, by providing a single way to initialize
LoopVersioning and reducing duplication.
Reviewed By: Meinersbur, lebedev.ri
Differential Revision: https://reviews.llvm.org/D84406
While we haven't encountered an earth-shattering problem with this yet,
by now it is pretty evident that trying to model the ptr->int cast
implicitly leads to having to update every single place that assumed
no such cast could be needed. That is of course the wrong approach.
Let's back this out, and re-attempt with some another approach,
possibly one originally suggested by Eli Friedman in
https://bugs.llvm.org/show_bug.cgi?id=46786#c20
which should hopefully spare us this pain and more.
This reverts commits 1fb6104293,
7324616660,
aaafe350bb,
e92a8e0c74.
I've kept&improved the tests though.
This relands commit 1c021c64ca which was
reverted in commit 17cec6a11a because
an assertion was being triggered, since `BuildConstantFromSCEV()`
wasn't updated to handle the case where the constant we want to truncate
is actually a pointer. I was unsuccessful in coming up with a test case
where we'd end there with constant zext/sext of a pointer,
so i didn't handle those cases there until there is a test case.
Original commit message:
While we indeed can't treat them as no-ops, i believe we can/should
do better than just modelling them as `unknown`. `inttoptr` story
is complicated, but for `ptrtoint`, it seems straight-forward
to model it just as a zext-or-trunc of unknown.
This may be important now that we track towards
making inttoptr/ptrtoint casts not no-op,
and towards preventing folding them into loads/etc
(see D88979/D88789/D88788)
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D88806
> While we indeed can't treat them as no-ops, i believe we can/should
> do better than just modelling them as `unknown`. `inttoptr` story
> is complicated, but for `ptrtoint`, it seems straight-forward
> to model it just as a zext-or-trunc of unknown.
>
> This may be important now that we track towards
> making inttoptr/ptrtoint casts not no-op,
> and towards preventing folding them into loads/etc
> (see D88979/D88789/D88788)
>
> Reviewed By: mkazantsev
>
> Differential Revision: https://reviews.llvm.org/D88806
It caused the following assert during Chromium builds:
llvm/lib/IR/Constants.cpp:1868:
static llvm::Constant *llvm::ConstantExpr::getTrunc(llvm::Constant *, llvm::Type *, bool):
Assertion `C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"' failed.
See code review for a link to a reproducer.
This reverts commit 1c021c64ca.
60b852092c introduced SCEV verification to
deleteDeadLoop, but it appears this check is currently a bit over-eager
and some users of deleteDeadLoop appear to only patch up SE after
calling it (e.g. PR47753).
Remove the extra check for now. We can consider adding it back after we
tracked down the source of the inconsistency for PR47753.
While we indeed can't treat them as no-ops, i believe we can/should
do better than just modelling them as `unknown`. `inttoptr` story
is complicated, but for `ptrtoint`, it seems straight-forward
to model it just as a zext-or-trunc of unknown.
This may be important now that we track towards
making inttoptr/ptrtoint casts not no-op,
and towards preventing folding them into loads/etc
(see D88979/D88789/D88788)
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D88806
In the NPM, a pass cannot depend on another non-analysis pass. So pin
the test that tests that -lowerswitch is run automatically to legacy PM.
Reviewed By: sameerds
Differential Revision: https://reviews.llvm.org/D89051
Use cast<> as we immediately dereference the pointer afterwards - cast<> will assert if we fail.
Prevents clang static analyzer warning that we could deference a null pointer.
Add basic vector handling to recognizeBSwapOrBitReverseIdiom/collectBitParts - this works at the element level, all vector element operations must match (splat constants etc.) and there is no cross-element support (insert/extract/shuffle etc.).
If we're bswap'ing some bytes and zero'ing the remainder we can perform this as a bswap+mask which helps us match 'partial' bswaps as a first step towards folding into a more complex bswap pattern.
Reapplied with early-out if recognizeBSwapOrBitReverseIdiom collects a source wider than the result type.
Differential Revision: https://reviews.llvm.org/D88578
If we're bswap'ing some bytes and zero'ing the remainder we can perform this as a bswap+mask which helps us match 'partial' bswaps as a first step towards folding into a more complex bswap pattern.
Differential Revision: https://reviews.llvm.org/D88578
If we try to coerce a vector of non-integral pointers to a narrower type (either narrower vector or single pointer), we use inttoptr and violate the semantics of non-integral pointers. In theory, we can handle many of these cases, we just need to use a different code idiom to convert without going through inttoptr and back.
This shows up as wrong code bugs, and in some cases, crashes due to failed asserts. Modeled after a change which has lived downstream for a couple years, though completely rewritten to be more idiomatic.
Make sure we're using getScalarSizeInBits instead of cast<IntegerType> to get Type bit widths.
This is preliminary cleanup before we can start adding vector support to the bswap/bitreverse (element level) matching.
There doesn't seem to be any good reason for having a separate path for when we bswap/bitreverse at a smaller size than the destination size - so merge these to make the instruction generation a lot clearer.
Fix a number of WShadow warnings (I was used as the instruction and index......) and fix cases to match style.
Also, replaced the Bit APInt mask check in AND instructions with a direct APInt[] bit check.
PR39793 demonstrated an issue where we fail to recognize 'partial' bswap patterns of the lower bytes of an integer source.
In fact, most of this is already in place collectBitParts suitably tags zero bits, so we just need to correctly handle this case by finding the zero'd upper bits and reducing the bswap pattern just to the active demanded bits.
Differential Revision: https://reviews.llvm.org/D88316
This patch adds noundef to the returned pointers of allocators (malloc, calloc, ...)
and the pointer argument of free.
The returned pointer of allocators cannot be poison or (partially) undef.
Since the pointer that is given to free should precisely have zero offset,
it cannot be poison or (partially) undef too.
For the size arguments of allocators, noundef wasn't attached simply because
I wasn't sure whether attaching it is okay or not.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D87984
When removing an overflow intrinsic the Changed status in SimplifyIndvar
was not set, leading to the IndVarSimplify pass returning an incorrect
status.
This was caught using the check introduced by D80916.
As pointed out in the code review, a similar bug may exist for
eliminateTrunc().
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D85971
After D71539, we need to forget the loop before setting the incoming
values of phi nodes in exit blocks, because we are looking through those
phi nodes now and the SCEV expression could depend on the loop phi. If
we update the phi nodes before forgetting the loop, we miss those users
during invalidation.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D88167
Require CxtI in getConstant() and getConstantRange() APIs.
Accordingly drop the BB parameter, as it is implied by
CxtI->getParent().
This makes sure we don't forget to pass the context instruction,
and makes the API contract clearer (also clean up the comments to
that effect -- the value holds at the context instruction, not
the end of the block).
Pulled from D87452, this is a fixed version of the collectBitParts fshl/fshr handling which as @nikic noticed wasn't checking for different providers or had correct bit ordering (which was hid by only testing shift amounts of bitwidth/2).
Differential Revision: https://reviews.llvm.org/D88292
This seems to fit the CGSCC updates model better than calling
addNewFunctionInto{Ref,}SCC() on newly created/outlined functions.
Now addNewFunctionInto{Ref,}SCC() are no longer necessary.
However, this doesn't work on newly outlined functions that aren't
referenced by the original function. e.g. if a() was outlined into b()
and c(), but c() is only referenced by b() and not by a(), this will
trigger an assert.
This also fixes an issue I was seeing with newly created functions not
having passes run on them.
Ran check-llvm with expensive checks.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D87798
A conversion from `pow` to `sqrt` shall not call an `errno`-setting
`sqrt` with -//infinity//: the `sqrt` will set `EDOM` where the `pow`
call need not.
This patch avoids the erroneous (pun not intended) transformation by
applying the restrictions discussed in the thread for
https://lists.llvm.org/pipermail/llvm-dev/2020-September/145051.html.
The existing tests are updated (depending on emphasis in the checks for
library calls, avoidance of overlap, and overall coverage):
- to add `ninf`, retaining the intended library call,
- to use the intrinsic, retaining the use of `select`, or
- to expect the replacement to not occur.
The following is tested:
- The pow intrinsic folds to a `select` instruction to
handle -//infinity//.
- The pow library call folds, with `ninf`, to `sqrt` without the
`select` instruction associated with handling -//infinity//.
- The pow library call does not fold to `sqrt` without `ninf`.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D87877
The current code for handling pow(x, y) where y is an integer plus 0.5
is not explicitly guarded against attempting to transform the case where
abs(y) is exactly 0.5.
The latter case is meant to be handled by `replacePowWithSqrt`. Indeed,
if the pow(x, integer+0.5) case proceeds past a certain point, it will
hit an assertion by attempting to form pow(x, 0) using `getPow`.
This patch adds an explicit check to prevent attempting the
pow(x, integer+0.5) transformation on pow(x, +/-0.5) as suggested during
the review of D87877. This has the effect of retaining the shrinking of
`pow` to `powf` when the `sqrt` libcall cannot be formed.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D88066
I want to export this function, and the current API was a bit
weird: It took an additional Alignment argument that didn't really
have anything to do with what the function does. Drop it, and
perform a max at the callsite.
Also rename it to tryEnforceAlignment().
Currently SCEVExpander creates inttoptr for non-integral pointers if the
base is a null constant for example. This results in invalid IR.
This patch changes InsertNoopCastOfTo to emit a GEP & bitcast to convert
to a non-integral pointer. First, a GEP of i8* null is generated and the
integral value is used as index. The GEP is then bitcasted to the target
type.
This was exposed by D71539.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D87827
~~D65060 uncovered that trying to use BFI in loop passes can lead to non-deterministic behavior when blocks are re-used while retaining old BFI data.~~
~~To make sure BFI is preserved through loop passes a Value Handle (VH) callback is registered on blocks themselves. When a block is freed it now also wipes out the accompanying BFI entry such that stale BFI data can no longer persist resolving the determinism issue. ~~
~~An optimistic approach would be to incrementally update BFI information throughout the loop passes rather than only invalidating them on removed blocks. The issues with that are:~~
~~1. It is not clear how BFI information should be incrementally updated: If a block is duplicated does its BFI information come with? How about if it's split/modified/moved around? ~~
~~2. Assuming we can address these problems the implementation here will be a massive undertaking. ~~
~~There's a known need of BFI in LICM analysis which requires correct but not incrementally updated BFI data. A follow-up change can register BFI in all loop passes so this preserved but potentially lossy data is available to any loop pass that wants it.~~
See: D75341 for an identical implementation of preserving BFI via VH callbacks. The previous statements do still apply but this change no longer has to be in this diff because it's already upstream 😄 .
This diff also moves BFI to be a part of LoopStandardAnalysisResults since the previous method using getCachedResults now (correctly!) statically asserts (D72893) that this data isn't static through the loop passes.
Testing
Ninja check
Reviewed By: asbirlea, nikic
Differential Revision: https://reviews.llvm.org/D86156
Call instructions with musttail tag must be optimized as a tailcall, otherwise could lead to incorrect program behavior.
When TSAN is instrumenting functions, it broke the contract by adding a call to the tsan exit function inbetween the musttail call and return instruction, and also inserted exception handling code.
This happend throguh EscapeEnumerator, which adds exception handling code and returns ret instructions as the place to insert instrumentation calls.
This becomes especially problematic for coroutines, because coroutines rely on tail calls to do symmetric transfers properly.
To fix this, this patch moves the location to insert instrumentation calls prior to the musttail call for ret instructions that are following musttail calls, and also does not handle exception for musttail calls.
Differential Revision: https://reviews.llvm.org/D87620
The FailureReason input parameter maybe null, we check this in all other cases in the method but this one was missed somehow.
Fixes clang-tidy warning.
When inlining functions containing allocas of scalable vectors we
cannot specify the size in the lifetime markers, since we don't
know this at compile time.
Added new test here:
test/Transforms/Inline/AArch64/sve-alloca-merge.ll
Differential Revision: https://reviews.llvm.org/D87139
As code size is the only thing we care about at minsize, query the
cost of materialising immediates when calculating the cost of a SCEV
expansion. We also modify the CostKind to TCK_CodeSize for minsize,
instead of RecipThroughput.
Differential Revision: https://reviews.llvm.org/D76434
If a function had at most one return block, the pass would return false
regardless if an unified unreachable block was created.
This patch fixes that by refactoring runOnFunction into two separate
helper functions for handling the unreachable blocks respectively the
return blocks, as suggested by @bjope in a review comment.
This was caught using the check introduced by D80916.
Reviewed By: serge-sans-paille
Differential Revision: https://reviews.llvm.org/D85818
This patch follows D85345 and adds more noundef attributes to return values/arguments of library functions
that are mostly about accessing the file system or processes.
A few functions like `chmod` or `times` use typedef `mode_t` and `clock_t`.
They are neither struct nor union, so they cannot contain undef even if they're lowered to iN in IR. So, it is fine to add noundef to them.
- clock_t's actual type is size_t (C17, 7.27.1.3), so it isn't struct or union.
- For mode_t, either int or long is used in practice because programmers use bit manipulation. So, I think it is okay that it's never aggregate in practice.
After this patch, the remaining library functions are those that eagerly participate in optimizations: they can be removed, reordered, or
introduced by a transformation from primitive IR operations.
For them, a few testings is needed, since it may not be valid to add noundef anymore even if C standard says it's okay.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D85894
The get{Return,Unwind,Unreachable}Block functions in
UnifyFunctionExitNodes have not been used for many years,
so just remove them.
Reviewed By: bjope
Differential Revision: https://reviews.llvm.org/D87078
To enable the cost of constants, the helper function has been
reorganised:
- A struct has been introduced to hold SCEV operand information so
that we know the user of the operand, as well as the operand index.
The Worklist now uses instead instead of a bare SCEV.
- The costing of each SCEV, and collection of its operands, is now
performed in a helper function.
Differential Revision: https://reviews.llvm.org/D86050
Modify FoldBranchToCommonDest to consider the cost of inserting
instructions when attempting to combine predicates to fold blocks.
The threshold can be controlled via a new option:
-simplifycfg-branch-fold-threshold which defaults to '2' to allow
the insertion of a not and another logical operator.
Differential Revision: https://reviews.llvm.org/D86526
When a switch case is folded into default's case, that's an IR change that
should be reported, update ConstantFoldTerminator accordingly.
Differential Revision: https://reviews.llvm.org/D87142
EarlyCSE has a mode to verify the invariant that hash equality equals
key equality, but EliminateDuplicatePHINodes() doesn't.
I've verified that this would have caught the stage2-stage3 mismatches
5ec2b757cc revert has fixed,
that were introduced last time in 3e69871ab5.
This patch changes ElementCount so that the Min and Scalable
members are now private and can only be accessed via the get
functions getKnownMinValue() and isScalable(). In addition I've
added some other member functions for more commonly used operations.
Hopefully this makes the class more useful and will reduce the
need for calling getKnownMinValue().
Differential Revision: https://reviews.llvm.org/D86065
strspn, strncmp, strcspn, strcasecmp, strncasecmp, memcmp, memchr,
memrchr, memcpy, memmove, memcpy, mempcpy, strchr, strrchr, bcmp
should all only access memory through their arguments.
I broke out strcoll, strcasecmp, strncasecmp because the result
depends on the locale, which might get accessed through memory.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D86724
Currently we bail out early for strlen calls with a GEP operand, if none
of the GEP specific optimizations fire. But there could be later
optimizations that still apply, which we currently miss out on.
An example is that we do not apply the following optimization
strlen(x) == 0 --> *x == 0
Unless I am missing something, there seems to be no reason for bailing
out early there.
Fixes PR47149.
Reviewed By: lebedev.ri, xbolva00
Differential Revision: https://reviews.llvm.org/D85886
When trying to enable -debug-info-kind=constructor there was an assert
that occurs during debug info cloning ("mismatched subprogram between
llvm.dbg.value variable and !dbg attachment").
It appears that during llvm::CloneFunctionInto, a DISubprogram could be
duplicated when MapMetadata is called, and then added to the MD map again
when DIFinder gets a list of subprograms. This results in two different
versions of the DISubprogram.
This patch switches the order so that the DIFinder subprograms are
added before MapMetadata is called.
Fixes https://bugs.llvm.org/show_bug.cgi?id=46784
Differential Revision: https://reviews.llvm.org/D86185
Recommit the patch after fixing an issue reported caused by the fact
that re-used values are also added to InsertedValues.
Additional tests have been added in 88818491b9
This reverts the revert commit 38884641f2.
Before we speculatively execute a basic block, query the cost of
inserting the necessary select instructions against the phi folding
threshold. For non-trivial insertions, a more accurate decision can
probably be made during machine if-conversion. With minsize we query
the CodeSize cost, otherwise we use SizeAndLatency.
Differential Revision: https://reviews.llvm.org/D82438
This reverts commit 6dbf0cfcf7.
That commit caused failed assertions, e.g. like this:
$ cat sprintf-strcpy.c
char *ptr; void func(void) { ptr += sprintf(ptr, "%s", ""); }
$ clang -c sprintf-strcpy.c -O2 -target x86_64-linux-gnu
clang: ../lib/IR/Value.cpp:473: void llvm::Value::doRAUW(llvm::Value*,
llvm::Value::ReplaceMetadataUses): Assertion `New->getType() ==
getType() && "replaceAllUses of value with new value of different
type!"' failed.
Transformation creates big strings for big C values, so bail out for C > 128.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D86004
When removing instructions from unreachable blocks, and only debug info
intrinsics were removed, InstCombine could incorrectly return a false
Modified status.
This is fixed by making removeAllNonTerminatorAndEHPadInstructions()
also return how many debug info intrinsics that were removed, and take
that into account.
This was caught using the check introduced by D80916.
Reviewed By: majnemer
Differential Revision: https://reviews.llvm.org/D85839
SCEVExpander already tracks which instructions have been inserted n
InsertedValues/InsertedPostIncValues. This patch adds an additional
vector to collect the instructions in insertion order. This can then be
used to remove exactly the instructions inserted by the expander.
This replaces ExpandedValuesCleaner, which in some cases might remove
values not inserted by the expander (e.g. if a value was dead before
insertion and is then used during expansion).
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D84327
This patch adds noundef to return value and arguments of standard I/O functions.
With this patch, passing undef or poison to the functions becomes undefined
behavior in LLVM IR. Since undef/poison is lowered from operations having UB in C/C++,
passing undef to them was already UB in source.
With this patch, the functions cannot return undef or poison anymore as well.
According to C17 standard, ungetc/ungetwc/fgetpos/ftell can generate unspecified
value; 3.19.3 says unspecified value is a valid value of the relevant type,
and using unspecified value is unspecified behavior, which is not UB, so it
cannot be undef (using undef is UB when e.g. it is used at branch condition).
— The value of the file position indicator after a successful call to the ungetc function for a text stream, or the ungetwc function for any stream, until all pushed-back characters are read or discarded (7.21.7.10, 7.29.3.10).
— The details of the value stored by the fgetpos function (7.21.9.1).
— The details of the value returned by the ftell function for a text stream (7.21.9.4).
In the long run, most of the functions listed in BuildLibCalls should have noundefs; to remove redundant diffs which will anyway disappear in the future, I added noundef to a few more non-I/O functions as well.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D85345
Currently the SCEVExpander tries to re-use existing casts, even if they
are not exactly at the insertion point it was asked to create the cast.
To do so in some case, it creates a new cast at the insertion point and
updates all users to use the new cast.
This behavior is problematic, because it changes the IR outside of the
instructions created during the expansion. Therefore we cannot
completely undo all changes made during expansion.
This re-use should be only an extra optimization, so only using the new
cast in the expanded instructions should not be a correctness issue.
There are many cases equivalent instructions are created during
expansion.
This patch also adjusts findInsertPointAfter to skip instructions
inserted during expansion. This enables re-using existing casts without
the renaming any uses, by picking a better insertion point.
Reviewed By: efriedma, lebedev.ri
Differential Revision: https://reviews.llvm.org/D84399
SimplifyCFG has two main folds for resumes - one when resume is directly
using the landingpad, and the other one where resume is using a PHI node.
While for the first case, we were already correctly ignoring all the
PHI nodes, and both the debug info intrinsics and lifetime intrinsics,
in the PHI-based-one, we weren't ignoring PHI's in the resume block,
and weren't ignoring lifetime intrinsics. That is clearly a bug.
On RawSpeed library, this results in +9.34% (+81) more invoke->call folds,
-0.19% (-39) landing pads, -0.24% (-81) invoke instructions
but +51 call instructions and -132 basic blocks.
Though, the run-time performance impact appears to be within the noise.
formLCSSAForInstructions is used by SCEVExpander, which tracks all
inserted instructions including LCSSA phis using asserting value
handles. This means cleanup needs to happen in the caller.
Extend formLCSSAForInstructions to take an optional pointer to a
vector. If this argument is non-nullptr, instead of directly deleting
the phis, add them to the vector, so the caller can process them.
This should address various PPC buildbot failures, including
http://lab.llvm.org:8011/builders/clang-ppc64be-linux-lnt/builds/40567
Use IRBuilder instead PHINode::Create. This should not impact the
generated code, but IRBuilder provides a way to register callbacks for
inserted instructions, which is convenient for some users.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D85037
querying getSCEV() for incomplete phis leads to wrong cache value in `ExprToIVMap`,
because incomplete phis may be simplified to same value before get SCEV expression.
Reviewed By: lebedev.ri, mkazantsev
Differential Revision: https://reviews.llvm.org/D77560
Summary: This patch separates the Loop Peeling Utilities from Loop Unrolling.
The reason for this change is that Loop Peeling is no longer only being used by
loop unrolling; Patch D82927 introduces loop peeling with fusion, such that
loops can be modified to have to same trip count, making them legal to be
peeled.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D83056
This reverts the revert commit dc28675768.
It includes a fix for Polly, which uses SCEVExpander on IR that is not
in LCSSA form. Set PreserveLCSSA = false in that case, to ensure we do
not introduce LCSSA phis where there were none before.
This reverts commit 99166fd4fb, because it
breaks the polly builders.
polly/test/Isl/CodeGen/invariant_load_escaping_second_scop.ll fails
because a apparently unnecessary LCSSA phi node is introduced.
Make the bots green again, while I take a closer look.
This patch teaches SCEVExpander to directly preserve LCSSA.
As it is currently, SCEV does not look through PHI nodes in loops,
as it might break LCSSA form. Once SCEVExpander can preserve
LCSSA form, it should be safe for SCEV to look through PHIs.
To preserve LCSSA form, this patch uses formLCSSAForInstructions
on operands of newly created instructions, if the definition is inside
a different loop than the new instruction.
The final value we return from expandCodeFor may also need LCSSA
phis, depending on the insert point. As no user for it exists there yet,
create a temporary instruction at the insert point, which can be passed
to formLCSSAForInstructions. This temporary instruction is removed
after LCSSA construction.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D71538
Currently, getCastInstrCost has limited information about the cast it's
rating, often just the opcode and types. Sometimes there is a context
instruction as well, but it isn't trustworthy: for instance, when the
vectorizer is rating a plan, it calls getCastInstrCost with the old
instructions when, in fact, it's trying to evaluate the cost of the
instruction post-vectorization. Thus, the current system can get the
cost of certain casts incorrect as the correct cost can vary greatly
based on the context in which it's used.
For example, if the vectorizer queries getCastInstrCost to evaluate the
cost of a sext(load) with tail predication enabled, getCastInstrCost
will think it's free most of the time, but it's not always free. On ARM
MVE, a VLD2 group cannot be extended like a normal VLDR can. Similar
situations can come up with how masked loads can be extended when being
split.
To fix that, this path adds a new parameter to getCastInstrCost to give
it a hint about the context of the cast. It adds a CastContextHint enum
which contains the type of the load/store being created by the
vectorizer - one for each of the types it can produce.
Original patch by Pierre van Houtryve
Differential Revision: https://reviews.llvm.org/D79162
We can happily turn function definitions into declarations,
thus obscuring their argument from being elided by this pass.
I don't believe there is a good reason to just ignore declarations.
likely even proper llvm intrinsics ones,
at worst the input becomes uninteresting.
The other question here is that all these transforms are all-or-nothing.
In some cases, should we be treating each use separately?
The main blocker here seemed to be that llvm::CloneFunctionInto()
does `&OldFunc->front()`, which inserts a nullptr into a densemap,
which is not happy about it and asserts.
This is the first of two patches to address PR46753. We basically allow
mem2reg to promote allocas that are used in doppable instructions, for
now that means `llvm.assume`. The uses of the alloca (or a bitcast or
zero offset GEP from there) are replaced by `undef` in the droppable
instructions.
Reviewed By: Tyker
Differential Revision: https://reviews.llvm.org/D83976
SROA knows that it can look through addrspacecast but
PromoteMemoryToRegister did not handle them. This caused an assertion
error for the test case, exposed while running
`Transforms/PhaseOrdering/inlining-alignment-assumptions.ll` with D83978
applied.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D84085
PassManager.h is one of the top headers in the ClangBuildAnalyzer frontend worst offenders list.
This exposes a large number of implicit dependencies on various forward declarations/includes in other headers that need addressing.
As long as RenamedOp is not guaranteed to be accurate, we cannot
assert here and should just return false. This was already done
for the other conditions in this function.
Fixes https://bugs.llvm.org/show_bug.cgi?id=46814.
Currently there are plenty of instructions that SCEVExpander creates but
does not track as created. IRBuilder allows specifying a callback
whenever an instruction is inserted. Use this to call
rememberInstruction automatically for each created instruction.
There are still a few rememberInstruction calls remaining, because in
some cases Inst::Create functions are used to construct instructions.
Suggested by @lebedev.ri in D75980.
Reviewers: mkazantsev, reames, sanjoy.google, lebedev.ri
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D84326
The revert was a misfire.
Remove the temporary flag PGSOIRPassOrTestOnly and the guard code which was used
for the staged rollout. This is a cleanup (NFC) as it's now false by default.
Differential Revision: https://reviews.llvm.org/D84057
This reverts commit e64afefdf8. It caused
a PGO bootstrapped clang to crash on many source files.
`__llvm_profile_instrument_range` seems to trigger a null pointer dereference.
Call stack:
__llvm_profile_instrument_range
llvm::APInt::udiv(llvm::APInt const&) const
getRangeForAffineARHelper
We do not thread blocks with convergent calls, but this check was missing
when we decide to insert PR Phis into it (which we only do for threading).
Differential Revision: https://reviews.llvm.org/D83936
Reviewed By: nikic
Remove the temporary flag PGSOIRPassOrTestOnly and the guard code which was used
for the staged rollout. This is a cleanup (NFC) as it's now false by default.
Differential Revision: https://reviews.llvm.org/D84057
This patch adds a TileInfo abstraction and utilities to
create a 3-level loop nest for tiling.
Reviewers: anemet
Reviewed By: anemet
Differential Revision: https://reviews.llvm.org/D77550
This allows tracking the in-memory type of a pointer argument to a
function for ABI purposes. This is essentially a stripped down version
of byval to remove some of the stack-copy implications in its
definition.
This includes the base IR changes, and some tests for places where it
should be treated similarly to byval. Codegen support will be in a
future patch.
My original attempt at solving some of these problems was to repurpose
byval with a different address space from the stack. However, it is
technically permitted for the callee to introduce a write to the
argument, although nothing does this in reality. There is also talk of
removing and replacing the byval attribute, so a new attribute would
need to take its place anyway.
This is intended avoid some optimization issues with the current
handling of aggregate arguments, as well as fixes inflexibilty in how
frontends can specify the kernel ABI. The most honest representation
of the amdgpu_kernel convention is to expose all kernel arguments as
loads from constant memory. Today, these are raw, SSA Argument values
and codegen is responsible for turning these into loads.
Background:
There currently isn't a satisfactory way to represent how arguments
for the amdgpu_kernel calling convention are passed. In reality,
arguments are passed in a single, flat, constant memory buffer
implicitly passed to the function. It is also illegal to call this
function in the IR, and this is only ever invoked by a driver of some
kind.
It does not make sense to have a stack passed parameter in this
context as is implied by byval. It is never valid to write to the
kernel arguments, as this would corrupt the inputs seen by other
dispatches of the kernel. These argumets are also not in the same
address space as the stack, so a copy is needed to an alloca. From a
source C-like language, the kernel parameters are invisible.
Semantically, a copy is always required from the constant argument
memory to a mutable variable.
The current clang calling convention lowering emits raw values,
including aggregates into the function argument list, since using
byval would not make sense. This has some unfortunate consequences for
the optimizer. In the aggregate case, we end up with an aggregate
store to alloca, which both SROA and instcombine turn into a store of
each aggregate field. The optimizer never pieces this back together to
see that this is really just a copy from constant memory, so we end up
stuck with expensive stack usage.
This also means the backend dictates the alignment of arguments, and
arbitrarily picks the LLVM IR ABI type alignment. By allowing an
explicit alignment, frontends can make better decisions. For example,
there's real no advantage to an aligment higher than 4, so a frontend
could choose to compact the argument layout. Similarly, there is a
high penalty to using an alignment lower than 4, so a frontend could
opt into more padding for small arguments.
Another design consideration is when it is appropriate to expose the
fact that these arguments are all really passed in adjacent
memory. Currently we have a late IR optimization pass in codegen to
rewrite the kernel argument values into explicit loads to enable
vectorization. In most programs, unrelated argument loads can be
merged together. However, exposing this property directly from the
frontend has some disadvantages. We still need a way to track the
original argument sizes and alignments to report to the driver. I find
using some side-channel, metadata mechanism to track this
unappealing. If the kernel arguments were exposed as a single buffer
to begin with, alias analysis would be unaware that the padding bits
betewen arguments are meaningless. Another family of problems is there
are still some gaps in replacing all of the available parameter
attributes with metadata equivalents once lowered to loads.
The immediate plan is to start using this new attribute to handle all
aggregate argumets for kernels. Long term, it makes sense to migrate
all kernel arguments, including scalars, to be passed indirectly in
the same manner.
Additional context is in D79744.
Common code sinking is already guarded with a (with default-off!) flag,
so add a flag for hoisting, too.
D84108 will hopefully make hoisting off-by-default too.
Both users of predicteinfo (NewGVN and SCCP) are interested in
getting a cmp constraint on the predicated value. They currently
implement separate logic for this. This patch adds a common method
for this in PredicateBase.
This enables a missing bit of PredicateInfo handling in SCCP: Now
the predicate on the condition itself is also used. For switches
it means we know that the switched-on value is the same as the case
value. For assumes/branches we know that the condition is true or
false.
Differential Revision: https://reviews.llvm.org/D83640
Summary:
This patch resolves an issue where the metadata of a loop is not added to the
new loop latch, and not removed from the old loop latch. This issue occurs in
the SplitBlockPredecessors function, which adds a new block in a loop, and
in the case that the block passed into this function is the header of the loop,
the loop can be modified such that the latch of the loop is replaced.
This patch applies to the Loop Simplify pass since it ensures that each loop
has exit blocks which only have predecessors that are inside of the loop. In
the case that this is not true, the pass will create a new exit block for the
loop. This guarantees that the loop preheader/header will dominate the exit blocks.
Author: sidbav (Sidharth Baveja)
Reviewers: asbirlea (Alina Sbirlea), chandlerc (Chandler Carruth), Whitney (Whitney Tsang), bmahjour (Bardia Mahjour)
Reviewed By: asbirlea (Alina Sbirlea)
Subscribers: hiraditya (Aditya Kumar), llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D83869
SimplifyCFG was incorrectly reporting to the pass manager that it had not made
changes after folding away a PHI. This is detected in the EXPENSIVE_CHECKS
build when the function's hash changes.
Differential Revision: https://reviews.llvm.org/D83985
When the byref attribute is added, there will need to be two similar
functions for the existing cases which have an associate value copy,
and byref which does not. Most, but not all of the existing uses will
use the existing version.
The associated size function added by D82679 also needs to
contextually differ, and will help eliminate a few places still
relying on pointee element types.
Unrolling a loop with compile-time unknown trip count results in a remainder loop. The remainder loop executes the remaining iterations of the original loop when the original trip count is not a multiple of the unroll factor. For better profile counts maintenance throughout the optimization pipeline, I'm assigning an artificial weight to the latch branch of the remainder loop.
A remainder loop runs up to as many times as the unroll factor subtracted by 1. Therefore I'm assigning the maximum possible trip count as the back edge weight. This should be more accurate than the default non-profile weight, which assumes the back edge runs much more frequently than the exit edge.
Differential Revision: https://reviews.llvm.org/D83187
CodeGenPrepare keeps fairly close track of various instructions it's
seen, particularly GEPs, in maps and vectors. However, sometimes those
instructions become dead and get removed while it's still executing.
This triggers AssertingVH references to them in an asserts build and
could lead to miscompiles in a release build (I've only seen a later
segfault though).
So this patch adds a callback to
RecursivelyDeleteTriviallyDeadInstructions which can make sure the
instruction about to be deleted is removed from CodeGenPrepare's data
structures.
The actual rotation happens in processLoop, so the second removed
call to verifyMemorySSA was unnecessary.
In fact, processLoop/rotateLoop already verify MemorySSA before
and after transforming each loop. Hence, both calls can be removed.
Pointed out by @lebedev.ri post-commit D51718.
Summary:
Add debug counter and stats counter to assume queries and assume builder
here is the collected stats on a build of check-llvm + check-clang.
"assume-builder.NumAssumeBuilt": 2720879,
"assume-builder.NumAssumesMerged": 761396,
"assume-builder.NumAssumesRemoved": 1576212,
"assume-builder.NumBundlesInAssumes": 6518809,
"assume-queries.NumAssumeQueries": 85566380,
"assume-queries.NumUsefullAssumeQueries": 2727360,
the NumUsefullAssumeQueries stat is actually pessimistic because in a few places queries
ask to keep providing information to try to get better information. and this isn't counted
as a usefull query evem tho it can be usefull
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83506
This fixes warnings raised by Clang's new -Wsuggest-override, in preparation for enabling that warning in the LLVM build. This patch also removes the virtual keyword where redundant, but only in places where doing so improves consistency within a given file. It also removes a couple unnecessary virtual destructor declarations in derived classes where the destructor inherited from the base class is already virtual.
Differential Revision: https://reviews.llvm.org/D83709
Here we teach the ConstantFolding analysis pass that it is not legal to
replace a load of a bitcast constant (having a non-integral addrspace)
with a bitcast of the value of that constant (with a different
non-integral addrspace).
But also teach it that certain bit patterns are always known and
convertable (a fact it already uses elsewhere). This required us to also
fix a globalopt test, since, after this change, LLVM is able to realize
that the test actually is a valid transform (NULL is always a known
bit-pattern) and so it doesn't need to emit the failure remarks for it.
Also simplify some of the negative tests for transforms by avoiding a
type change in their bitcast, and add positive versions of the same
tests, to show that they otherwise should work.
Differential Revision: https://reviews.llvm.org/D59730
This could previously make it more complicated for ConstantFolding
later, leading to a higher likelyhood it would have to reject the
expression, even though zero seems like probably the common case here.
Differential Revision: https://reviews.llvm.org/D59730
Currently, a transformation like pow(2.0, x) -> exp2(x) copies the pow
attribute list verbatim and applies it to exp2. This works out fine
when the attribute list is empty, but when it isn't clang may error due
due to the mismatch.
The source function and destination don't necessarily have anything
to do with one another, attribute-wise. So it makes sense to remove
the attribute lists (this is similar to what IPO does in this
situation).
This was discovered after implementing the `noundef` param attribute.
Differential Revision: https://reviews.llvm.org/D82820
Place the ssa.copy instructions for assumes after the assume,
instead of before it. Both options are valid, but placing them
afterwards prevents assumes from being replaced with assume(true).
This fixes https://bugs.llvm.org/show_bug.cgi?id=37541 in NewGVN
and will avoid a similar issue in SCCP when we handle more
predicate infos.
Differential Revision: https://reviews.llvm.org/D83631
Summary:
- Skip unreachable predecessors during header detection in SCC. Those
unreachable blocks would be generated in the switch lowering pass in
the corner cases or other frontends. Even though they could be removed
through the CFG simplification, we should skip them during header
detection.
Reviewers: sameerds
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83562
Summary:
This patch separates the peeling specific parameters from the UnrollingPreferences,
and creates a new struct called PeelingPreferences. Functions which used the
UnrollingPreferences struct for peeling have been updated to use the PeelingPreferences struct.
Author: sidbav (Sidharth Baveja)
Reviewers: Whitney (Whitney Tsang), Meinersbur (Michael Kruse), skatkov (Serguei Katkov), ashlykov (Arkady Shlykov), bogner (Justin Bogner), hfinkel (Hal Finkel), anhtuyen (Anh Tuyen Tran), nikic (Nikita Popov)
Reviewed By: Meinersbur (Michael Kruse)
Subscribers: fhahn (Florian Hahn), hiraditya (Aditya Kumar), llvm-commits, LLVM
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D80580
Summary: This patch moves OrderedInstructions to CodeMoverUtils as It was
the only place where OrderedInstructions is required.
Authored By: RithikSharma
Reviewer: Whitney, bmahjour, etiotto, fhahn, nikic
Reviewed By: Whitney, nikic
Subscribers: mgorny, hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D80643
The block front may be a PHI node, inserting a cast instructions like
BitCast, PtrToInt, IntToPtr among PHIs is not right.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D80975
OriginalOp of a predicate always refers to the original IR
value that was renamed. So for nested predicates of the same value, it
will always refer to the original IR value.
For the use in SCCP however, we need to find the renamed value that is
currently used in the condition associated with the predicate. This
patch adds a new RenamedOp field to do exactly that.
NewGVN currently relies on the existing behavior to merge instruction
metadata. A test case to check for exactly that has been added in
195fa4bfae.
Reviewers: efriedma, davide, nikic
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D78133
The `noundef` attribute indicates an argument or return value which
may never have an undef value representation.
This patch allows LLVM to parse the attribute.
Differential Revision: https://reviews.llvm.org/D83412
Summary: This patch makes code motion checks optional which are dependent on
specific analysis example, dominator tree, post dominator tree and dependence
info. The aim is to make the adoption of CodeMoverUtils easier for clients that
don't use analysis which were strictly required by CodeMoverUtils. This will
also help in diversifying code motion checks using other analysis example MSSA.
Authored By: RithikSharma
Reviewer: Whitney, bmahjour, etiotto
Reviewed By: Whitney
Subscribers: Prazek, hiraditya, george.burgess.iv, asbirlea, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D82566
Summary:
It is reasonably common to want to clone some call with different bundles.
Let's actually provide an interface to do that.
Reviewers: chandlerc, jdoerfert, dblaikie, nickdesaulniers
Reviewed By: nickdesaulniers
Subscribers: llvm-commits, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83248
Summary:
Avoid exposing details about how children are stored. This will enable
subsequent type-erasure changes.
New methods are introduced to cover common access patterns.
Change-Id: Idb5f4b1b9c84e4cc71ddb39bb52a388682f5674f
Reviewers: arsenm, RKSimon, mehdi_amini, courbet
Subscribers: qcolombet, sdardis, wdng, hiraditya, jrtc27, zzheng, atanasyan, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83083
clang w/ old-pm currently would simply crash
when -mllvm -enable-knowledge-retention=true is specified.
Clearly, these two passes had no Old-PM test coverage,
which would have shown the problem - not requiring AssumptionCacheTracker,
but then trying to always get it.
Also, why try to get domtree only if it's cached,
but at the same time marking it as required?
Summary:
This patch changes call graph analysis to recognize callback call sites
and add an artificial 'reference' call record from the broker function
caller to the callback function in the call graph. A presence of such
reference enforces bottom-up traversal order for callback functions in
CG SCC pass manager because callback function logically becomes a callee
of the broker function caller.
Reviewers: jdoerfert, hfinkel, sstefan1, baziotis
Reviewed By: jdoerfert
Subscribers: hiraditya, kuter, sstefan1, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82572
Sometimes SimplifyCFG may decide to perform jump threading. In order
to do it, it follows the following algorithm:
1. Checks if the block is small enough for threading;
2. If yes, inserts a PR Phi relying that the next iteration will remove it
by performing jump threading;
3. The next iteration checks the block again and performs the threading.
This logic has a corner case: inserting the PR Phi increases block's size
by 1. If the block size at first check was max possible, one more Phi will
exceed this size, and we will neither perform threading nor remove the
created Phi node. As result, we will end up with worse IR than before.
This patch fixes this situation by excluding Phis from block size computation.
Excluding Phis from size computation for threading also makes sense by
itself because in case of threadign all those Phis will be removed.
Differential Revision: https://reviews.llvm.org/D81835
Reviewed By: asbirlea, nikic
It's possible for the first loop trip(s) to set the `Changed` Status, and to a
later one to early exit, in which case `Changed` must be return.
Differential Revision: https://reviews.llvm.org/D82753
In https://reviews.llvm.org/D81198, we outlined a number of scenarios
where dropping debug locations is appropriate. Stop issuing an error
when this happens.
Summary:
According to HowToUpdateDebugInfo.rst:
```
Preserving the debug locations of speculated instructions can make
it seem like a condition is true when it's not (or vice versa), which
leads to a confusing single-stepping experience
```
This patch follows the recommendation to drop debug locations on
speculated instructions.
Reviewers: aprantl, davide
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82420
InjectTLIMappings fails to preserve the analysis result of GlobalsAA. Not preserving the analysis might affect benchmark performance. This change fixes this issue.
Patch by: Ryan Santhiraraja <rsanthir@quicinc.com>
Reviewers: fpetrogalli, joerg, fhahn
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D82343
Summary:
As [[ https://bugs.llvm.org/show_bug.cgi?id=45360 | PR45360 ]] reports,
with new cost-model we can sometimes end up being able to expand `udiv`/`urem` instructions.
And that exposes at least one instance of when we do that
regardless of whether or not it is safe to do.
In this particular case, it's `SimplifyIndvar::replaceIVUserWithLoopInvariant()`.
It seems to me, we simply need to check with `isSafeToExpandAt()` first.
The test isn't great. I'm not sure how to make it only run `-indvars`.
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=45360 | PR45360 ]].
Reviewers: mkazantsev, reames, helloqirun
Reviewed By: mkazantsev
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82108
This reverts commit 29b2c1ca72.
The patch causes the DT verifier failure like:
DominatorTree is different than a freshly computed one!
Not sure the patch itself it wrong but revert to investigate the failure.
Currently we allow peeling of the loops if there is a exiting latch block
and all other exits are blocks ending with deopt.
Actually we want that exit would end up with deopt unconditionally but
it is not required that exit itself ends with deopt.
Reviewers: reames, ashlykov, fhahn, apilipenko, fedor.sergeev
Reviewed By: apilipenko
Subscribers: hiraditya, zzheng, dantrushin, llvm-commits
Differential Revision: https://reviews.llvm.org/D81140
When an invoke instruction is converted to a call its
profile metadata is dropped because it has incompatible
format (see commit 16ad6eeb94).
This patch adds an attempt to convert profile data to
format of the call instruction. This used to work well
before the commit dcfa78a4cc.
Reviewers: reames
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82071
Summary:
this reduces significantly the number of assumes generated without aftecting too much
the information that is preserved. this improves the compile-time cost
of enable-knowledge-retention significantly.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79650
I don't know anything about debug info, but this seems like more work
should be necessary. This constructs a new IRBuilder and reconstructs
the original divides rather than moving the original.
One problem this has is if a div/rem pair are handled, both end up
with the same debugloc. I'm not sure how to fix this, since this uses
a cache when it sees the same input operands again, which will have
the first instance's location attached.
Summary:
llvm::SplitEdge was failing an assertion that the BasicBlock only had
one successor (for BasicBlocks terminated by CallBrInst, we typically
have multiple successors). It was surprising that the earlier call to
SplitCriticalEdge did not handle the critical edge (there was an early
return). Removing that triggered another assertion relating to creating
a BlockAddress for a BasicBlock that did not (yet) have a parent, which
is a simple order of operations issue in llvm::SplitCriticalEdge (a
freshly constructed BasicBlock must be inserted into a Function's basic
block list to have a parent).
Thanks to @nathanchance for the report.
Fixes: https://github.com/ClangBuiltLinux/linux/issues/1018
Reviewers: craig.topper, jyknight, void, fhahn, efriedma
Reviewed By: efriedma
Subscribers: eli.friedman, rnk, efriedma, fhahn, hiraditya, llvm-commits, nathanchance, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81607
The invoke instruction can have profile metadata with branch_weights,
which does not make sense for a call instruction and will be
rejected by the verifier.
Differential revision: https://reviews.llvm.org/D81996
Summary:
this reduces significantly the number of assumes generated without aftecting too much
the information that is preserved. this improves the compile-time cost
of enable-knowledge-retention significantly.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: hiraditya, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79650
is not necessary one of them.
Summary: Currently LoopUnrollPass already allow loops with multiple
exiting blocks, but it is only allowed when the loop latch is one of the
exiting blocks.
When the loop latch is not an exiting block, then only single exiting
block is supported.
When possible, the single loop latch or the single exiting block
terminator is optimized to an unconditional branch in the unrolled loop.
This patch allows loops with multiple exiting blocks even if the loop
latch is not one of them. However, the optimization of exiting block
terminator to unconditional branch is not done when there exists more
than one exiting block.
Reviewer: dmgreen, Meinersbur, etiotto, fhahn, efriedma, bmahjour
Reviewed By: efriedma
Subscribers: hiraditya, zzheng, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D81053
This patch adds a new option to CriticalEdgeSplittingOptions to control
whether loop-simplify form must be preserved. It is them used by GVN to
indicate that loop-simplify form does not have to be preserved.
This fixes a crash exposed by 189efe295b.
If the critical edge we are splitting goes from a block inside a loop to
a block outside the loop, splitting the edge will create a new exit
block. As a result, the new block will branch to the original exit
block, which will add a non-loop predecessor, breaking loop-simplify
form. To preserve loop-simplify form, the predecessor blocks of the
original exit are split, but that does not work for blocks with
indirectbr terminators. If preserving loop-simplify form is requested,
bail out , before making any changes.
Reviewers: reames, hfinkel, davide, efriedma
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D81582
Change BasicBlock::removePredecessor to optionally return a vector of
instructions which might be dead. Use this in ConstantFoldTerminator to
delete them if they are dead.
Reapply with a bug fix: don't drop the "!KeepOneInputPHIs" argument when
removePredecessor calls PHINode::removeIncomingValue.
Differential Revision: https://reviews.llvm.org/D80206
Change BasicBlock::removePredecessor to optionally return a vector of
instructions which might be dead. Use this in ConstantFoldTerminator to
delete them if they are dead.
Differential Revision: https://reviews.llvm.org/D80206
[ v1 was reverted by c6ec352a6b due to
modpost failing; v2 fixes this. More info:
https://github.com/ClangBuiltLinux/linux/issues/1045#issuecomment-640381783 ]
This makes -fsanitize=kernel-address emit the correct globals
constructors for the kernel. We had to do the following:
* Disable generation of constructors that rely on linker features such
as dead-global elimination.
* Only instrument globals *not* in explicit sections. The kernel uses
sections for special globals, which we should not touch.
* Do not instrument globals that are prefixed with "__" nor that are
aliased by a symbol that is prefixed with "__". For example, modpost
relies on specially named aliases to find globals and checks their
contents. Unfortunately modpost relies on size stored as ELF debug info
and any padding of globals currently causes the debug info to cause size
reported to be *with* redzone which throws modpost off.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=203493
Tested:
* With 'clang/test/CodeGen/asan-globals.cpp'.
* With test_kasan.ko, we can see:
BUG: KASAN: global-out-of-bounds in kasan_global_oob+0xb3/0xba [test_kasan]
* allyesconfig, allmodconfig (x86_64)
Reviewed By: glider
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D81390
- Now all SalvageDebugInfo() calls will mark undef if the salvage
attempt fails.
Reviewed by: vsk, Orlando
Differential Revision: https://reviews.llvm.org/D78369
Summary:
This makes -fsanitize=kernel-address emit the correct globals
constructors for the kernel. We had to do the following:
- Disable generation of constructors that rely on linker features such
as dead-global elimination.
- Only emit constructors for globals *not* in explicit sections. The
kernel uses sections for special globals, which we should not touch.
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=203493
Tested:
1. With 'clang/test/CodeGen/asan-globals.cpp'.
2. With test_kasan.ko, we can see:
BUG: KASAN: global-out-of-bounds in kasan_global_oob+0xb3/0xba [test_kasan]
Reviewers: glider, andreyknvl
Reviewed By: glider
Subscribers: cfe-commits, nickdesaulniers, hiraditya, llvm-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D80805
Summary:
In SCEVExpander FactorOutConstant(), when GEP indexing into/over scalable vector,
it is legal for the 'Factor' in a MulExpr to be the size of a scalable vector
instead of a compile-time constant.
Current upstream crash with the test attached.
Reviewers: efriedma, sdesmalen, sanjoy.google, mkazantsev
Reviewed By: efriedma
Subscribers: hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80973
As discussed in https://bugs.llvm.org/show_bug.cgi?id=45951 and
D80584, the name 'tmp' is almost always a bad choice, but we have
a legacy of regression tests with that name because it was baked
into utils/update_test_checks.py.
This change makes -instnamer more consistent (already using "arg"
and "bb", the common LLVM shorthand). And it avoids the conflict
in telling users of the FileCheck script to run "-instnamer" to
create a better regression test and having that cause a warn/fail
in update_test_checks.py.
Prevent `invertCondition` from creating the inversion instruction, in
case the given value is an argument which has already been inverted.
Note that this approach has already been taken in case the given value
is an instruction (and not an argument).
Differential Revision: https://reviews.llvm.org/D80399