Fixes PR32160 by reducing the size of PSHUFB if we only use one of the lanes.
This approach can probably be generalized to handle any target shuffle (and any subvector index) but we have no test coverage at the moment.
llvm-svn: 344336
This patch adds the ability to identify instructions that are "move elimination
candidates". It also allows scheduling models to describe processor register
files that allow move elimination.
A move elimination candidate is an instruction that can be eliminated at
register renaming stage.
Each subtarget can specify which instructions are move elimination candidates
with the help of tablegen class "IsOptimizableRegisterMove" (see
llvm/Target/TargetInstrPredicate.td).
For example, on X86, BtVer2 allows both GPR and MMX/SSE moves to be eliminated.
The definition of 'IsOptimizableRegisterMove' for BtVer2 looks like this:
```
def : IsOptimizableRegisterMove<[
InstructionEquivalenceClass<[
// GPR variants.
MOV32rr, MOV64rr,
// MMX variants.
MMX_MOVQ64rr,
// SSE variants.
MOVAPSrr, MOVUPSrr,
MOVAPDrr, MOVUPDrr,
MOVDQArr, MOVDQUrr,
// AVX variants.
VMOVAPSrr, VMOVUPSrr,
VMOVAPDrr, VMOVUPDrr,
VMOVDQArr, VMOVDQUrr
], CheckNot<CheckSameRegOperand<0, 1>> >
]>;
```
Definitions of IsOptimizableRegisterMove from processor models of a same
Target are processed by the SubtargetEmitter to auto-generate a target-specific
override for each of the following predicate methods:
```
bool TargetSubtargetInfo::isOptimizableRegisterMove(const MachineInstr *MI)
const;
bool MCInstrAnalysis::isOptimizableRegisterMove(const MCInst &MI, unsigned
CPUID) const;
```
By default, those methods return false (i.e. conservatively assume that there
are no move elimination candidates).
Tablegen class RegisterFile has been extended with the following information:
- The set of register classes that allow move elimination.
- Maxium number of moves that can be eliminated every cycle.
- Whether move elimination is restricted to moves from registers that are
known to be zero.
This patch is structured in three part:
A first part (which is mostly boilerplate) adds the new
'isOptimizableRegisterMove' target hooks, and extends existing register file
descriptors in MC by introducing new fields to describe properties related to
move elimination.
A second part, uses the new tablegen constructs to describe move elimination in
the BtVer2 scheduling model.
A third part, teaches llm-mca how to query the new 'isOptimizableRegisterMove'
hook to mark instructions that are candidates for move elimination. It also
teaches class RegisterFile how to describe constraints on move elimination at
PRF granularity.
llvm-mca tests for btver2 show differences before/after this patch.
Differential Revision: https://reviews.llvm.org/D53134
llvm-svn: 344334
Failure was discovered upon running
projects/compiler-rt/test/builtins/Unit/divtc3_test.c
in a stage2 compiler build.
When compiling projects/compiler-rt/lib/builtins/divtc3.c,
a call to fmaxl within the divtc3 implementation had its
return values read from registers $2 and $3 instead of $f0 and $f2.
Include fmaxl in the list of long double emulation routines
to have its return value correctly interpreted as f128.
Almost exact issue here: https://reviews.llvm.org/D17760
Differential Revision: https://reviews.llvm.org/D52649
llvm-svn: 344326
Summary:
This change adds support for the GNU --target flag, which sets both --input-target and --output-target.
GNU objcopy doesn't do any checking for whether both --target and --{input,output}-target are used, and so it allows both, e.g. "--target A --output-target B" is equivalent to "--input-target A --output-target B" since the later command line flag would override earlier ones. This may be error prone, so I chose to implement it as an error if both are used. I'm not sure if anyone is actually using both.
Reviewers: jakehehrlich, jhenderson, alexshap
Reviewed By: jakehehrlich, alexshap
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53029
llvm-svn: 344321
I want to add another pattern here that includes scalar_to_vector,
so this makes that patch smaller. I was hoping to remove the
hasOneUse() check because it shouldn't be necessary for common
codegen, but an AMDGPU test has a comment suggesting that the
extra check makes things better on one of those targets.
llvm-svn: 344320
It originally triggered a stepping problem in the debugger, which could
be fixed by adjusting CodeGen/LexicalScopes.cpp however it seems we prefer
the previous behavior anyway.
See the discussion for details: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20181008/593833.html
This reverts commit r343880.
This reverts commit r343874.
llvm-svn: 344318
DIV/REM by constants should always be expanded into mul/shift/etc.
patterns. Unfortunately the ConstantHoisting pass runs too early at a
point where the pattern isn't expanded yet. However after
ConstantHoisting hoisted some immediate the result may not expand
anymore. Also the hoisting typically doesn't make sense because it
operates on immediates that will change completely during the expansion.
Report DIV/REM as TCC_Free so ConstantHoisting will not touch them.
Differential Revision: https://reviews.llvm.org/D53174
llvm-svn: 344315
Summary:
Instruction with 0 in fence field being disassembled as fence , iorw.
Printing "unknown" to match GAS behavior.
This bug was uncovered by a LLVM MC Disassembler Protocol Buffer Fuzzer
for the RISC-V assembly language.
Reviewers: asb
Subscribers: rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, mgrang, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, jfb, PkmX, jocewei, asb
Differential Revision: https://reviews.llvm.org/D51828
llvm-svn: 344309
On 64-bit targets the generic legalize will use an i64 load and a scalar_to_vector for us. But on 32-bit targets i64 isn't legal and the generic legalizer will end up emitting two 32-bit loads. We have DAG combines that try to put those two loads back together with pretty good success.
This patch instead uses f64 to avoid the splitting entirely. I've made it do the same for 64-bit mode for consistency and to keep the load in the fp domain.
There are a few things in here that look like regressions in 32-bit mode, but I believe they bring us closer to the 64-bit mode codegen. And that the 64-bit mode code could be better. I think those issues should be looked at separately.
Differential Revision: https://reviews.llvm.org/D52528
llvm-svn: 344291
Having a constant value operand in the compound instruction
is not always profitable. This patch improves coremark by ~4% on
Hexagon.
Differential Revision: https://reviews.llvm.org/D53152
llvm-svn: 344284
Revert r344206 "[MC][ELF] Fix section_mergeable_size.ll"
They were causing failures on too many important buildbots for too long.
Please revert eagerly if your fix takes more than a couple of hours to land!
llvm-svn: 344278
This patch ports the legacy pass manager to the new one to take advantage of
the benefits of the new PM. This involved moving a lot of the declarations for
`AddressSantizer` to a header so that it can be publicly used via
PassRegistry.def which I believe contains all the passes managed by the new PM.
This patch essentially decouples the instrumentation from the legacy PM such
hat it can be used by both legacy and new PM infrastructure.
Differential Revision: https://reviews.llvm.org/D52739
llvm-svn: 344274
This is an alternative to D53080 since I think using a BEXTR for a shifted mask is definitely an improvement when the shl can be absorbed into addressing mode. The other cases I'm less sure about.
We already have several tricks for handling an and of a shift in address matching. This adds a new case for BEXTR.
I've moved the BEXTR matching code back to X86ISelDAGToDAG to allow it to match. I suppose alternatively we could directly emit a X86ISD::BEXTR node that isel could pattern match. But I'm trying to view BEXTR matching as an isel concern so DAG combine can see 'and' and 'shift' operations that are well understood. We did lose a couple cases from tbm_patterns.ll, but I think there are ways to recover that.
I've also put back the manual load folding code in matchBEXTRFromAnd that I removed a few months ago in r324939. This gives us some more freedom to make decisions based on the ability to fold a load. I haven't done anything with that yet.
Differential Revision: https://reviews.llvm.org/D53126
llvm-svn: 344270
InstCombine keeps a worklist and assumes that optimizations don't
eraseFromParent() the instruction, which SimplifyLibCalls violates. This change
adds a new callback to SimplifyLibCalls to let clients specify their own hander
for erasing actions.
Differential Revision: https://reviews.llvm.org/D52729
llvm-svn: 344251
The ARM64 elf emitter would omit printing data
symbol for zero filled constant data. This patch
overrides the emitFill method as to enforce that
the symbol is correctly printed.
Differential revision: https://reviews.llvm.org/D53132
llvm-svn: 344248
This is the umin alternative to the umax code from rL344237. We use
DeMorgans law on the umax case to bring us to the same thing on umin,
but using countLeadingOnes, not countLeadingZeros.
Differential Revision: https://reviews.llvm.org/D53036
llvm-svn: 344239
Use the demanded bits of umax(A,C) to prove we can just use A so long as the
lowest non-zero bit of DemandMask is higher than the highest non-zero bit of C
Differential Revision: https://reviews.llvm.org/D53033
llvm-svn: 344237
Summary:
As discussed in D48491, we can't really do this in the TableGen,
since we need to produce *two* instructions. This only implements
one single pattern. The other 3 patterns will be in follow-ups.
I'm not sure yet if we want to also fuse shift into here
(i.e `(x >> start) & ...`)
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D52304
llvm-svn: 344224
There is a transform that may replace `lshr (x+1), 1` with `lshr x, 1` in case
if it can prove that the result will be the same. However the initial instruction
might have an `exact` flag set, and it now should be dropped unless we prove
that it may hold. Incorrectly set `exact` attribute may then produce poison.
Differential Revision: https://reviews.llvm.org/D53061
Reviewed By: sanjoy
llvm-svn: 344223
libtool requires this text to be present, in order to conclude that
the tool supports response files. Also add an explicit test of using
response files with llvm-nm.
Differential Revision: https://reviews.llvm.org/D53064
llvm-svn: 344222
Summary:
Although the saturating float to int instructions are already
emitted from normal IR, the fpto{s,u}i instructions produce poison
values if the argument cannot fit in the result type. These intrinsics
are therefore necessary to get guaranteed defined saturating behavior.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D53004
llvm-svn: 344204
This can be used to preserve profiling information across codebase
changes that have widespread impact on mangled names, but across which
most profiling data should still be usable. For example, when switching
from libstdc++ to libc++, or from the old libstdc++ ABI to the new ABI,
or even from a 32-bit to a 64-bit build.
The user can provide a remapping file specifying parts of mangled names
that should be treated as equivalent (eg, std::__1 should be treated as
equivalent to std::__cxx11), and profile data will be treated as
applying to a particular function if its name is equivalent to the name
of a function in the profile data under the provided equivalences. See
the documentation change for a description of how this is configured.
Remapping is supported for both sample-based profiling and instruction
profiling. We do not support remapping indirect branch target
information, but all other profile data should be remapped
appropriately.
Support is only added for the new pass manager. If someone wants to also
add support for this for the old pass manager, doing so should be
straightforward.
This is the LLVM side of Clang r344199.
Reviewers: davidxl, tejohnson, dlj, erik.pilkington
Subscribers: mehdi_amini, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51249
llvm-svn: 344200
Given a library call that is represented as an llvm intrinsic call, but
later transformed to an actual call, if an overriding definition of that
library routine is provided indirectly via an alias, prevent LTO from
eliminating the definition.
This is a fix for PR38547.
Differential Revision: https://reviews.llvm.org/D52836
llvm-svn: 344198
Summary:
Global variables might declare themselves to be in explicit sections.
Calculate the entity size always to prevent assembler warnings
"entity size for SHF_MERGE not specified" when sections are to be
marked merge-able.
Fixes PR31828.
Reviewers: rnk, echristo
Reviewed By: rnk
Subscribers: llvm-commits, pirama, srhines
Differential Revision: https://reviews.llvm.org/D53056
llvm-svn: 344197
* Support writing the DARWIN64 symbol table format.
* In darwin archives, emit a symbol table whenever requested, even
when there are no members, as the apple linker will abort if given
an archive without a symbol table.
Added tests for same, and also simplified and moved the GNU 64-bit
symbol table test into archive-symtab.test.
llvm-svn: 344183
Summary:
As discussed in [[ https://bugs.llvm.org/show_bug.cgi?id=38938 | PR38938 ]],
we fail to emit `BEXTR` if the mask is shifted.
We can't deal with that in `X86DAGToDAGISel` `before the address mode for the inc is selected`,
and we can't really do it in the normal DAGCombine, because we don't have generic `ISD::BitFieldExtract` node,
and if we simply turn the shifted mask into a normal mask + shift-left, it will be folded back.
So it would seem X86ISelLowering is the place to handle this.
This patch only moves the matchBEXTRFromAnd()
from X86DAGToDAGISel to X86ISelLowering.
It does not add support for the 'shifted mask' pattern.
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52426
llvm-svn: 344179
Adding a new reduction pattern match for vectorizing code similar to TSVC s3111:
for (int i = 0; i < N; i++)
if (a[i] > b)
sum += a[i];
This patch adds support for fadd, fsub and fmull, as well as multiple
branches and different (but compatible) instructions (ex. add+sub) in
different branches.
I have forwarded to trunk, added fsub and fmul functionality and
additional tests, but the credit goes to Takahiro, who did most of the
actual work.
Differential Revision: https://reviews.llvm.org/D49168
Patch by Takahiro Miyoshi <takahiro.miyoshi@linaro.org>.
llvm-svn: 344172
Summary:
GlobalISel generates incorrect code because the legalizer artifact
combiner assumes `G_[SZ]EXT (G_IMPLICIT_DEF)` is equivalent to
`G_IMPLICIT_DEF `.
Replace `G_[SZ]EXT (G_IMPLICIT_DEF)` with 0 because the top bits
will be 0 for G_ZEXT and 0/1 for the G_SEXT.
Reviewers: aditya_nandakumar, dsanders, aemerson, javed.absar
Reviewed By: aditya_nandakumar
Subscribers: rovka, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D52996
llvm-svn: 344163
The case will randomly fail if we test it with command "
while llvm-lit test/tools/gold/X86/cache.ll ; do true; done". It is because the llvmcache-foo file is younger than llvmcache-349F039B8EB076D412007D82778442BED3148C4E and llvmcache-A8107945C65C2B2BBEE8E61AA604C311D60D58D6. But due to timestamp precision reason their timestamp is the same. Given the same timestamp, the file prune policy is to remove bigger size file first, so mostly foo file is removed for its bigger size. And the files size is under threshold after deleting foo file. That's what test case expect.
However sometimes, the precision is enough to measure that timestamp of llvmcache-349F039B8EB076D412007D82778442BED3148C4E and llvmcache-A8107945C65C2B2BBEE8E61AA604C311D60D58D6 are smaller than foo, so llvmcache-349F039B8EB076D412007D82778442BED3148C4E and llvmcache-A8107945C65C2B2BBEE8E61AA604C311D60D58D6 are deleted first. Since the files size is still above the file size threshold after deleting the 2 files, the foo file is also deleted. And then the test case fails, because it expect only one file should be deleted instead of 3.
The fix is to change the timestamp of llvmcache-foo file to meet the thinLTO prune policy.
Patch by Luo Yuanke.
Differential Revision: https://reviews.llvm.org/D52452
llvm-svn: 344158