This patch adds a 'WriteCopy' [WriteLoad, WriteStore] schedule sequence instead to better model the behaviour
Found by @andreadb during llvm-mca testing on btver2 which was crashing on "zero uop" WriteRMW only instructions
llvm-svn: 343708
This fixes a problem where the register allocator fails to eliminate a PHI
because there's a non-PHI in the middle of the PHI instructions at the start
of a BB.
This G_TRUNC can be better placed but this at least fixes the correctness issue
quickly. I'll follow up with a patch to the verifier to catch this kind of bug
in future.
llvm-svn: 343693
This patch teaches class RegisterFile how to analyze register writes from
instructions that are move elimination candidates.
In particular, it teaches it how to check if a move can be effectively eliminated
by the underlying PRF, and (if necessary) how to perform move elimination.
The long term goal is to allow processor models to describe instructions that
are valid move elimination candidates.
The idea is to let register file definitions in tablegen declare if/when moves
can be eliminated.
This patch is a non functional change.
The logic that performs move elimination is currently disabled. A future patch
will add support for move elimination in the processor models, and enable this
new code path.
llvm-svn: 343691
Fix use of SSE1 registers for f32 ops in no-x87 mode.
Notably, allow use of SSE instructions for f32 operations in 64-bit
mode (but not 32-bit which is disallowed by callign convention).
Also avoid translating memset/memcopy/memmove into SSE registers
without X87 for 32-bit mode.
This fixes PR38738.
Reviewers: nickdesaulniers, craig.topper
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D52555
llvm-svn: 343689
Two cases in a ThinLTO test were passing for the wrong reasons, since
rL340374. The tests were supposed to be testing that files were being
pruned due to the cache size, but they were in fact being pruned because
they were older than the default expiration period of 1 week.
This change fixes the tests by explicitly setting the expiration time to
the maximum value. This required the option to be exposed in llvm-lto.
By assigning all files in the cache a similar time, it is possible to see
that the newest files are still being kept, and that we aren't passing
for the wrong reason again. In the event that the entry expiration were
to expire for them, then the test would start failing, because these
files would be removed too.
Reviewed by: rnk, inglorion
Differential Revision: https://reviews.llvm.org/D51992
llvm-svn: 343687
Summary:
The new buffer/tbuffer intrinsics handle an out-of-range immediate
offset by moving/adding offset&-4096 to a vgpr, leaving an in-range
immediate offset, with a chance of the move/add being CSEd for similar
loads/stores.
However it turns out that a negative offset in a vgpr is illegal, even
if adding the immediate offset makes it legal again.
Therefore, this commit disables the offset&-4096 thing if the offset is
negative.
Differential Revision: https://reviews.llvm.org/D52683
Change-Id: Ie02f0a74f240a138dc2a29d17cfbd9e350e4ed13
llvm-svn: 343672
I was expecting this to be a nfc but Silvermont seems to be setup a little differently:
// A folded store needs a cycle on MEC_RSV for the store data, but it does not need an extra port cycle to recompute the address.
def : WriteRes<WriteRMW, [SLM_MEC_RSV]>;
So moving from WriteStore to WriteRMW reduces predicted port pressure, confirmed by @craig.topper that this is correct.
Differential Revision: https://reviews.llvm.org/D52740
llvm-svn: 343670
Modified the testcases to use both pass managers
Use single commandline flag for both pass managers.
Differential Revision: https://reviews.llvm.org/D52708
Reviewers: sebpop, tejohnson, brzycki, SirishP
Reviewed By: tejohnson, brzycki
llvm-svn: 343662
Summary: Depends on D45541
Reviewers: ab, aditya_nandakumar, bogner, rtereshin, volkan, rovka, javed.absar, aemerson
Subscribers: aemerson, rengolin, mgorny, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D45543
The previous commit failed portions of the test-suite on GreenDragon due to
duplicate COPY instructions and iterator invalidation. Both issues have now
been fixed. To assist with this, a helper (cloneVirtualRegister) has been added
to MachineRegisterInfo that can be used to get another register that has the same
type and class/bank as an existing one.
llvm-svn: 343654
We don't need to match the precise type index number here. It's not
important. The type name is what matters to make this test useful.
llvm-svn: 343642
Previously we were creating weakly defined helper function in
each translation unit:
- setThrew
- setTempRet0
Instead we now assume these will be provided at link time. In
emscripten they are provided in compiler-rt:
https://github.com/kripken/emscripten/pull/7203
Additionally we previously created three global variable which are
also now required to exist at link time instead.
- __THREW__
- _threwValue
- __tempRet0
Differential Revision: https://reviews.llvm.org/D49208
llvm-svn: 343640
The behaviour of this bot indicates that -verify-machineinstrs has been forced
on and is therefore inserting the verifier on builds that don't expect it.
Explicitly specify whether it's enabled or disabled for each test.
llvm-svn: 343633
Summary:
Use the newly added DebugInfo (DI) Trivial flag, which indicates if a C++ record is trivial or not, to determine Codeview::FunctionOptions.
Clang and MSVC generate slightly different Codeview for C++ records. For example, here is the C++ code for a class with a defaulted ctor,
class C {
public:
C() = default;
};
Clang will produce a LF for the defaulted ctor while MSVC does not. For more details, refer to FIXMEs in the test cases in "function-options.ll" included with this set of changes.
Reviewers: zturner, rnk, llvm-commits, aleksandr.urakov
Reviewed By: rnk
Subscribers: Hui, JDevlieghere
Differential Revision: https://reviews.llvm.org/D45123
llvm-svn: 343626
The 0x63 opcodes in 64-bit mode have a fixed source size of 32-bits, but the destination size is controlled by REX.W and the 0x66 opsize prefix. This instruction is normally used with a REX.W prefix which provides desired behavior. The other encodings are interpretted as valid by the processor, but aren't useful.
This patch makes us recognize them for the disassembler to match objdump.
llvm-svn: 343614
Add the .cv_fpo_stackalign directive so that we can define $T0, or the
VFRAME virtual register, with it. This was overlooked in the initial
implementation because unlike MSVC, we push CSRs before allocating stack
space, so this value is only needed to describe local variable
locations. Variables that the compiler now addresses via ESP are instead
described as being stored at offsets from VFRAME, which for us is ESP
after alignment in the prologue.
This adds tests that show that we use the VFRAME register properly in
our S_DEFRANGE records, and that we emit the correct FPO data to define
it.
Fixes PR38857
llvm-svn: 343603
The ARM elf emitter would omit printing data
symbol when constant data. This patch
overrides the emitFill method as to enforce that
the symbol is correctly printed.
Differential revision: https://reviews.llvm.org/D52737
llvm-svn: 343594
These are candidates for the same fold that was implemented in
D52439, but FP types require bitcasting (and that changes the
extra uses profitability calculation).
llvm-svn: 343587
This adds new instructions to manipluate tagged pointers, and to load
and store the tags associated with memory.
Patch by Pablo Barrio, David Spickett and Oliver Stannard!
Differential revision: https://reviews.llvm.org/D52490
llvm-svn: 343572
This adds new system registers introduced by the Memory Tagging
extension.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52488
llvm-svn: 343571
The Memory Tagging Extension adds system instructions for data cache
maintenance, implemented as new operands to the DC instruction.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52487
llvm-svn: 343570
This is an attempt to get out of a local-minimum that instcombine currently
gets stuck in. We essentially combine two optimisations at once, ~a - ~b = b-a
and min(~a, ~b) = ~max(a, b), only doing the transform if the result is at
least neutral. This involves using IsFreeToInvert, which has been expanded a
little to include selects that can be easily inverted.
This is trying to fix PR35875, using the ideas from Sanjay. It is a large
improvement to one of our rgb to cmy kernels.
Differential Revision: https://reviews.llvm.org/D52177
llvm-svn: 343569
Consistently try to use APFloat::toString for floating point constant comments to get rid of differences between Constant / ConstantDataSequential values - it should help stop some of the linux-windows buildbot failures matching NaN/INF etc. as well.
Differential Revision: https://reviews.llvm.org/D52702
llvm-svn: 343562
There's a strange assertion on two of the Green Dragon bots that goes away when
this is reverted. The assertion is in RegBankAlloc and if it is this commit then
-verify-machine-instrs should have caught it earlier in the pipeline.
llvm-svn: 343546
Summary:
Before this change, LLVM would always describe locals on the stack as
being relative to some specific register, RSP, ESP, EBP, ESI, etc.
Variables in stack memory are pretty common, so there is a special
S_DEFRANGE_FRAMEPOINTER_REL symbol for them. This change uses it to
reduce the size of our debug info.
On top of the size savings, there are cases on 32-bit x86 where local
variables are addressed from ESP, but ESP changes across the function.
Unlike in DWARF, there is no FPO data to describe the stack adjustments
made to push arguments onto the stack and pop them off after the call,
which makes it hard for the debugger to find the local variables in
frames further up the stack.
To handle this, CodeView has a special VFRAME register, which
corresponds to the $T0 variable set by our FPO data in 32-bit. Offsets
to local variables are instead relative to this value.
This is part of PR38857.
Reviewers: hans, zturner, javed.absar
Subscribers: aprantl, hiraditya, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D52217
llvm-svn: 343543
This includes a fix to prevent i16 compares with i32/i64 ands from being shrunk if bit 15 of the and is set and the sign bit is used.
Original commit message:
Currently we skip looking through truncates if the sign flag is used. But that's overly restrictive.
It's safe to look through the truncate as long as we ensure one of the 3 things when we shrink. Either the MSB of the mask at the shrunken size isn't set. If the mask bit is set then either the shrunk size needs to be equal to the compare size or the sign
There are still missed opportunities to shrink a load and fold it in here. This will be fixed in a future patch.
llvm-svn: 343539
Going from XForm Load to DSForm Load requires that the immediate be 4 byte
aligned.
If we are not aligned we must leave the load as LDX (XForm).
This bug is causing a compile-time failure in the benchmark h264ref.
Differential Revision: https://reviews.llvm.org/D51988
llvm-svn: 343525
This reverts commit r342387 as it's showing significant performance
regressions in a number of benchmarks. Followed up with the
committer and original thread with an example and will get performance
numbers before recommitting.
llvm-svn: 343522
Spill/reload instructions are artificially generated by the compiler and
have no relation to the original source code. So the best thing to do is
not attach any debug location to them (instead of just taking the next
debug location we find on following instructions).
Differential Revision: https://reviews.llvm.org/D52125
llvm-svn: 343520
There's a subtle bug in the handling of truncate from i32/i64 to i32 without minsize.
I'll be adding more test cases and trying to find a fix.
llvm-svn: 343516
The pattern had a couple of problems:
- It was checking for loads of bytes in the reverse order to what it
should have been looking for.
- It would replace loads of bytes with a load of a word without making
sure that the alignment was correct.
Thanks to Eli Friedman for pointing it out.
llvm-svn: 343514
These work a little differently because they are actually in
the globals stream and are treated as symbol records, even though
DIA presents them as types. So this also adds the necessary
infrastructure to cache records that live somewhere other than
the TPI stream as well.
llvm-svn: 343507
Summary:
The AsmParser Lexer regards these as a seperate token.
Here we expand the instruction name with them if they are
adjacent (no whitespace).
Tested: the basic-assembly.s test case has one case with a / in it.
The currently are also instructions with : in them, which we intend
to rename rather than fix them here.
Reviewers: tlively, dschuff
Subscribers: sbc100, jgravelle-google, aheejin, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D52442
llvm-svn: 343501
This patch adds load folding support to the test shrinking code. This was noticed missing in the review for D52669
Differential Revision: https://reviews.llvm.org/D52699
llvm-svn: 343499
Currently we skip looking through truncates if the sign flag is used. But that's overly restrictive.
It's safe to look through the truncate as long as we ensure one of the 3 things when we shrink. Either the MSB of the mask at the shrunken size isn't set. If the mask bit is set then either the shrunk size needs to be equal to the compare size or the sign flag needs to be unused.
There are still missed opportunities to shrink a load and fold it in here. This will be fixed in a future patch.
Differential Revision: https://reviews.llvm.org/D52669
llvm-svn: 343498
This fixes a case of bad index calculation when merging mismatching
vector types. This changes the existing code to just use the existing
extract_{subvector|element} and a bitcast (instead of bitcast first and
then newly created extract_xxx) so we don't need to adjust any indices
in the first place.
rdar://44584718
Differential Revision: https://reviews.llvm.org/D52681
llvm-svn: 343493
Summary:
This is a continuation of the fix for PR34627 "InstCombine assertion at vector gep/icmp folding". (I just realized bugpoint had fuzzed the original test for me, so I had fixed another trigger of the same assert in adjacent code in InstCombine.)
This patch avoids optimizing an icmp (to look only at the base pointers) when the resulting icmp would have a different type.
The patch adds a testcase and also cleans up and shrinks the pre-existing test for the adjacent assert trigger.
Reviewers: lebedev.ri, majnemer, spatel
Reviewed By: lebedev.ri
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52494
llvm-svn: 343486
This was originally committed at rL343407, but reverted at
rL343458 because it crashed trying to handle a case where
the destination type is FP. This version of the patch adds
a check for that possibility. Tests added at rL343480.
Original commit message:
This transform is requested for the backend in:
https://bugs.llvm.org/show_bug.cgi?id=39016
...but I figured it was worth doing in IR too, and it's probably
easier to implement here, so that's this patch.
In the simplest case, we are just truncating a scalar value. If the
extract index doesn't correspond to the LSBs of the scalar, then we
have to shift-right before the truncate. Endian-ness makes this tricky,
but hopefully the ASCII-art helps visualize the transform.
Differential Revision: https://reviews.llvm.org/D52439
llvm-svn: 343482
The first attempt at this transform:
rL343407
...was reverted:
rL343458
...because it did not handle the case where we bitcast to FP.
The patch was already limited to avoid the case where we
bitcast from FP, but we might want to transform that too.
llvm-svn: 343480
This caused Chromium builds to fail with "Illegal Trunc" assertion.
See https://crbug.com/890723 for repro.
> This transform is requested for the backend in:
> https://bugs.llvm.org/show_bug.cgi?id=39016
> ...but I figured it was worth doing in IR too, and it's probably
> easier to implement here, so that's this patch.
>
> In the simplest case, we are just truncating a scalar value. If the
> extract index doesn't correspond to the LSBs of the scalar, then we
> have to shift-right before the truncate. Endian-ness makes this tricky,
> but hopefully the ASCII-art helps visualize the transform.
>
> Differential Revision: https://reviews.llvm.org/D52439
llvm-svn: 343458
This patch adds another variant class to identify zero-idiom VPERM2F128rr
instructions.
On Jaguar, a VPERM wih bit 3 and 7 of the mask set, is a zero-idiom.
Differential Revision: https://reviews.llvm.org/D52663
llvm-svn: 343452
Summary: I had added support for compressing dwarf sections in a prior commit,
this one adds support for decompressing. Usage is:
llvm-objcopy --decompress-debug-sections input.o output.o
Reviewers: jakehehrlich, jhenderson, alexshap
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D51841
llvm-svn: 343451
Summary:
While looking at PR35606, I found out that the scheduling info is incorrect.
One can check that it's really a P5+P6 and not a 2*P56 with:
echo -e 'vzeroall\nvandps %xmm1, %xmm2, %xmm3' | ./bin/llvm-exegesis -mode=uops -snippets-file=-
(vandps executes on P5 only)
Reviewers: craig.topper, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52541
llvm-svn: 343447
When MachineCopyPropagation eliminates a dead 'copy', its associated debug information becomes invalid. as the recorded register has been removed. It causes the debugger to display wrong variable value.
Differential Revision: https://reviews.llvm.org/D52614
llvm-svn: 343445
We can only copy between a k-register and a GR32/GR64 register.
This patch detects that the copy will be illegal and prevents the domain reassignment from happening for that closure.
This probably isn't the best fix, and we should probably figure out how to handle this correctly.
Fixes PR38803.
llvm-svn: 343443
Summary:
The lowering of PHI nodes used to detect if all inputs originated
from IMPLICIT_DEF's. If so the PHI node was replaced by an
IMPLICIT_DEF. Now we also consider undef uses when checking the
inputs. So if all inputs are implicitly defined or undef we
lower the PHI to an IMPLICIT_DEF. This makes
PHIElimination::LowerPHINode more consistent as it checks
both implicit and undef properties at later stages.
Reviewers: MatzeB, tstellar
Reviewed By: MatzeB
Subscribers: jvesely, nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D52558
llvm-svn: 343417
Summary:
When PR16508 was solved (in rL185363) a regression test was
added as test/CodeGen/PowerPC/2013-07-01-PHIElimBug.ll.
I discovered that the test case no longer reproduced the
scenario from PR16508. This problem could have been amended
by adding an extra RUN line with "-O1" (or possibly "-O0"),
but instead I added a mir-reproducer
test/CodeGen/PowerPC/2013-07-01-PHIElimBug.mir
to get a reproducer that is less sensitive to changes in
earlier passes (including O-level).
While being at it I also corrected a code comment in
PHIElimination::EliminatePHINodes that has been incorrect
since the related bugfix from rL185363.
Reviewers: MatzeB, hfinkel
Reviewed By: MatzeB
Subscribers: nemanjai, jsji, llvm-commits
Differential Revision: https://reviews.llvm.org/D52553
llvm-svn: 343416
This transform is requested for the backend in:
https://bugs.llvm.org/show_bug.cgi?id=39016
...but I figured it was worth doing in IR too, and it's probably
easier to implement here, so that's this patch.
In the simplest case, we are just truncating a scalar value. If the
extract index doesn't correspond to the LSBs of the scalar, then we
have to shift-right before the truncate. Endian-ness makes this tricky,
but hopefully the ASCII-art helps visualize the transform.
Differential Revision: https://reviews.llvm.org/D52439
llvm-svn: 343407
As noted in post-commit comments for D52548, the limitation on
increasing vector length can be applied by opcode.
As a first step, this patch only allows insertelement to be
widened because that has no logical downsides for IR and has
little risk of pessimizing codegen.
This may cause PR39132 to go into hiding during a full compile,
but that bug is not fixed.
llvm-svn: 343406
Summary:
This function turns (X >> C1) & C2 into a BMI BEXTR or TBM BEXTRI instruction. For BMI BEXTR we have to materialize an immediate into a register to feed to the BEXTR instruction.
The BMI BEXTR instruction is 2 uops on Intel CPUs. It looks like on SKL its one port 0/6 uop and one port 1/5 uop. Despite what Agner's tables say. I know one of the uops is a regular shift uop so it would have to go through the port 0/6 shifter unit. So that's the same or worse execution wise than the shift+and which is one 0/6 uop and one 0/1/5/6 uop. The move immediate into register is an additional 0/1/5/6 uop.
For now I've limited this transform to AMD CPUs which have a single uop BEXTR. If may also might make sense if we can fold a load or if the and immediate is larger than 32-bits and can't be encoded as a sign extended 32-bit value or if LICM or CSE can hoist the move immediate and share it. But we'd need to look more carefully at that. In the regression I looked at it doesn't look load folding or large immediates were occurring so the regression isn't caused by the loss of those. So we could try to be smarter here if we find a compelling case.
Reviewers: RKSimon, spatel, lebedev.ri, andreadb
Reviewed By: RKSimon
Subscribers: llvm-commits, andreadb, RKSimon
Differential Revision: https://reviews.llvm.org/D52570
llvm-svn: 343399
We added support for dumping pointers but pointers to arrays
won't correctly dump until we add support for dumping arrays.
Instead of trying to dump everything, which this test isn't
even interested in, just dump enums and typedefs.
llvm-svn: 343398
CompileOnDemandLayer2 now supports user-supplied partition functions (the
original CompileOnDemandLayer already supported these).
Partition functions are called with the list of requested global values
(i.e. global values that currently have queries waiting on them) and have an
opportunity to select extra global values to materialize at the same time.
Also adds testing infrastructure for the new feature to lli.
llvm-svn: 343396
We didn't properly detect when a pointer was a member
pointer, and when that was the case we were not
properly returning class parent info. This caused
member pointers to render incorrectly in pretty mode.
However, we didn't even have pretty tests for pointers
in native mode, so those are also added now to ensure
this.
llvm-svn: 343393
By removing demanded target shuffles that simplify to zero/undef/identity before simplifying its inputs we improve chances of further simplification, as only the immediate parent user of the combined is added back to the work list - this still doesn't help us if its passed through other ops though (bitcasts....).
llvm-svn: 343390
The shift amount might have peeked through a extract_subvector, altering the number of vector elements in the 'Amt' variable - so we were incorrectly calculating the ratio when peeking through bitcasts, resulting in incorrectly detecting splats.
llvm-svn: 343373
Correctly check for relocations in the constant to promote. And don't
allow promoting a constant multiple times.
This partially fixes https://bugs.llvm.org//show_bug.cgi?id=32780 ;
it's not a complete fix because we also need to prevent
ARMConstantIslands from cloning the constant.
(-arm-promote-constant is currently off by default, and it stays off
with this patch. I'll look into turning it on again when all the known
issues are fixed.)
Differential Revision: https://reviews.llvm.org/D51472
llvm-svn: 343361
This mostly affects IR generated by non-clang frontends because clang
generally sets the alignment of globals explicitly.
Fixes https://bugs.llvm.org//show_bug.cgi?id=32394 .
(-arm-promote-constant is currently off by default, and it stays off
with this patch. I'll look into turning it on again when all the known
issues are fixed.)
Differential Revision: https://reviews.llvm.org/D51469
llvm-svn: 343359
The code in X86ISelDAGToDAG only looks through truncates if the sign flag isn't used, but that is overly restrictive. A future patch will improve this.
llvm-svn: 343355
Split the `zcz` feature into specific ones got GP and FP registers, `zcz-gp`
and `zcz-fp`, respectively, while retaining the original feature option to
mean both.
Differential revision: https://reviews.llvm.org/D52621
llvm-svn: 343354
We don't correctly model the latency and resource usage information for
zero-idiom VPERM2F128rr on Jaguar.
This is demonstrated by the incorrect numbers in the resource pressure view, and
the timeline view.
A follow up patch will fix this problem.
llvm-svn: 343346
If any prefixes have been specified on the RUN lines that do not end up
ever actually getting printed, raise an Error. This is either an
indication that the run lines just need cleaning up, or that something
is more fundamentally wrong with the test.
Also raise an Error if there are any blocks which cannot be checked
because they are not uniquely covered by a prefix.
Fixed up a couple of tests where the extra checking flagged up issues.
Differential Revision: https://reviews.llvm.org/D48276
llvm-svn: 343332
Insert empty blocks to cause the positions of matching blocks to match
across lists where possible so that later stages of the algorithm can
actually identify them as being identical.
Regenerated all tests with this change.
Differential Revision: https://reviews.llvm.org/D52560
llvm-svn: 343331
Summary: Adds missing debug information accessors to GlobalObject. This puts the finishing touches on cloning debug info in the echo tests.
Reviewers: whitequark, deadalnix
Reviewed By: whitequark
Subscribers: aprantl, JDevlieghere, llvm-commits, harlanhaskins
Differential Revision: https://reviews.llvm.org/D51522
llvm-svn: 343330
InstCombine would propagate shufflevector insts that had wider output vectors onto
predecessors, which would sometimes push undef's onto the divisor of a div/rem and
result in bad codegen.
I've fixed this by just banning propagating shufflevector back if the result of
the shufflevector is wider than the input vectors.
Patch by: @sheredom (Neil Henning)
Differential Revision: https://reviews.llvm.org/D52548
llvm-svn: 343329
These are the updated baseline tests for D52548 -
I'm putting the tests next to the tests where the transform
functions as expected, so we can see the intended/unintended
consequences.
Patch by: @sheredom (Neil Henning)
llvm-svn: 343328
https://reviews.llvm.org/D51147
Asserting if any extend of vectors should be up to the target's
legalizer/target specific code not in CallLowering.
reviewed by : dsanders.
llvm-svn: 343325
- Add fix so that all code paths that create DWARFContext
with an ObjectFile initialise the target architecture in the context
- Add an assert that the Arch is known in the Dwarf CallFrameString method
llvm-svn: 343317
Lower integer arguments larger then 32 bits for MIPS32.
setMostSignificantFirst is used in order for G_UNMERGE_VALUES and
G_MERGE_VALUES to always hold registers in same order, regardless of
endianness.
Patch by Petar Avramovic.
Differential Revision: https://reviews.llvm.org/D52409
llvm-svn: 343315
On GreenDragon `CodeGen/X86/cpus.ll` is timing out on the bot with Asan
and UBSan enabled. With the same configuration on my machine, the test
passes but takes more than 3 minutes to do so. I could increase the
timeout, but I believe it makes more sense to split up the test because
it allows for more parallelism.
Differential revision: https://reviews.llvm.org/D52603
llvm-svn: 343313
The NoMovt feature prevents the use of MOVW/MOVT
instructions on Cortex-M23 for performance reasons.
These instructions are required for execute only code
so NoMovt should be disabled when that option is enabled.
Differential Revision: https://reviews.llvm.org/D52551
llvm-svn: 343302
This adds two new barrier instructions which can be used to restrict
speculative execution of load instructions.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52484
llvm-svn: 343300
When printing successor probabilities for a MBB, a human readable value is sometimes shown as 200.0%.
The human readable output is based on getProbabilityIterator, which returns 0xFFFFFFFF for getNumerator() and 0x80000000 for getDenominator() for unknown BranchProbability.
By using getSuccProbability as we do for the non-human readable part, we can avoid this problem.
Differential Revision: https://reviews.llvm.org/D52605
llvm-svn: 343297
This shouldn't really happen in practice I hope, but we tried to handle other constant cases. We missed this one because we checked for ConstantVector without realizing that zero becomes ConstantAggregateZero instead.
So instead just check for Constant and use getAggregateElement which will do the dirty work for us.
llvm-svn: 343270
Had we emitted this IR earlier, InstCombine would have removed icmp so I'm going to assume using the i1 directly would be considered canonical.
llvm-svn: 343244
This adds two new barrier instructions which can be used to restrict
speculative execution of load instructions.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52483
llvm-svn: 343229
When C is not zero and infinites are not allowed (C / X) > 0 is a sign
test. Depending on the sign of C, the predicate must be swapped.
E.g.:
foo(double X) {
if ((-2.0 / X) <= 0) ...
}
=>
foo(double X) {
if (X >= 0) ...
}
Patch by: @marels (Martin Elshuber)
Differential Revision: https://reviews.llvm.org/D51942
llvm-svn: 343228
Summary:
Add a dominance check to ensure that the possible devirtualizable
call is actually dominated by the type test/checked load intrinsic being
analyzed. With PGO, after indirect call promotion is performed during
the compile step, followed by inlining, we may have a type test in the
promoted and inlined sequence that allows an indirect call in that
sequence to be devirtualized. That indirect call (inserted by inlining
after promotion) will share the same vtable pointer as the fallback
indirect call that cannot be devirtualized.
Before this patch the code was incorrectly devirtualizing the fallback
indirect call.
See the new test and the example described there for more details.
Reviewers: pcc, vitalybuka
Subscribers: mehdi_amini, Prazek, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D52514
llvm-svn: 343226
This adds new instructions used by the Branch Target Identification
feature. When this is enabled, these are the only instructions which can
be targeted by indirect branch instructions.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52485
llvm-svn: 343225
This adds some new system registers which can be used to restrict
certain types of speculative execution.
Patch by Pablo Barrio and David Spickett!
Differential revision: https://reviews.llvm.org/D52482
llvm-svn: 343218
This adds two new system registers, used to generate random numbers.
This is an optional extension to v8.5-A, and will be controlled by the
"+rng" modifier of the -march= and -mcpu= options.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52481
llvm-svn: 343217
This adds a new variant of the DC system instruction for persistent
memory.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52480
llvm-svn: 343216
This adds new system instructions which act as barriers to speculative
execution based on earlier execution within a particular execution
context.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52479
llvm-svn: 343214
This is a new barrier which limits speculative execution of the
instructions following it.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52477
llvm-svn: 343213
This is a new barrier which limits speculative execution of the
instructions following it.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52476
llvm-svn: 343211
Summary: It is currently broken and for Sparc there is not much benefit
in using a builtin version compared to a library version. Both versions
needs to store the same four values in setjmp and flush the register
windows in longjmp. If the need for a builtin setjmp/longjmp arises there
is an improved implementation available at https://reviews.llvm.org/D50969.
Reviewers: jyknight, joerg, venkatra
Subscribers: fedor.sergeev, jrtc27, llvm-commits
Differential Revision: https://reviews.llvm.org/D51487
llvm-svn: 343210
These are some new variants of the "Floating-point Round to Integral"
family of instructions, which round to the nearest floating-point value
which fits in a 32- or 64-bit integer.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52475
llvm-svn: 343209
Summary: The key is now the resource name, not the resource id.
Reviewers: gchatelet
Subscribers: tschuett, RKSimon, llvm-commits
Differential Revision: https://reviews.llvm.org/D52607
llvm-svn: 343208
Summary: Use 0 as the default immediate for the UNIMP instruction.
This matches the behavior in gas.
Reviewers: jyknight, venkatra
Subscribers: fedor.sergeev, jrtc27, llvm-commits
Differential Revision: https://reviews.llvm.org/D51526
llvm-svn: 343203
Summary:
Partial write %PSR (WRPSR) is a SPARC V8e option that allows WRPSR
instructions to only affect the %PSR.ET field. It is supported by
the GR740 and GR716.
Reviewers: jyknight, venkatra
Subscribers: fedor.sergeev, jrtc27, llvm-commits
Differential Revision: https://reviews.llvm.org/D48644
llvm-svn: 343202
These new instructions manipluate the NZCV bits, to convert between the
regular Arm floating-point comare format and an alternative format.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52473
llvm-svn: 343187
This patch extends LoopInterchange to move LCSSA to the right place
after interchanging. This is required for LoopInterchange to become a
function pass.
An alternative to the manual moving of the PHIs, we could also re-form
the LCSSA phis for a set of interchanged loops, but that's more
expensive.
Reviewers: efriedma, mcrosier, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D52154
llvm-svn: 343132
Modifies lit to add a 'thread_support' feature that can be used in lit test
REQUIRES clauses. The thread_support flag is set if -DLLVM_ENABLE_THREADS=ON
and unset if -DLLVM_ENABLE_THREADS=OFF. The lit flag is used to disable the
multiple-compile-threads-basic.ll testcase when threading is disabled.
llvm-svn: 343122
Summary:
THis is a backwards-compatible change (existing files will work as
expected).
See PR39082.
Reviewers: gchatelet
Subscribers: tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D52546
llvm-svn: 343108
It was the case when calling MO::dump(), but MI::dump() was still
depending on hasComplexRegisterTies().
The MIR output is not affected.
llvm-svn: 343107
This caused the DebugInfo/Sparc/gnu-window-save.ll test to fail.
> Functions that have signed return addresses need additional dwarf support:
> - After signing the LR, and before authenticating it, the LR register is in a
> state the is unusable by a debugger or unwinder
> - To account for this a new directive, .cfi_negate_ra_state, is added
> - This directive says the signed state of the LR register has now changed,
> i.e. unsigned -> signed or signed -> unsigned
> - This directive has the same CFA code as the SPARC directive GNU_window_save
> (0x2d), adding a macro to account for multiply defined codes
> - This patch matches the gcc implementation of this support:
> https://patchwork.ozlabs.org/patch/800271/
>
> Differential Revision: https://reviews.llvm.org/D50136
llvm-svn: 343103
This patch adds a check to optimize conditional branch (BC and BCn) based on a constant set by CRSET or CRUNSET.
Other optimizers, such as block placement, may generate such code and hence
I do this at the very end of the optimization in pre-emit peephole pass.
A conditional branch based on a constant is eliminated or converted into unconditional branch.
Also CRSET/CRUNSET is eliminated if the condition code register is not used
by instruction other than the branch to be optimized.
Differential Revision: https://reviews.llvm.org/D52345
llvm-svn: 343100
This doesn't work well in builds configured with LLVM_ENABLE_THREADS=OFF,
causing the following assert when running
ExecutionEngine/OrcLazy/multiple-compile-threads-basic.ll:
lib/ExecutionEngine/Orc/Core.cpp:1748: Expected<llvm::JITEvaluatedSymbol>
llvm::orc::lookup(const llvm::orc::JITDylibList &, llvm::orc::SymbolStringPtr):
Assertion `ResultMap->size() == 1 && "Unexpected number of results"' failed.
> LLJIT and LLLazyJIT can now be constructed with an optional NumCompileThreads
> arguments. If this is non-zero then a thread-pool will be created with the
> given number of threads, and compile tasks will be dispatched to the thread
> pool.
>
> To enable testing of this feature, two new flags are added to lli:
>
> (1) -compile-threads=N (N = 0 by default) controls the number of compile threads
> to use.
>
> (2) -thread-entry can be used to execute code on additional threads. For each
> -thread-entry argument supplied (multiple are allowed) a new thread will be
> created and the given symbol called. These additional thread entry points are
> called after static constructors are run, but before main.
llvm-svn: 343099
Similar to the existing ISD::SRL constant vector shifts from D49562, this patch adds ISD::SRA support with ISD::MULHS.
As we're dealing with signed values, we have to handle shift by zero and shift by one special cases, so XOP+AVX2/AVX512 splitting/extension is still a better solution - really we should still use ISD::MULHS if one of the special cases are used but for now I've just left a TODO and filtered by isKnownNeverZero.
Differential Revision: https://reviews.llvm.org/D52171
llvm-svn: 343093
When calculating whether a value can safely overflow for use by an
icmp, we weren't checking that the value couldn't wrap around. To do
this we need the icmp to be using a constant, as well as the incoming
add or sub.
bugzilla report: https://bugs.llvm.org/show_bug.cgi?id=39060
Differential Revision: https://reviews.llvm.org/D52463
llvm-svn: 343092
Adding NonNull as attributes to returned pointers has the unfortunate side
effect of disabling tail calls. This patch ignores the NonNull attribute when
we decide whether to tail merge, in the same way that we ignore the NoAlias
attribute, as it has no affect on the call sequence.
Differential Revision: https://reviews.llvm.org/D52238
llvm-svn: 343091
Functions that have signed return addresses need additional dwarf support:
- After signing the LR, and before authenticating it, the LR register is in a
state the is unusable by a debugger or unwinder
- To account for this a new directive, .cfi_negate_ra_state, is added
- This directive says the signed state of the LR register has now changed,
i.e. unsigned -> signed or signed -> unsigned
- This directive has the same CFA code as the SPARC directive GNU_window_save
(0x2d), adding a macro to account for multiply defined codes
- This patch matches the gcc implementation of this support:
https://patchwork.ozlabs.org/patch/800271/
Differential Revision: https://reviews.llvm.org/D50136
llvm-svn: 343089
This broke Chromium's Android build (https://crbug.com/889390) and the
polly-aosp buildbot
(http://lab.llvm.org:8011/builders/aosp-O3-polly-before-vectorizer-unprofitable).
> Originally committed in rL342210 but was reverted in rL342260 because
> it was causing issues in vectorized code, because I had forgotten to
> ensure that we're operating on scalar values.
>
> Original commit message:
>
> On failing to find sequences that can be converted into dual macs,
> try to find sequential 16-bit loads that are used by muls which we
> can then use smultb, smulbt, smultt with a wide load.
>
> Differential Revision: https://reviews.llvm.org/D51983
llvm-svn: 343082
for lazy compilation, rather than a callback manager.
The new mechanism does not block compile threads, and does not require
function bodies to be renamed.
Future modifications should allow laziness on a per-module basis to work
without any modification of the input module.
llvm-svn: 343065
In some senario, LLVM will remove llvm.dbg.labels in IR. For example,
when the labels are in unreachable blocks, these labels will not
be generated in LLVM IR. In the case, these debug labels will have
address zero as their address. It is not legal address for debugger to
set breakpoints or query sources. So, the patch inhibits the address info
(DW_AT_low_pc) of removed labels.
Fix build failed in BuildBot, clang-stage1-cmake-RA-incremental, on macOS.
Differential Revision: https://reviews.llvm.org/D51908
llvm-svn: 343062
LLJIT and LLLazyJIT can now be constructed with an optional NumCompileThreads
arguments. If this is non-zero then a thread-pool will be created with the
given number of threads, and compile tasks will be dispatched to the thread
pool.
To enable testing of this feature, two new flags are added to lli:
(1) -compile-threads=N (N = 0 by default) controls the number of compile threads
to use.
(2) -thread-entry can be used to execute code on additional threads. For each
-thread-entry argument supplied (multiple are allowed) a new thread will be
created and the given symbol called. These additional thread entry points are
called after static constructors are run, but before main.
llvm-svn: 343058
This reverts commit bd7b44f35ee9fbe365eb25ce55437ea793b39346.
Reland r342994: disabled the optimization and explicitly enable it in test.
-mllvm -consthoist-min-num-to-rebase<unsigned>=0
[ConstHoist] Do not rebase single (or few) dependent constant
If an instance (InsertionPoint or IP) of Base constant A has only one or few
rebased constants depending on it, do NOT rebase. One extra ADD instruction is
required to materialize each rebased constant, assuming A and the rebased have
the same materialization cost.
Differential Revision: https://reviews.llvm.org/D52243
llvm-svn: 343053
Summary:
Lowers (s|u)itofp and fpto(s|u)i instructions for vectors. The fp to
int conversions produce poison values if their arguments are out of
the convertible range, so a future CL will have to add an LLVM
intrinsic to make the saturating behavior of this conversion usable.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D52372
llvm-svn: 343052
This removes an int->fp bitcast between the surrounding code and the movmsk. I had already added a hack to combineMOVMSK to try to look through this bitcast to improve the SimplifyDemandedBits there.
But I found an additional issue where the bitcast was preventing combineMOVMSK from being called again after earlier nodes in the DAG are optimized. The bitcast gets revisted, but not the user of the bitcast. By using integer types throughout, the bitcast doesn't get in the way.
llvm-svn: 343046
These IR patterns represent the exact behavior of a movmsk instruction using (zext (bitcast (icmp slt X, 0))).
For the v4i32/v8i32/v2i64/v4i64 we currently emit a PCMPGT for the icmp slt which is unnecessary since we only care about the sign bit of the result. This is because of the int->fp bitcast we put on the input to the movmsk nodes for these cases. I'll be fixing this in a future patch.
llvm-svn: 343045
If the fsub in this pattern was replaced by an actual fneg
instruction, we would need to add a fold to recognize that
because fneg would not be a binop.
llvm-svn: 343041
Summary:
We generate s_xor to lower add of i1s in general cases, and s_not to
lower add with a one-bit imm of -1 (true).
Reviewers:
rampitec
Differential Revision:
https://reviews.llvm.org/D52518
llvm-svn: 343030
Summary:
We are overly conservative in loop vectorizer with respect to stores to loop
invariant addresses.
More details in https://bugs.llvm.org/show_bug.cgi?id=38546
This is the first part of the fix where we start with vectorizing loop invariant
values to loop invariant addresses.
This also includes changes to ORE for stores to invariant address.
Reviewers: anemet, Ayal, mkuper, mssimpso
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50665
llvm-svn: 343028
Summary:
In D49565/r337503, the type id record writing was fixed so that only
referenced type ids were emitted into each per-module index for ThinLTO
distributed builds. However, this still left an efficiency issue: each
per-module index checked all type ids for membership in the referenced
set, yielding O(M*N) performance (M indexes and N type ids).
Change the TypeIdMap in the summary to be indexed by GUID, to facilitate
correlating with type identifier GUIDs referenced in the function
summary TypeIdInfo structures. This allowed simplifying other
places where a map from type id GUID to type id map entry was previously
being used to aid this correlation.
Also fix AsmWriter code to handle the rare case of type id GUID
collision.
For a large internal application, this reduced the thin link time by
almost 15%.
Reviewers: pcc, vitalybuka
Subscribers: mehdi_amini, inglorion, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51330
llvm-svn: 343021
This is the final (I hope!) problem pattern mentioned in PR37749:
https://bugs.llvm.org/show_bug.cgi?id=37749
We are trying to avoid an AVX1 sinkhole caused by having 256-bit bitwise logic ops but no other 256-bit integer ops.
We've already solved the simple logic ops, but 'andn' is an x86 special. I looked at alternative solutions like
extending the generic DAG combine or trying to wait until the ANDNP node is created, but those are bigger patches
that can over-reach. Ie, splitting to 128-bit does not look like a win in most cases with >1 256-bit op.
The pattern matching is cluttered with bitcasts because of our i64 element canonicalization. For the affected test,
we have this vector-type-legalized sequence:
t29: v8i32 = concat_vectors t27, t28
t30: v4i64 = bitcast t29
t18: v8i32 = BUILD_VECTOR Constant:i32<-1>, Constant:i32<-1>, ...
t31: v4i64 = bitcast t18
t32: v4i64 = xor t30, t31
t9: v8i32 = BUILD_VECTOR Constant:i32<255>, Constant:i32<255>, ...
t34: v4i64 = bitcast t9
t35: v4i64 = and t32, t34
t36: v8i32 = bitcast t35
t37: v4i32 = extract_subvector t36, Constant:i64<0>
t38: v4i32 = extract_subvector t36, Constant:i64<4>
Differential Revision: https://reviews.llvm.org/D52318
llvm-svn: 343008
For the AMDGPU target if a MBB contains exec mask restore preamble, SplitEditor may get state when it cannot insert a spill instruction.
E.g. for a MIR
bb.100:
%1 = S_OR_SAVEEXEC_B64 %2, implicit-def $exec, implicit-def $scc, implicit $exec
and if the regalloc will try to allocate a virtreg to the physreg already assigned to virtreg %1, it should insert spill instruction before the S_OR_SAVEEXEC_B64 instruction.
But it is not possible since can generate incorrect code in terms of exec mask.
The change makes regalloc to ignore such physreg candidates.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D52052
llvm-svn: 343004
If an instance (InsertionPoint or IP) of Base constant A has only one or few
rebased constants depending on it, do NOT rebase. One extra ADD instruction is
required to materialize each rebased constant, assuming A and the rebased have
the same materialization cost.
Differential Revision: https://reviews.llvm.org/D52243
llvm-svn: 342994
The motivating case from:
https://bugs.llvm.org/show_bug.cgi?id=33026
...has no shuffles now. This kind of pattern may occur during
vectorization when targets have lumpy ISAs like SSE/AVX.
llvm-svn: 342988
As suggested by Craig Topper - I'm going to look at cleaning up the RMW sequences instead.
The uops are slightly different to the register variant, so requires a +1uop tweak
llvm-svn: 342969
In this patch, I'm adding an extra check to the Latch's terminator in llvm::UnrollRuntimeLoopRemainder,
similar to how it is already done in the llvm::UnrollLoop.
The compiler would crash if this function is called with a malformed loop.
Patch by Rodrigo Caetano Rocha!
Differential Revision: https://reviews.llvm.org/D51486
llvm-svn: 342958
[AMDGPU] lower-switch in preISel as a workaround for legacy DA
Summary:
The default target of the switch instruction may sometimes be an
"unreachable" block, when it is guaranteed that one of the cases is
always taken. The dominator tree concludes that such a switch
instruction does not have an immediate post dominator. This confuses
divergence analysis, which is unable to propagate sync dependence to
the targets of the switch instruction.
As a workaround, the AMDGPU target now invokes lower-switch as a
preISel pass. LowerSwitch is designed to handle the unreachable
default target correctly, allowing the divergence analysis to locate
the correct immediate dominator of the now-lowered switch.
llvm-svn: 342956
Summary:
Right now we only have unit tests. This will allow testing the whole
tool. Even though We can't really check actual values, this will avoid
regressions such as PR39055.
Reviewers: gchatelet, alexshap
Subscribers: mgorny, tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D52407
llvm-svn: 342953
In some senario, LLVM will remove llvm.dbg.labels in IR. For example,
when the labels are in unreachable blocks, these labels will not
be generated in LLVM IR. In the case, these debug labels will have
address zero as their address. It is not legal address for debugger to
set breakpoints or query sources. So, the patch inhibits the address info
(DW_AT_low_pc) of removed labels.
Differential Revision: https://reviews.llvm.org/D51908
llvm-svn: 342943
Summary:
Display a list of recent stack frames (not a stack trace!) when
tag-mismatch is detected on a stack address.
The implementation uses alignment tricks to get both the address of
the history buffer, and the base address of the shadow with a single
8-byte load. See the comment in hwasan_thread_list.h for more
details.
Developed in collaboration with Kostya Serebryany.
Reviewers: kcc
Subscribers: srhines, kubamracek, mgorny, hiraditya, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D52249
llvm-svn: 342923
Summary:
Display a list of recent stack frames (not a stack trace!) when
tag-mismatch is detected on a stack address.
The implementation uses alignment tricks to get both the address of
the history buffer, and the base address of the shadow with a single
8-byte load. See the comment in hwasan_thread_list.h for more
details.
Developed in collaboration with Kostya Serebryany.
Reviewers: kcc
Subscribers: srhines, kubamracek, mgorny, hiraditya, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D52249
llvm-svn: 342921
Added
__builtin_vsx_scalar_extract_expq
__builtin_vsx_scalar_insert_exp_qp
Builtins should behave the same way as in GCC.
Differential Revision: https://reviews.llvm.org/D48185
llvm-svn: 342910
A simple MOVS rd, imm8 can materialize [-128, 127] in signed i8 type or
[0, 255] in unsigned i8 type on Thumb1.
Differential Revision: https://reviews.llvm.org/D52257
llvm-svn: 342898
Implementing -print-before-all/-print-after-all/-filter-print-func support
through PassInstrumentation callbacks.
- PrintIR routines implement printing callbacks.
- StandardInstrumentations class provides a central place to manage all
the "standard" in-tree pass instrumentations. Currently it registers
PrintIR callbacks.
Reviewers: chandlerc, paquette, philip.pfaffe
Differential Revision: https://reviews.llvm.org/D50923
llvm-svn: 342896
Split WriteIMul by size and also by IMUL multiply-by-imm and multiply-by-reg cases.
This removes all the scheduler overrides for gpr multiplies and stops WriteMULH being ignored for BMI2 MULX instructions.
llvm-svn: 342892
- The assembler accepts VSTM/VLDM with register lists (specifically double registers lists) with more than 16 registers specified
- The Arm architecture reference manual says this instruction must not contain more than 16 registers when the registers are doubleword registers
- This addresses one of the concerns in https://bugs.llvm.org/show_bug.cgi?id=38389
Differential Revision: https://reviews.llvm.org/D52082
llvm-svn: 342891
This is a preliminary step towards solving PR14613:
https://bugs.llvm.org/show_bug.cgi?id=14613
If we have an 'add' instruction that sets flags, we can use that to eliminate an
explicit compare instruction or some other instruction (cmn) that sets flags for
use in the later select.
As shown in the unchanged tests that use 'icmp ugt %x, %a', we're effectively
reversing an IR icmp canonicalization that replaces a variable operand with a
constant:
https://rise4fun.com/Alive/V1Q
But we're not using 'uaddo' in those cases via DAG transforms. This happens in
CGP after D8889 without checking target lowering to see if the op is supported.
So AArch already shows 'uaddo' codegen for the i8/i16/i32/i64 test variants with
"using_cmp_sum" in the title. That's the pattern that CGP matches as an unsigned
saturated add and converts to uaddo without checking target capabilities.
This patch is gated by isOperationLegalOrCustom(ISD::UADDO, VT), so we see only
see AArch diffs for i32/i64 in the tests with "using_cmp_notval" in the title
(unlike x86 which sees improvements for all sizes because all sizes are 'custom').
But the AArch code (like x86) looks better when translated to 'uaddo' in all cases.
So someone that is involved with AArch may want to set i8/i16 to 'custom' for UADDO,
so this patch will fire on those tests.
Another possibility given the existing behavior: we could remove the legal-or-custom
check altogether because we're assuming that a UADDO sequence is canonical/optimal
before we ever reach here. But that seems like a bug to me. If the target doesn't
have an add-with-flags op, then it's not likely that we'll get optimal DAG combining
using a UADDO node. This is similar justification for why we don't canonicalize IR to
the overflow math intrinsic sibling (llvm.uadd.with.overflow) for UADDO in the first
place.
Differential Revision: https://reviews.llvm.org/D51929
llvm-svn: 342886
The r337288 tried to fix result of icmp i1 when its input is not sanitized
by falling back to DagISel. While it now produces the correct result for
bit 0, the other bits can still hold arbitrary value which is not supported
by MipsFastISel branch lowering. This patch fixes the issue by falling back
to DagISel in this case.
Patch by Dragan Mladjenovic.
Differential Revision: https://reviews.llvm.org/D52045
llvm-svn: 342884
gcc uses operand modifier 'x' in inline asm for VSX registers.
Without this modifier, instructions which use VSX numbering for their
operands are printed as VMX registers. This patch adds support for the
operand modifier 'x'.
Differential Revision: https://reviews.llvm.org/D52244
llvm-svn: 342882
LSan can be enabled by itself or as part of the address sanitizer.
Rather than checking the enabled sanitizers for both, just set the LSan
env options whenever a sanitizer is enabled.
llvm-svn: 342881
It would be best to introduce ISD::BitFieldExtract,
because clearly more than one backend faces the same problem.
But for now let's solve this in the x86-specific DAG combine.
https://bugs.llvm.org/show_bug.cgi?id=38938
llvm-svn: 342880
If the alignment is at least 4, this should report true.
Something still seems off with how < 4-byte types are
handled here though.
Fixing this seems to change how some combines get
to where they get, but somehow isn't changing the net
result.
llvm-svn: 342879
A sequence of VMUL and VADD instructions always give the same or better
performance than a fused VMLA instruction on the Cortex-M4 and Cortex-M33.
Executing the VMUL and VADD back-to-back requires the same cycles, but
having separate instructions allows scheduling to avoid the hazard between
these 2 instructions.
Differential Revision: https://reviews.llvm.org/D52289
llvm-svn: 342874
- The load store optimizer is currently merging multiple loads/stores into VLDM/VSTM with more than 16 doubleword registers
- This is an UNPREDICTABLE instruction and shouldn't be done
- It looks like the Limit for how many registers included in a merge got dropped at some point so I am reintroducing it in this patch
- This fixes https://bugs.llvm.org/show_bug.cgi?id=38389
Differential Revision: https://reviews.llvm.org/D52085
llvm-svn: 342872
DeadArgElim pass marks unused function arguments as ‘undef’ without updating
existing dbg.values referring to it. As a consequence the debug info
metadata in the final executable was wrong.
Patch by Djordje Todorovic.
Differential Revision: https://reviews.llvm.org/D51968
llvm-svn: 342871
Originally committed in rL342210 but was reverted in rL342260 because
it was causing issues in vectorized code, because I had forgotten to
ensure that we're operating on scalar values.
Original commit message:
On failing to find sequences that can be converted into dual macs,
try to find sequential 16-bit loads that are used by muls which we
can then use smultb, smulbt, smultt with a wide load.
Differential Revision: https://reviews.llvm.org/D51983
llvm-svn: 342870
Confirmed with Craig Topper - fix a typo that was missing a Port4 uop for ROR*mCL instructions on some Intel models.
Yet another step on the scheduler model cleanup marathon......
llvm-svn: 342846
This is an alternative to https://reviews.llvm.org/D37896. We can't decompose
multiplies generically without a target hook to tell us when it's profitable.
ARM and AArch64 may be able to remove some existing code that overlaps with
this transform.
This extends D52195 and may resolve PR34474:
https://bugs.llvm.org/show_bug.cgi?id=34474
(still an open question about transforming legal vector multiplies, but we
could open another bug report for those)
llvm-svn: 342844