Commit Graph

1862 Commits

Author SHA1 Message Date
Florian Hahn 95f76bff1c
[LV] Create & use VPScalarIVSteps for all scalar users.
This patch is a follow-up to D115953. It updates optimizeInductions
to also introduce new VPScalarIVStepsRecipes if an IV has both vector
and scalar uses.

It updates all uses that only need scalar values to use the newly
created recipe for the scalar steps.

This completes untangling of VPWidenIntOrFpInductionRecipe
code-generation. Now the recipe *only* creates the widened vector
values, as it says on the tin.

The code to genereate IR has been moved directly to
VPWidenIntOrFpInductionRecipe::execute.

Note that the recipe has been updated to hold a reference to
ScalarEvolution, which is needed to expand the step, until we can place
the corresponding SCEV expansion in the pre-header.

Depends on D120827.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D120828
2022-03-13 17:15:24 +00:00
Sanjay Patel b48fe158e0 [Analysis] remove bogus smin/smax pattern detection
This is a revert of cfcc42bdc. The analysis is wrong as shown by
the minimal tests for instcombine:
https://alive2.llvm.org/ce/z/y9Dp8A

There may be a way to salvage some of the other tests,
but that can be done as follow-ups. This avoids a miscompile
and fixes #54311.
2022-03-09 17:50:34 -05:00
Florian Hahn a12403cfea
[LV] Do not consider instrs dead if used by phi that's not in plan.
Single value phis won't be modeled in VPlan. If the phi only gets used
outside the loop, the current code misses the fact that the incoming
value is not dead. Update the code to also look through such phis to
check for outside users.

Fixes #54266
2022-03-09 16:04:44 +00:00
Florian Hahn a2979c8399
[IVDescriptors] Bail out instead of asserting that order is expected.
When dealing with multiple phis that depend on each other, the order
might have been changed and may not match the expectation. If that
happens, bail out, rather than asserting.

Fixes https://github.com/llvm/llvm-project/issues/54218
Fixes https://github.com/llvm/llvm-project/issues/54233
Fixes https://github.com/llvm/llvm-project/issues/54254
2022-03-07 19:57:26 +00:00
Florian Hahn f4368487aa
[LV] Add test from PR54227.
Test from https://github.com/llvm/llvm-project/issues/54227.

The underlying issue has already been fixed in de8ac48 with a separate
test.
2022-03-07 17:01:22 +00:00
Roman Lebedev 2f80ea7f4f
[NFC][LV] Use different braces in debug output
The analysis passes output function name encapsulated in `'` braces,
but LV uses `"`. Harmonizing this may help in creating an update script
for the LV costmodel test checks.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D121105
2022-03-07 19:32:37 +03:00
Florian Hahn de8ac485e5
[IVDescriptor] Remove SinkCandidate from SinkAfter before re-sinking.
This ensures the right order in the sink-after map is maintained. If we
re-sink an instruction, it must be sunk after all earlier instructions
have been sunk.

Fixes https://github.com/llvm/llvm-project/issues/54223
2022-03-05 19:48:26 +00:00
Florian Hahn 5a60260efe
[IVDescriptor] Use DT to check order of Previous, OtherPrev.
Previous and OhterPrev may not be in the same block. Use DT::dominates
instead of local comesBefore. DT::dominates is already used earlier to
check the order of Previous and SinkCandidate.

Fixes https://github.com/llvm/llvm-project/issues/54195
2022-03-04 11:07:42 +00:00
Florian Hahn 139215af8e
[IVDescriptor] Find original 'Previous' for first-order recurrences.
This patch extends first-order recurrence handling to support cases
where we already sunk an instruction for a different recurrence, but
LastPrev comes before Previous.

To handle those cases correctly, we need to find the earliest entry for
the sink-after chain, because this is references the Previous from the
original recurrence. This is needed to ensure we use the correct
instruction as sink point.

Depends on D118558.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D118642
2022-03-03 16:41:26 +00:00
Florian Hahn 8777cb66a8
[VPlan] Remove reliance on underlying instr for ScalarIVSteps (NFCI).
Instead of relying on underlying instructions, this patch updates
VPScalarIVStepsRecipe to only store the required type information.

This removes access to unrelated information, as well as avoiding issues
with the same underlying instruction being shared by multiple recipes.

This change should only change the debug output and not cause any
codegen changes, hence NFCI.
2022-03-02 16:23:19 +00:00
Florian Hahn 6dc456a375
[LV] Remove redundant check line from recurrence test.
The removed line matches the previous line, modulo the check prefix.
There is no way to disable sinking instructions as required due to
first-order recurrence and removing the line should be safe.
2022-03-02 13:48:46 +00:00
Florian Hahn 83fd2071f0
[LV] Modernize test matching hardcoded induction phi name. 2022-03-02 10:12:38 +00:00
Florian Hahn 470b5c7f0d
[LV] Add test with multiple use of a FOR chained together.
Additional test coverage for D118642.
2022-03-01 14:18:23 +00:00
Nikita Popov 26748bb15a [InstCombine] Slightly relax one-use check in abs canonicalization
Treat the icmp and sub symmetrically, and require that one of them
has one use, not the icmp in particular. This could be further
relaxed in the abs (but not nabs) case to not check one-use at
all.
2022-03-01 15:06:41 +01:00
Nikita Popov 7c080e4649 [LoopVectorize] Regenerate test checks (NFC) 2022-03-01 15:01:14 +01:00
Andrei Elovikov 6e9a8cdcfb [NFC][LoopVectorizer] Simplify LoopVectorize/X86/gather_scatter.ll
The test used to run whole O3 pipeline. Modify it to contain LLVM IR right
before LV and limit passes to "-loop-vectorizer -simplifycfg".

For the RUN line with forced VF force interleave factor as well to simplify
CHECKs as interleaving isn't related to the purpose of the test.

I also tried to add "noalias" to pointer arguments in
@test_gather_not_profitable_pr48429 but LAI seems unable to use them.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D119786
2022-02-28 11:12:50 -08:00
Florian Hahn b3e8ace198
Recommit "[VPlan] Introduce recipe to build scalar steps."
This reverts the revert commit ff93260bf6.

The underlying issue causing the PPC bot failures has been fixed in
cbaac14734 and a corresponding test case has been added in
ad2cad1c52.

Original message:

    This patch adds a new VPScalarIVStepsRecipe to handle building scalar
    steps.

    In the first patch, it only handles the case where there is no vector
    induction variable needed.

    Reviewed By: Ayal

    Differential Revision: https://reviews.llvm.org/D115953
2022-02-28 14:12:20 +00:00
Florian Hahn cbaac14734
[LV] Remove induction recipes only used outside vector loop.
Exit values of vector inductions are generated completely independent of
the induction recipes. Consider them for removal, if they are not used
in loop.

This fixes a crash exposed by 49b23f451c.
2022-02-28 11:14:22 +00:00
Florian Hahn 8bbc5e172a
[LV] Add test with dead induction in vector loop used outside.
Add test with a induction phi that is not used in the vector loop, but
by an lcssa phi in the loop exit.
2022-02-28 10:39:08 +00:00
Florian Hahn ad2cad1c52
[LV] Add test with IV that needs scalar steps and user outside of loop.
Also add a run line to check interleaving only. This test covers the PPC
buildbot failures caused by 49b23f451c.
2022-02-28 09:46:18 +00:00
Florian Hahn ff93260bf6
Revert "[VPlan] Introduce recipe to build scalar steps."
This reverts commit 49b23f451c.

This appears to break some PPC build bots. Revert while I investigate.
2022-02-27 17:51:19 +00:00
Florian Hahn 49b23f451c
[VPlan] Introduce recipe to build scalar steps.
This patch adds a new VPScalarIVStepsRecipe to handle building scalar
steps.

In the first patch, it only handles the case where there is no vector
induction variable needed.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D115953
2022-02-27 17:32:41 +00:00
Florian Hahn da740492b0
[VPlan] Remove dead header-phi recipes.
This patch adds a new transform to remove dead recipes. For now, it only
removes dead recipes in the header, to keep the number tests that require
updating manageable. Future patches will extend this to remove dead
recipes across the whole plan.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D118051
2022-02-26 16:26:39 +00:00
Florian Hahn 462cd9270c
[LV] Add test with redundant cast in separate latch block.
Adds another interesting test for D118051.
2022-02-26 14:52:55 +00:00
Nikita Popov a266af7211 [InstCombine] Canonicalize SPF to min/max intrinsics
Now that integer min/max intrinsics have good support in both
InstCombine and other passes, start canonicalizing SPF min/max
to intrinsic min/max.

Once this sticks, we can stop matching SPF min/max in various
places, and can remove hacks we have for preventing infinite loops
and breaking of SPF canonicalization.

Differential Revision: https://reviews.llvm.org/D98152
2022-02-24 09:01:20 +01:00
Malhar Jajoo 9f1c6fbf11 [LAA] Add remarks for unbounded array access
Adds new optimization remarks when loop vectorization fails due to
the compiler being unable to find bound of an array access inside
a loop

Differential Revision: https://reviews.llvm.org/D115873
2022-02-23 15:57:39 +00:00
Kerry McLaughlin 12fb133eba [LoopVectorize] Support conditional in-loop vector reductions
Extends getReductionOpChain to look through Phis which may be part of
the reduction chain. adjustRecipesForReductions will now also create a
CondOp for VPReductionRecipe if the block is predicated and not only if
foldTailByMasking is true.

Changes were required in tryToBlend to ensure that we don't attempt
to convert the reduction Phi into a select by returning a VPBlendRecipe.
The VPReductionRecipe will create a select between the Phi and the reduction.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D117580
2022-02-22 12:04:35 +00:00
Florian Hahn 5c7ae10cec
[LV] Add store to test to make sure the loop is not dead.
Add an extra store to the test, to make sure the operations in the loop
cannot be optimized away after D118051.
2022-02-20 15:05:29 +00:00
zhongyunde b2f5164deb [IVDescriptors] Support FOR where we have multiple sink pointed
Handles the case where Previous doesn't come before LastPrev incorrectly.
Fix https://github.com/llvm/llvm-project/issues/53483

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D118558
2022-02-14 09:30:35 +08:00
Florian Hahn d462e64754
[LV] Drop noalias from check lines from test (NFC).
The noalias metadata checks re not really relevant for the test and
slight changes to metadata numbering can have large knock-on effects
causing large noise in test diff.
2022-02-13 11:36:54 +00:00
Florian Hahn 446e7c64c7
[LV] Add real uses in some tests, to make them more robust.
Add real uses to some tests, to ensure dead instructions cannot be directly
removed.
2022-02-13 09:52:59 +00:00
Florian Hahn 9474c3009e
[LV] Move unrelated tests from first-order-recurrence-chains.ll 2022-02-11 09:15:42 +00:00
Florian Hahn f97795121f
[LV] Add tests with chained first-order recurrences. 2022-02-10 15:55:19 +00:00
Simon Pilgrim 4517488eb7 [LoopVectorize] Regenerate reduction-predselect.ll test checks 2022-02-10 12:03:10 +00:00
David Green b55d4c2ad8 Revert "[LV] Remove `LoopVectorizationCostModel::useEmulatedMaskMemRefHack()`"
This reverts commit 77a0da926c as we've
received multiple reports of this significantly impacting performance,
in ways that don't seem to just be target specific cost models going
wrong. I would offer some reproducers, but the test changes here seem to
be full of them!

Reverting for now and hopefully we can remove the "hack" more carefully
as we go.
2022-02-09 20:02:54 +00:00
David Green b4c6d1bb37 [LoopVectorizer] Don't perform interleaving of predicated scalar loops
The vectorizer will choose at times to "vectorize" loops with a scalar
factor (VF=1) with interleaving (IC > 1). This can occasionally produce
better code than the unroller (notable for reductions where it can
produce independent reduction chains that are combined after the loop).
At times this is not very beneficial though, for example when runtime
checks are needed or when the scalar code requires predication.

This addresses the second point, preventing the vectorizer from
interleaving when the scalar loop will require predication. This
prevents it from making a bit of a mess, that is worse than the original
and better left for the unroller to unroll if beneficial. It helps
reverse some of the regressions from D118090.

Differential Revision: https://reviews.llvm.org/D118566
2022-02-07 19:34:28 +00:00
Florian Hahn 1049735d07
[LV] Adjust accesses in test to ensure full RT checks are generated.
Add an additional access so the full runtime checks are still generated,
even after D119078.
2022-02-07 18:07:19 +00:00
Roman Lebedev 77a0da926c
[LV] Remove `LoopVectorizationCostModel::useEmulatedMaskMemRefHack()`
D43208 extracted `useEmulatedMaskMemRefHack()` from legality into cost model.
What it essentially does is prevents scalarized vectorization of masked memory operations:
```
  // TODO: Cost model for emulated masked load/store is completely
  // broken. This hack guides the cost model to use an artificially
  // high enough value to practically disable vectorization with such
  // operations, except where previously deployed legality hack allowed
  // using very low cost values. This is to avoid regressions coming simply
  // from moving "masked load/store" check from legality to cost model.
  // Masked Load/Gather emulation was previously never allowed.
  // Limited number of Masked Store/Scatter emulation was allowed.
```

While i don't really understand about what specifically `is completely broken`
was talking about, i believe that at least on X86 with AVX2-or-later,
this is no longer true. (or at least, i would like to know what is still broken).
So i would like to follow suit after D111460, and like wise disable that hack for AVX2+.

But since this was added for X86 specifically, let's just instead completely remove this hack.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D114779
2022-02-07 16:08:31 +03:00
Florian Hahn ef4df27940
[LV] Modernize some runtime check tests a bit.
Update tests to check runtime checks a bit more precisely.
2022-02-07 12:08:56 +00:00
Sander de Smalen eaee477eda [LV] Use VScaleForTuning to allow wider epilogue VFs.
When the main loop is e.g. VF=vscale x 1 and the epilogue VF cannot
be any smaller, the vectorizer should try to estimate how many lanes are
executed at runtime and allow a suitable fixed-width VF to be chosen. It
can use VScaleForTuning to figure out what a suitable fixed-width VF could
be. For the case where the main loop VF is VF=vscale x 1, and VScaleForTuning=8,
it could still choose an epilogue VF upto VF=4.

This was a bit tricky to test, so this patch also introduces a wrapper
function to get 'VScaleForTuning' by also considering vscale_range.
If min and max are equal, then that will be the vscale we compile for.
It makes little sense to tune for a different width if the code
will not be portable for other widths.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D118709
2022-02-03 15:40:17 +00:00
Malhar Jajoo 778b455dd6 [LAA] Add Memory dependence remarks.
Adds new optimization remarks when vectorization fails.

More specifically, new remarks are added for following 4 cases:

- Backward dependency
- Backward dependency that prevents Store-to-load forwarding
- Forward dependency that prevents Store-to-load forwarding
- Unknown dependency

It is important to note that only one of the sources
of failures (to vectorize) is reported by the remarks.
This source of failure may not be first in program order.

A regression test has been added to test the following cases:

a) Loop can be vectorized: No optimization remark is emitted
b) Loop can not be vectorized: In this case an optimization
remark will be emitted for one source of failure.

Reviewed By: sdesmalen, david-arm

Differential Revision: https://reviews.llvm.org/D108371
2022-02-02 12:07:51 +00:00
Sander de Smalen 2a44eaf20f [LV] Allow a scalable VF for the epilogue.
For some reason we limited the epilogue VF to be fixed-width, but there
is not necessarily a reason for doing so. If the main VF=vscale x 16, the
epilogue VF could be either fixed-width, or a scalable VF upto vscale x 8.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D118688
2022-02-01 22:38:55 +00:00
David Green aaa16eb023 [LV][AArch64] Add test for scalar interleaving with predication. NFC 2022-02-01 09:21:49 +00:00
Florian Hahn 02ee3fbff8
[LV] Add additional complex first order recurrence test.
Add a new test case with 2 first-order recurrences, which share a user.
2022-01-31 19:54:14 +00:00
Florian Hahn 8f12175fed
[VPlan] Use VPlan to check if only the first lane is used.
This removes the remaining dependence on LoopVectorizationCostModel from
buildScalarSteps and is required so it can be moved out of ILV.

It also improves allows us to remove a few unneeded instructions.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D116554
2022-01-30 13:07:29 +00:00
Florian Hahn efd4938723
[VPlan] Handle IV vector splat using VPWidenCanonicalIV.
This patch tries to use an existing VPWidenCanonicalIVRecipe
instead of creating another step-vector for canonical
induction recipes in widenIntOrFpInduction.

This has the following benefits:

 1. First step to avoid setting both vector and scalar values for the
    same induction def.
 2. Reducing complexity of widenIntOrFpInduction through making things
    more explicit in VPlan
 3. Only need to splat the vector IV for block in masks.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D116123
2022-01-29 16:25:27 +00:00
Malhar Jajoo b75bdff4a0 Trivial update for debug location in LIT test.
This just updates debug location of a loop in a LIT test to point
to the correct source line.
2022-01-27 19:07:47 +00:00
Congzhe Cao f3e1f44340 [IVDescriptor] Get the exact FP instruction that does not allow reordering
This is a bugfix in IVDescriptor.cpp.

The helper function `RecurrenceDescriptor::getExactFPMathInst()`
is supposed to return the 1st FP instruction that does not allow
reordering. However, when constructing the RecurrenceDescriptor,
we trace the use-def chain staring from a PHI node and for each
instruction in the use-def chain, its descriptor overrides the
previous one. Therefore in the final RecurrenceDescriptor we
constructed, we lose previous FP instructions that does not allow
reordering.

Reviewed By: kmclaughlin

Differential Revision: https://reviews.llvm.org/D118073
2022-01-27 00:33:46 -05:00
Igor Kirillov d3932c690d [LoopVectorize] Add tests with reductions that are stored in invariant address
This patch adds tests for functionality that is to be implemented in D110235.

Differential Revision: https://reviews.llvm.org/D117213
2022-01-24 21:26:38 +00:00
Florian Hahn b2a8eff45c
[LV] Make some tests more robust by adding missing users. 2022-01-24 13:04:09 +00:00
Florian Hahn b7f69b8d46
[LV] Name values and blocks in same induction tests (NFC).
This reduces the churn in the test in future updates due to numbering
changes.
2022-01-24 12:28:43 +00:00
Kerry McLaughlin 8082ab2fc3 [LoopVectorize] Support epilogue vectorisation of loops with reductions
isCandidateForEpilogueVectorization will currently return false for loops
which contain reductions. This patch removes this restriction and makes
the following changes to support epilogue vectorisation with reductions:

- `fixReduction`: If fixReduction is being called during vectorisation of the
    epilogue, the phi node it creates will need to additionally carry incoming
     values from the middle block of the main loop.

- `createEpilogueVectorizedLoopSkeleton`: The incoming values of the phi
    created by fixReduction are updated after the vec.epilog.iter.check block
    is added. The phi is also moved to the preheader of the epilogue.

- `processLoop`: The start value of any VPReductionPHIRecipes are updated before
    vectorising the epilogue loop. The getResumeInstr function added to the ILV
    will return the resume instruction associated with the recurrence descriptor.

Reviewed By: sdesmalen

Differential Revision: https://reviews.llvm.org/D116928
2022-01-24 12:03:31 +00:00
eopXD 3cf15af2da [RISCV] Remove experimental prefix from rvv-related extensions.
Extensions affected: +v, +zve*, +zvl*

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D117860
2022-01-22 20:18:40 -08:00
Kerry McLaughlin c740a07863 [LoopVectorize] Test in-loop reductions with tail folding for scalable vectors
Adds `-prefer-inloop-reductions` to the RUN line of sve-tail-folding.ll & adds
a new test where in-loop reductions cannot be used (`@cond_xor_reduction`). NFC.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D117578
2022-01-19 14:36:23 +00:00
David Sherwood e781620dee [LoopVectorize][AArch64] Use get.active.lane.mask intrinsic when SVE is enabled
When SVE is enabled for AArch64 targets it makes more sense to use the
get.active.lane.mask intrinsic, because SVE has an exact 1-1 mapping
from the intrinsic to the 'whilelo' instruction for legal vector types.
This instruction neatly takes overflow into account as well. This patch
fixes an issue in VPInstruction::generateInstruction that assumed we are
only dealing with fixed-width vectors.

Differential Revision: https://reviews.llvm.org/D117109
2022-01-18 11:59:30 +00:00
Florian Hahn 524150fe07
[LV] Add test coverage for reductions with odd interleave counts.
Add test coverage for loops with reductions and odd (3, 5) interleave
counts.
2022-01-17 14:34:21 +00:00
Florian Hahn 4a6f475446
[LV] Make test more robust by adding users of inductions.
The modified tests didn't have actual users of all inductions, making it
trivial to eliminate them. Add users to make sure the inductions are
actually used in the vectorized version.
2022-01-17 13:28:59 +00:00
Kito Cheng cc35161dc7 [RISCV] Add initial support for getRegUsageForType and getNumberOfRegisters
Those two TTI hooks are used during vectorization for calculating
register pressure, the default implementation isn't consider for LMUL,
and that's also definitly wrong value for register number (all register class
are 8 registers).

So in this patch we tried to:

1. Calculate right register usage for vector type and scalar type.
2. Return right number of register for general purpose register and
   vector register.

Reviewed By: craig.topper

Differential Revision: https://reviews.llvm.org/D116890
2022-01-17 15:27:54 +08:00
Florian Hahn 070d1034da
[LV] Restore metadata to disable runtime unrolling for epilogue loop.
After d4a8fc3a87 LV stopped adding metadata to disable runtime
unrolling to the vectorized epilogue loop. This was missed because
278aa65cc4 removed the relevant test coverage.

This patch fixes that by adding the relevant metadata after
vector loop generation.
2022-01-16 13:14:16 +00:00
Florian Hahn ba3198cfd1
[IRBuilder] Migrate select-folding to value-based FoldSelect.
Reviewed By: lebedev.ri

Differential Revision: https://reviews.llvm.org/D117228
2022-01-15 11:26:44 +00:00
Florian Hahn 42b34facfd
Recommit "[LV] Inline CreateSplatIV call for scalar VFs."
This reverts the revert commit 073c27b5e5.

A reduced test case has been added in 5e4966cbae and the code has
been updated to handle the case where getInductionOpcode returns
BinaryOpsEnd. In this case, the original code was always using
Instruction::Add. Do the same in the patch.

Note this commit may slightly change the value naming, because it now
also assigns the 'induction' name in the floating point case.
2022-01-14 19:03:49 +00:00
Florian Hahn 5e4966cbae
[LV] Add test with an integer induction based on a ptr one.
Reduced test case from the reproducer mentioned in
073c27b5e5.
2022-01-14 15:56:47 +00:00
James Y Knight 073c27b5e5 Revert "[LV] Inline CreateSplatIV call for scalar VFs (NFC)."
Causes a crash with the following (creduce'd) test-case:

clang -O3 '--target=aarch64-grtev4-linux-gnu' -xc - -c -o /dev/null <<EOF
int *e;
int f;
int g() {
  int h;
  int *j = 0;
  while (&f - j > 0) {
    int k;
    k = j;
    if (e == j && *e)
      k = 5;
    h = k;
    j++;
  }
  return h;
}
EOF

This reverts commit 7ce48be0fd.
2022-01-14 00:00:02 +00:00
Florian Hahn 7b9f5cbfa7
[LV] Extend check lines for pr34681.ll to cover foldable select. 2022-01-13 16:42:47 +00:00
Florian Hahn 3f2fb767e3
[VPlan] Make IV operand explicit for VPWidenCanonicalIVRecipe (NFC).
This makes the def-use relationship between VPCanonicalIVPHIRecipe and
VPWidenCanonicalIVRecipe explicit. Needed for D117140.
2022-01-13 11:13:05 +00:00
Florian Hahn 7ce48be0fd
[LV] Inline CreateSplatIV call for scalar VFs (NFC).
This is a NFC change split off from D116123, as suggested there.
D116123 will remove the last user of CreateSplatIV.
2022-01-13 09:34:31 +00:00
Florian Hahn d4a8fc3a87
[VPlan] Introduce and use BranchOnCount VPInstruction.
This patch adds a new BranchOnCount VPInstruction opcode with 2
operands. It first compares its 2 operands (increment of canonical
induction and vector trip count), followed by a branch to either the
exit block or back to the vector header.

It must be the last recipe in the exit block of the topmost vector loop
region.

This extracts parts from D113224 and was discussed in D113223.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D116479
2022-01-12 13:42:13 +00:00
Rosie Sumpter 552eb372cb [LoopVectorize] Pass a vector type to isLegalMaskedGather/Scatter
This is required to query the legality more precisely in the LoopVectorizer.

This adds another TTI function named 'forceScalarizeMaskedGather/Scatter'
function to work around the hack introduced for MVE, where
isLegalMaskedGather/Scatter would return an answer by second-guessing
where the function was called from, based on the Type passed in (vector
vs scalar). The new interface makes this explicit. It is also used by
X86 to check for vector widths where gather/scatters aren't profitable
(or don't exist) for certain subtargets.

Differential Revision: https://reviews.llvm.org/D115329
2022-01-12 13:34:12 +00:00
Florian Hahn 138fcc5f76
[IRBuilder] Migrate icmp-folding to value-based FoldICmp.
Depends on D116935.

Reviewed By: nikic, lebedev.ri

Differential Revision: https://reviews.llvm.org/D116969
2022-01-12 12:37:46 +00:00
Florian Hahn 7e68061305
[IRBuilder] Migrate add-folding to value-based FoldAdd.
Depends on D116935.

Reviewed By: nikic

Differential Revision: https://reviews.llvm.org/D116968
2022-01-12 09:24:46 +00:00
Florian Hahn f0ef1ea6dd
[IRBuilder] Introduce folder using inst-simplify, use for Or fold.
Alternative to D116817.

This introduces a new value-based folding interface for Or (FoldOr),
which takes 2 values and returns an existing Value or a constant if the
Or can be simplified. Otherwise nullptr is returned. This replaces the
more restrictive CreateOr which takes 2 constants.

This is the used to implement a folder that uses InstructionSimplify.
The logic to simplify `Or` instructions is moved there. Subsequent
patches are going to transition other CreateXXX to the more general
FoldXXX interface.

Reviewed By: nikic, lebedev.ri

Differential Revision: https://reviews.llvm.org/D116935
2022-01-11 17:30:48 +00:00
David Sherwood b0922a9dcd [LoopVectorize] Make VPWidenCanonicalIVRecipe::execute work for scalable vectors
The code in VPWidenCanonicalIVRecipe::execute only worked for fixed-width
vectors due to the way we generate the values per lane. This patch changes
the code to use a combination of vector splats and step vectors to get
the same result. This then works for both fixed-width and scalable vectors.

Tests that exercise this code path for scalable vectors have been added here:

  Transforms/LoopVectorize/AArch64/sve-tail-folding.ll

Differential Revision: https://reviews.llvm.org/D113180
2022-01-10 14:12:32 +00:00
Florian Hahn aecad5828e
[SCEVExpander] Only create trunc when needed.
9345ab3a45 updated generateOverflowCheck to skip creating checks that
always evaluate to false. This in turn means that we only need to
create TruncTripCount if it is actually used.

Sink the TruncTripCount creating into ComputeEndCheck, so it is only
created when there's an actual check.
2022-01-10 11:31:27 +00:00
David Sherwood e3c84fb948 [LoopVectorize] Add support for tail folding using scalable vectors
This patch fixes up an issue with InnerLoopVectorizer::getOrCreateVectorTripCount
whereby we weren't correctly generating the runtime trip count
for scalable vectors when tail-folding.

It also removes some asserts in the tail-folding path for cases when
the VF is not scalable.

In this patch I have only permitted tail-folding to be enabled
explicitly for scalable vectors when the user has specified one
of the following flags:

  -prefer-predicate-over-epilogue=predicate-dont-vectorize
  -prefer-predicate-over-epilogue=predicate-else-scalar-epilogue

For now it's best not to enable tail-folding with scalable vectors for
low trip counts or when optimising for code size, since there has been
no analysis on whether this is worth it.

Various tests have been added here:

  Transforms/LoopVectorize/AArch64/sve-tail-folding.ll
  Transforms/LoopVectorize/AArch64/sve-tail-folding-forced.ll

The tests cannot be target independent because they require masked
load/store support, i.e. TTI.isLegalMaskedLoad and TTI.isLegalMaskedStore
need to return true.

Differential Revision: https://reviews.llvm.org/D113003
2022-01-10 10:55:40 +00:00
Florian Hahn 7f1bf68d7d
[SCEVExpander] Only check overflow if it is needed.
9345ab3a45 updated generateOverflowCheck to skip creating checks that
always evaluate to false. This in turn means that we only need to check
for overflows if the result of the multiplication is actually used.

Sink the Or for the overflow check into ComputeEndCheck, so it is only
created when there's an actual check.
2022-01-09 12:55:41 +00:00
Florian Hahn 3b7b1a75b0
[LV] Improve check lines in existing tests.
Update the check lines in 2 existing tests to use patterns + variables
to match some IR to make them independent of value naming.
2022-01-08 20:46:31 +00:00
Florian Hahn daa5e26312
[LV] Make tests more robust by removing undef.
Replace some uses of undef in the tests. The undef causes runtime checks
to be trivially fold/removeable, which does defeat the purpose of the tests.
2022-01-08 15:21:57 +00:00
Florian Hahn 9345ab3a45
[SCEVExpander] Skip creating <u 0 check, which is always false.
Unsigned compares of the form <u 0 are always false. Do not create such
a redundant check in generateOverflowCheck.

The patch introduces a new lambda to create the check, so we can
exit early conveniently and skip creating some instructions feeding the
check.

I am planning to sink a few additional instructions as follow-ups, but I
would prefer to do this separately, to keep the changes and diff
smaller.

Reviewed By: reames

Differential Revision: https://reviews.llvm.org/D116811
2022-01-08 10:31:04 +00:00
Craig Topper 042394b69e [RISCV] Add a command line option to control the LMUL used by TTI's getRegisterBitWidth.
By default we return the width of an LMUL=1 register. We can enable
testing with larger LMUL values by returning a larger bit width.

This patch adds a RISCV specific option to provide a LMUL which will be
multiplied by the LMUL=1 bit width.

Reviewed By: kito-cheng

Differential Revision: https://reviews.llvm.org/D116339
2022-01-07 20:02:10 -08:00
David Green bc615e436c [AArch64] Update addo and subo costs
Similar to D116732, this adds basic scalar sadd_with_overflow,
uadd_with_overflow, ssub_with_overflow and usub_with_overflow costs for
aarch64, which are usually quite efficiently lowered.

Differential Revision: https://reviews.llvm.org/D116734
2022-01-07 16:20:23 +00:00
Florian Hahn f395a4f8d5
[SCEVExpand] Only create required predicate checks.
Currently generateOverflowCheck always creates code for Step being
negative and positive, followed by a select at the end depending on
Step's sign.

This patch updates the code to only create either the checks for step
being positive or negative, if the sign is known.

Follow-up to D116696.

Reviewed By: reames

Differential Revision: https://reviews.llvm.org/D116747
2022-01-07 14:49:02 +00:00
Florian Hahn 86d113a8b8
[SCEVExpand] Do not create redundant 'or false' for pred expansion.
This patch updates SCEVExpander::expandUnionPredicate to not create
redundant 'or false, x' instructions. While those are trivially
foldable, they can be easily avoided and hinder code that checks the
size/cost of the generated checks before further folds.

I am planning on look into a few other similar improvements to code
generated by SCEVExpander.

I remember a while ago @lebedev.ri working on doing some trivial folds
like that in IRBuilder itself, but there where concerns that such
changes may subtly break existing code.

Reviewed By: reames, lebedev.ri

Differential Revision: https://reviews.llvm.org/D116696
2022-01-06 11:52:19 +00:00
Sander de Smalen 95a93722db [LV] Remove what seems like stale code in collectElementTypesForWidening.
This was originally added in rG22174f5d5af1eb15b376c6d49e7925cbb7cca6be
although that patch doesn't really mention any reasons for ignoring the
pointer type in this calculation if the memory access isn't consecutive.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D115356
2022-01-05 12:20:59 +00:00
Florian Hahn 65c4d6191f
[VPlan] Add VPCanonicalIVPHIRecipe, partly retire createInductionVariable.
At the moment, the primary induction variable for the vector loop is
created as part of the skeleton creation. This is tied to creating the
vector loop latch outside of VPlan. This prevents from modeling the
*whole* vector loop in VPlan, which in turn is required to model
preheader and exit blocks in VPlan as well.

This patch introduces a new recipe VPCanonicalIVPHIRecipe to represent the
primary IV in VPlan and CanonicalIVIncrement{NUW} opcodes for
VPInstruction to model the increment.

This allows us to partly retire createInductionVariable. At the moment,
a bit of patching up is done after executing all blocks in the plan.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D113223
2022-01-05 10:46:06 +00:00
Rosie Sumpter 961f51fdf0 [LoopVectorize][CostModel] Choose smaller VFs for in-loop reductions without loads/stores
For loops that contain in-loop reductions but no loads or stores, large
VFs are chosen because LoopVectorizationCostModel::getSmallestAndWidestTypes
has no element types to check through and so returns the default widths
(-1U for the smallest and 8 for the widest). This results in the widest
VF being chosen for the following example,

float s = 0;
for (int i = 0; i < N; ++i)
  s += (float) i*i;

which, for more computationally intensive loops, leads to large loop
sizes when the operations end up being scalarized.

In this patch, for the case where ElementTypesInLoop is empty, the widest
type is determined by finding the smallest type used by recurrences in
the loop instead of falling back to a default value of 8 bits. This
results in the cost model choosing a more sensible VF for loops like
the one above.

Differential Revision: https://reviews.llvm.org/D113973
2022-01-04 10:12:57 +00:00
Florian Hahn b1a333f0fe
[VPlan] Don't consider VPWidenCanonicalIVRecipe phi-like.
VPWidenCanonicalIVRecipe does not create PHI instructions, so it does
not need to be placed in the phi section of a VPBasicBlock.

Also tidies the code so the WidenCanonicalIV recipe and the
compare/lane-masks are created in the header.

Discussed D113223.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D116473
2022-01-02 12:48:17 +00:00
Sanjay Patel 0c6979b2d6 [InstCombine] fold opposite shifts around an add
((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C)

https://alive2.llvm.org/ce/z/DY9DPg

This replaces a shift with an 'and', and in the case
where the add has a constant operand, it eliminates
both shifts.

As noted in the TODO comment, we already have this fold when
the shifts are in the opposite order (and that code handles
bitwise logic ops too).

Fixes #52851
2021-12-30 12:01:06 -05:00
Sanjay Patel fd9cd3408b Revert "[InstCombine] fold opposite shifts around an add"
This reverts commit 2e3e0a5c28.
Some unintended diffs snuck into this patch.
2021-12-30 11:54:55 -05:00
Sanjay Patel 2e3e0a5c28 [InstCombine] fold opposite shifts around an add
((X << C) + Y) >>u C --> (X + (Y >>u C)) & (-1 >>u C)

https://alive2.llvm.org/ce/z/DY9DPg

This replaces a shift with an 'and', and in the case
where the add has a constant operand, it eliminates
both shifts.

As noted in the TODO comment, we already have this fold when
the shifts are in the opposite order (and that code handles
bitwise logic ops too).

Fixes #52851
2021-12-30 11:52:29 -05:00
Craig Topper a9486a40f7 [RISCV] Disable interleaving scalar loops in the loop vectorizer.
The loop vectorizer can interleave scalar loops even if it doesn't
vectorize them. I don't believe we intended to enable this when
we enabled interleaving for vector instructions.

Disable interleaving for VF=1 like X86 and AMDGPU already do. Test
lifted from AMDGPU.

Differential Revision: https://reviews.llvm.org/D115975
2021-12-23 08:37:24 -06:00
Florian Hahn ede7c2438f
[VPlan] Create header & latch blocks for skeleton up front (NFC).
By creating the header and latch blocks up front and adding blocks and
recipes in between those 2 blocks we ensure that the entry and exits of
the plan remain valid throughout construction.

In order to avoid test changes and keep printing of the plans the same,
we use the new header block instead of creating a new block on the first
iteration of the loop traversing the original loop.

We also fold the latch into its predecessor.

This is a follow up to a post-commit suggestion in D114586.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D115793
2021-12-22 12:44:25 +00:00
Sander de Smalen 290ae657a6 Fix buildbot failure caused by D115651
I somehow missed updating the RUN line of this test.
2021-12-20 17:18:59 +00:00
Sander de Smalen b1ff20fd35 [LV] Enable scalable vectorization by default for SVE cores.
The availability of SVE should be sufficient to enable scalable
auto-vectorization.

This patch adds a new TTI interface to query the target what style of
vectorization it wants when scalable vectors are available. For other
targets than AArch64, this currently defaults to 'FixedWidthOnly'.

Differential Revision: https://reviews.llvm.org/D115651
2021-12-20 16:23:29 +00:00
Florian Hahn 5b362e4c7f
[VPlan] Add Debugloc to VPInstruction.
Upcoming changes require attaching debug locations to VPInstructions,
e.g. adding induction increment recipes in D113223.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D115123
2021-12-20 15:10:41 +00:00
Philip Reames e6ad9ef4e7 [instcombine] Canonicalize constant index type to i64 for extractelement/insertelement
The basic idea to this is that a) having a single canonical type makes CSE easier, and b) many of our transforms are inconsistent about which types we end up with based on visit order.

I'm restricting this to constants as for non-constants, we'd have to decide whether the simplicity was worth extra instructions. For constants, there are no extra instructions.

We chose the canonical type as i64 arbitrarily.  We might consider changing this to something else in the future if we have cause.

Differential Revision: https://reviews.llvm.org/D115387
2021-12-13 16:56:22 -08:00
Philip Reames eb052f6b8f Reapply: Autogen more vectorizer tests in advance of D115387.
Drop changes to consecutive-ptr-uniforms.ll since that test checks boths IR output and debug messages.  I'd missed this in the original commit, and Florian pointed it out in post-commit review.

Original commit message:

These are the ones my first round of scripting couldn't handle that required a bit of manual messaging.  This should be the last batch in llvm-check.

This reverts commit bbba86764a.
2021-12-13 15:49:14 -08:00
Philip Reames bbba86764a Revert "Autogen more vectorizer tests in advance of D115387."
This reverts commit bbfaf0b170.

Post commit review noted a case where my manual update lost intentional check lines.  Given I've abandoned the motivating patch, I'm just reverting the autogen prep.
2021-12-13 12:45:50 -08:00
Philip Reames bbfaf0b170 Autogen more vectorizer tests in advance of D115387.
These are the ones my first round of scripting couldn't handle that required a bit of manual messaging.  This should be the last batch in llvm-check.
2021-12-13 11:04:20 -08:00
Philip Reames 1a18de3d0a Autogen a bunch of instcombine and vectorizer tests
Done in advance of D115387.  These are all the ones which my local script could handle, there's a couple more which need manual updates.
2021-12-13 10:41:38 -08:00
Florian Hahn e2885c7c9b
[VPlan] Add printing test with VPInstruction with debug locs.
Test case for D113223.
2021-12-13 13:08:41 +00:00
Florian Hahn 42263e7d26
[LV] Add test with debug locations on branches that get scalarized. 2021-12-13 12:06:35 +00:00
Evgeniy Brevnov 2025e0985c [LV] Make sure VF doesn't exceed compile time known TC
For the simple copy loop (see test case) vectorizer selects VF equal to 32 while the loop is known to have 17 iterations only. Such behavior makes no sense to me since such vector loop will never be executed. The only case we may want to select VF large than TC is masked vectoriztion. So I haven't touched that case.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D114528
2021-12-13 13:48:46 +07:00
David Green fed3041863 [LV][ARM] Improve reduction costmodel for mismatching extension types.
Given a MLA reduction from two different types (say i8 and i16), we were
previously failing to find the reduction pattern, often making us chose
the lower vector factor. This improves that by using the largest of the
two extension types, allowing us to use the larger VF as the type of the
reduction.

As per https://godbolt.org/z/KP549EEYM the backend handles this
valiantly, leading to better performance.

Differential Revision: https://reviews.llvm.org/D115432
2021-12-10 15:40:58 +00:00
Florian Hahn 505ad03c7d
[LV] Remove redundant IV casts using VPlan (NFCI).
This patch simplifies handling of redundant induction casts, by
removing dead cast instructions after initial VPlan construction.
This has the following benefits:

  1. fixes a crash
     (see @test_optimized_cast_induction_feeding_first_order_recurrence)
  2. Simplifies VPWidenIntOrFpInduction to a single-def recipes
  3. Retires recordVectorLoopValueForInductionCast.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D115112
2021-12-10 13:57:03 +00:00
Evgeniy Brevnov eef8f3f856 [LV][NFC] New test case for compile time known trip count (TC)
New test to test/track upcoming chnages

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D114526
2021-12-10 18:25:55 +07:00
David Sherwood 8b0448ce5d [AArch64][Analysis] Add on overhead costs for SVE gathers and scatters
This patch adds on an overhead cost for gathers and scatters, which
is a rough estimate based on performance investigations I have
performed on SVE hardware for various micro-benchmarks.

Differential Revision: https://reviews.llvm.org/D115143
2021-12-09 16:02:59 +00:00
David Sherwood def8b952eb [LoopVectorize][AArch64] Add vectoriser cost model tests for gathers/scatters
I've added some tests that were previously missing for the gather-scatter costs
being calculated by the vectorizer for AArch64:

  Transforms/LoopVectorize/AArch64/sve-gather-scatter-cost.ll

The costs are sometimes different to the ones in

  Analysis/CostModel/AArch64/sve-gather.ll

because the vectorizer also adds on the address computation cost.
2021-12-09 15:44:12 +00:00
Sander de Smalen e1edec1ee6 [LV] NFC: Add check for VF to vector_ptr_load_store.ll.
This just adds some extra CHECK lines to show the effect
of a follow-up patch.
2021-12-08 16:41:59 +00:00
Cullen Rhodes 698584f89b [IR] Remove unbounded as possible value for vscale_range minimum
The default for min is changed to 1. The behaviour of -mvscale-{min,max}
in Clang is also changed such that 16 is the max vscale when targeting
SVE and no max is specified.

Reviewed By: sdesmalen, paulwalker-arm

Differential Revision: https://reviews.llvm.org/D113294
2021-12-07 09:52:21 +00:00
Sander de Smalen 3d549dddf7 [LV] Pass compare predicate to getCmpSelInstrCost.
If the condition of a select is a compare, pass its predicate to
TTI::getCmpSelInstrCost to get a more accurate cost value instead
of passing BAD_ICMP_PREDICATE.

I noticed that the commit message from D90070 had a comment about the
vectorized select predicate possibly being composed of other compares with
different predicate values, but I wasn't able to construct an example
where this was an actual issue. If this is an issue, I guess we could
add another check that the block isn't predicated for any reason.

Reviewed By: dmgreen, fhahn

Differential Revision: https://reviews.llvm.org/D114646
2021-12-06 11:41:27 +00:00
David Green 255ad73424 [ARM] Make MVE v2i1 predicates legal
MVE can treat v16i1, v8i1, v4i1 and v2i1 as different views onto the
same 16bit VPR.P0 register, with v2i1 holding two 8 bit values for the
two halves. This was never treated as a legal type in llvm in the past
as there are not many 64bit instructions and no 64bit compares. There
are a few instructions that could use it though, notably a VSELECT (as
it can handle any size using the underlying v16i8 VPSEL), AND/OR/XOR for
similar reasons, some gathers/scatter and long multiplies and VCTP64
instructions.

This patch goes through and makes v2i1 a legal type, handling all the
cases that fall out of that. It also makes VSELECT legal for v2i64 as a
side benefit. A lot of the codegen changes as a result - usually in way
that is a little better or a little worse, but still expensive. Costs
can change a little too in the process, again in a way that expensive
things remain expensive. A lot of the tests that changed are mainly to
ensure correctness - the code can hopefully be improved in the future
where it comes up in practice.

The intrinsics currently remain using the v4i1 they previously did to
emulate a v2i1. This will be changed in a followup patch but this one
was already large enough.

Differential Revision: https://reviews.llvm.org/D114449
2021-12-03 14:05:41 +00:00
Roman Lebedev 8cd782487f
[X86][LoopVectorize] "Fix" `X86TTIImpl::getAddressComputationCost()`
We ask `TTI.getAddressComputationCost()` about the cost of computing vector address,
and then multiply it by the vector width. This doesn't make any sense,
it implies that we'd do a vector GEP and then scalarize the vector of pointers,
but there is no such thing in the vectorized IR, we perform scalar GEP's.

This is *especially* bad on X86, and was effectively prohibiting any scalarized
vectorization of gathers/scatters, because `X86TTIImpl::getAddressComputationCost()`
says that cost of vector address computation is `10` as compared to `1` for scalar.

The computed costs are similar to the ones with D111222+D111220,
but we end up without masked memory intrinsics that we'd then have to
expand later on, without much luck. (D111363)

Differential Revision: https://reviews.llvm.org/D111460
2021-11-30 10:47:56 +03:00
Sander de Smalen 28a4deab92 [LV] Fix incorrectly marking a pointer indvar as 'scalar'.
collectLoopScalars should only add non-uniform nodes to the list if they
are used by a load/store instruction that is marked as CM_Scalarize.

Before this patch, the LV incorrectly marked pointer induction variables
as 'scalar' when they required to be widened by something else,
such as a compare instruction, and weren't used by a node marked as
'CM_Scalarize'. This case is covered by sve-widen-phi.ll.

This change also allows removing some code where the LV tried to
widen the PHI nodes with a stepvector, even though it was marked as
'scalarAfterVectorization'. Now that this code is more careful about
marking instructions that need widening as 'scalar', this code has
become redundant.

Differential Revision: https://reviews.llvm.org/D114373
2021-11-28 09:49:28 +00:00
Sander de Smalen a9f837bbf0 NFC: Simplify sve-widen-phi.ll by unrolling once.
The unroll factor > 1 has little value for what is being tested.
2021-11-28 09:49:28 +00:00
David Sherwood e20391fc5d [LoopVectorize] When tail-folding, don't always predicate uniform loads
In VPRecipeBuilder::handleReplication if we believe the instruction
is predicated we then proceed to create new VP region blocks even
when the load is uniform and only predicated due to tail-folding.

I have updated isPredicatedInst to avoid treating a uniform load as
predicated when tail-folding, which means we can do a single scalar
load and a vector splat of the value.

Tests added here:

  Transforms/LoopVectorize/AArch64/tail-fold-uniform-memops.ll

Differential Revision: https://reviews.llvm.org/D112552
2021-11-26 11:30:54 +00:00
Graham Hunter dee810e117 [NFC][LAA] Precommit tests for forked pointers
Precommit for https://reviews.llvm.org/D108699
2021-11-24 16:20:35 +00:00
Florian Hahn a7648eb2aa
[LV] Use patterns in some induction tests, to make more robust. (NFC) 2021-11-24 13:32:24 +00:00
Rosie Sumpter df32a39dd0 [LoopVectorize][CostModel] Update cost model for fmuladd intrinsic
This patch updates the cost model for ordered reductions so that a call
to the llvm.fmuladd intrinsic is modelled as a normal fmul instruction
plus the cost of an ordered fadd reduction.

Differential Revision: https://reviews.llvm.org/D111630
2021-11-24 08:50:05 +00:00
Rosie Sumpter 2d33327f9d [LoopVectorize] Print fast-math flags for VPReductionRecipe 2021-11-24 08:50:05 +00:00
Rosie Sumpter 991074012a [LoopVectorize] Propagate fast-math flags for VPInstruction
In-loop vector reductions which use the llvm.fmuladd intrinsic involve
the creation of two recipes; a VPReductionRecipe for the fadd and a
VPInstruction for the fmul. If the call to llvm.fmuladd has fast-math flags
these should be propagated through to the fmul instruction, so an
interface setFastMathFlags has been added to the VPInstruction class to
enable this.

Differential Revision: https://reviews.llvm.org/D113125
2021-11-24 08:50:04 +00:00
Rosie Sumpter c2441b6b89 [LoopVectorize] Add vector reduction support for fmuladd intrinsic
Enables LoopVectorize to handle reduction patterns involving the
llvm.fmuladd intrinsic.

Differential Revision: https://reviews.llvm.org/D111555
2021-11-24 08:50:04 +00:00
Huihui Zhang 9cd7c534e2 [InstCombine] Enable fold select into operand for FAdd, FMul, FSub and FDiv.
For FAdd, FMul, FSub and FDiv, fold select into one of the operands to enable
further optimizations, i.e., floating-point reduction detection.

Turn code:
  %C = fadd %A, %B
  %D = select %cond, %C, %A

into:
  %C = select %cond, %B, -0.000000e+00
  %D = fadd %A, %C

Alive2 verification (with --disable-undef-input), timed out otherwise.
FAdd - https://alive2.llvm.org/ce/z/eUxN4Y
FMul - https://alive2.llvm.org/ce/z/5SWZz4
FSub - https://alive2.llvm.org/ce/z/Dhj8dU
FDiv - https://alive2.llvm.org/ce/z/Yj_NA2

Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D113442
2021-11-22 15:10:10 -08:00
Diego Caballero 4348cd42c3 [LV] Drop integer poison-generating flags from instructions that need predication
This patch fixes PR52111. The problem is that LV propagates poison-generating flags (`nuw`/`nsw`, `exact`
and `inbounds`) in instructions that contribute to the address computation of widen loads/stores that are
guarded by a condition. It may happen that when the code is vectorized and the control flow within the loop
is linearized, these flags may lead to generating a poison value that is effectively used as the base address
of the widen load/store. The fix drops all the integer poison-generating flags from instructions that
contribute to the address computation of a widen load/store whose original instruction was in a basic block
that needed predication and is not predicated after vectorization.

Reviewed By: fhahn, spatel, nlopes

Differential Revision: https://reviews.llvm.org/D111846
2021-11-22 10:57:29 +00:00
Diego Caballero a7027bb799 [LV] Pre-commit test for D111846
Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D112054
2021-11-22 10:13:56 +00:00
Florian Hahn cf8efbd30e
[VPlan] Wrap vector loop blocks in region.
A first step towards modeling preheader and exit blocks in VPlan as well.
Keeping the vector loop in a region allows for changing the VF as we
traverse region boundaries.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D113182
2021-11-20 17:59:48 +00:00
Kerry McLaughlin ff64b2933a [LoopVectorize] Check the number of uses of an FAdd before classifying as ordered
checkOrderedReductions looks for Phi nodes which can be classified as in-order,
meaning they can be vectorised without unsafe math. In order to vectorise the
reduction it should also be classified as in-loop by getReductionOpChain, which
checks that the reduction has two uses.

In this patch, a similar check is added to checkOrderedReductions so that we
now return false if there are more than two uses of the FAdd instruction.
This fixes PR52515.

Reviewed By: fhahn, david-arm

Differential Revision: https://reviews.llvm.org/D114002
2021-11-18 16:41:19 +00:00
Florian Hahn dead1c11ff
[LV] Add basic check lines to test added in 00200dbda3. 2021-11-18 14:08:57 +00:00
Florian Hahn 00200dbda3
[LV] Add test case for PR52024.
This patch adds a reduced version of the test case from PR52024.

Together with 764d9aa979 the test causes a crash, because LV expands a
SCEV expression during code generation, when the dominator tree is not
up-to-date.
2021-11-18 12:10:44 +00:00
David Sherwood 8d77555b12 [Analysis] Ensure getTypeLegalizationCost returns a simple VT for TypeScalarizeScalableVector
When getTypeConversion returns TypeScalarizeScalableVector we were
sometimes returning a non-simple type from getTypeLegalizationCost.
However, many callers depend upon this being a simple type and will
crash if not. This patch changes getTypeLegalizationCost to ensure
that we always a return sensible simple VT. If the vector type
contains unusual integer types, e.g. <vscale x 2 x i3>, then we just
set the type to MVT::i64 as a reasonable default.

A test has been added here that demonstrates the vectoriser can
correctly calculate the cost of vectorising a "zext i3 to i64"
instruction with a VF=vscale x 1:

  Transforms/LoopVectorize/AArch64/sve-inductions-unusual-types.ll

Differential Revision: https://reviews.llvm.org/D113777
2021-11-17 13:11:58 +00:00
David Sherwood 670dd40244 [Analysis] Fix getNumberOfParts to return 0 when the answer is unknown
When asking how many parts are required for a scalable vector type
there are occasions when it cannot be computed. For example, <vscale x 1 x i3>
is one such vector for AArch64+SVE because at the moment no matter how we
promote the i3 type we never end up with a legal vector. This means
that getTypeConversion returns TypeScalarizeScalableVector as the
LegalizeKind, and then getTypeLegalizationCost returns an invalid cost.
This then causes BasicTTImpl::getNumberOfParts to dereference an invalid
cost, which triggers an assert. This patch changes getNumberOfParts to
return 0 for such cases, since the definition of getNumberOfParts in
TargetTransformInfo.h states that we can use a return value of 0 to represent
an unknown answer.

Currently, LoopVectorize.cpp is the only place where we need to check for
0 as a return value, because all other instances will not currently
ask for the number of parts for <vscale x 1 x iX> types.

In addition, I have changed the target-independent interface for
getNumberOfParts to return 1 and assume there is a single register
that can fit the type. The loop vectoriser has lots of tests that are
target-independent and they relied upon the 0 value to mean the
answer is known and that we are not scalarising the vector.

I have added tests here that show we correctly return an invalid cost
for VF=vscale x 1 when the loop contains unusual types such as i7:

  Transforms/LoopVectorize/AArch64/sve-inductions-unusual-types.ll

Differential Revision: https://reviews.llvm.org/D113772
2021-11-17 12:07:09 +00:00
David Green 309f1e4ac8 [ARM] Add datalayout to costmodel tests. NFC
This adds a sensible datalayout to the ARM cost model tests, to prevent
the costs reported being incorrect for the size of pointers.
2021-11-16 09:49:42 +00:00
Florian Hahn 112c1c346a
[IVDescriptor] Make sure the sign is included for negative extension.
At the moment, computeRecurrenceType does not include any sign bits in
the maximum bit width. If the value can be negative, this means the sign
bit will be missing and the sext won't properly extend the value.

If the value can be negative, increment the bitwidth by one to make sure
there is at least one sign bit in the result value.

Note that the increment is also needed *if* the value is *known* to be
negative, as a sign bit needs to be preserved for the sext to work.

Note that this at the moment prevents vectorization, because the
analysis computes i1 as type for the recurrence when looking through the
AND in lookThroughAnd.

Fixes PR51794, PR52485.

Reviewed By: spatel

Differential Revision: https://reviews.llvm.org/D113056
2021-11-15 13:12:57 +00:00
Simon Pilgrim fbe72e41b9 [LoopVectorize] Add PR41179 test case 2021-11-14 21:54:23 +00:00
Philip Reames 37ead201e6 [runtime-unroll] Use incrementing IVs instead of decrementing ones
This is one of those wonderful "in theory X doesn't matter, but in practice is does" changes. In this particular case, we shift the IVs inserted by the runtime unroller to clamp iteration count of the loops* from decrementing to incrementing.

Why does this matter?  A couple of reasons:
* SCEV doesn't have a native subtract node.  Instead, all subtracts (A - B) are represented as A + -1 * B and drops any flags invalidated by such.  As a result, SCEV is slightly less good at reasoning about edge cases involving decrementing addrecs than incrementing ones.  (You can see this in the inferred flags in some of the test cases.)
* Other parts of the optimizer produce incrementing IVs, and they're common in idiomatic source language.  We do have support for reversing IVs, but in general if we produce one of each, the pair will persist surprisingly far through the optimizer before being coalesced.  (You can see this looking at nearby phis in the test cases.)

Note that if the hardware prefers decrementing (i.e. zero tested) loops, LSR should convert back immediately before codegen.

* Mostly irrelevant detail: The main loop of the prolog case is handled independently and will simple use the original IV with a changed start value.  We could in theory use this scheme for all iteration clamping, but that's a larger and more invasive change.
2021-11-12 15:44:58 -08:00
Florian Hahn 30ebdf8a6d
[LV] Precommit test case from PR52485. 2021-11-12 16:09:19 +00:00
Kerry McLaughlin 7647822156 [AArch64][SVE] Remove i1 type from isElementTypeLegalForScalableVector
`collectElementTypesForWidening` collects the types of load, store and
reduction Phis in a loop. These types are later checked using
`isElementTypeLegalForScalableVector` to prevent vectorisation of
loops with instruction types that are unsupported.

This patch removes i1 from the list of types supported for scalable
vectors. This fixes an assert ("Cannot yet scalarize uniform stores") in
`setCostBasedWideningDecision` when we have a loop containing a uniform
i1 store and a scalable VF, which we cannot create a scatter for.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D113680
2021-11-12 14:24:38 +00:00
Florian Hahn e7f1232cb7
[LV] Move optimized IV recipes to phi section of header after sinking.
Unfortunately sinking recipes for first-order recurrences relies on
the original position of recipes. So if a recipes needs to be sunk after
an optimized induction, it needs to stay in the original position, until
sinking is done. This is causing PR52460.

To fix the crash, keep the recipes in the original position until
sink-after is done.

Post-commit follow-up to c45045bfd0 to address PR52460.
2021-11-10 11:41:08 +00:00
Kerry McLaughlin 6f16ee5e14 Revert "[LoopVectorize] Extract the last lane from a uniform store"
This reverts commit 0d748b4d32.
This is causing some failures when building Spec2017 with scalable
vectors. Reverting to investigate.
2021-11-10 11:21:19 +00:00
Dmitry Makogon 62f86d4f95 Reapply 5ec2386 "Reapply db28934 "[IndVars] Pass TTI to replaceCongruentIVs""
This reverts commit 7cd273c339.

Several patches with tests fixes have been applied:
0cada82f0a "[Test] Remove incorrect test in GVN"
97cb13615d "[Test] Separate IndVars test into AArch64 and X86 parts"
985cc490f1 "[Test] Remove separated test in IndVars",
and test failures caused by 5ec2386 should be resolved now.
2021-11-10 17:36:14 +07:00
David Sherwood 2a48b6993a [IR] In ConstantFoldShuffleVectorInstruction use zeroinitializer for splats of 0
When creating a splat of 0 for scalable vectors we tend to create them
with using a combination of shufflevector and insertelement, i.e.

shufflevector (<vscale x 4 x i32> insertelement (<vscale x 4 x i32> poison, i32 0, i32 0),
               <vscale x 4 x i32> poison, <vscale x 4 x i32> zeroinitializer)

However, for the case of a zero splat we can actually just replace the
above with zeroinitializer instead. This makes the IR a lot simpler and
easier to read. I have changed ConstantFoldShuffleVectorInstruction to
use zeroinitializer when creating a splat of integer 0 or FP +0.0 values.

Differential Revision: https://reviews.llvm.org/D113394
2021-11-10 09:42:58 +00:00
Douglas Yung 7cd273c339 Revert "Reapply db28934 "[IndVars] Pass TTI to replaceCongruentIVs""
This reverts commit 5ec2386332.

This change is causing test failures on the PS4 linux build bot: https://lab.llvm.org/buildbot/#/builders/139/builds/12871
2021-11-09 10:28:41 -08:00
Kerry McLaughlin 0d748b4d32 [LoopVectorize] Extract the last lane from a uniform store
Changes VPReplicateRecipe to extract the last lane from an unconditional,
uniform store instruction. collectLoopUniforms will also add stores to
the list of uniform instructions where Legal->isUniformMemOp is true.

setCostBasedWideningDecision now sets the widening decision for
all uniform memory ops to Scalarize, where previously GatherScatter
may have been chosen for scalable stores.

This fixes an assert ("Cannot yet scalarize uniform stores") in
setCostBasedWideningDecision when we have a loop containing a
uniform i1 store and a scalable VF, which we cannot create a scatter for.

Reviewed By: sdesmalen, david-arm, fhahn

Differential Revision: https://reviews.llvm.org/D112725
2021-11-09 14:43:16 +00:00
Dmitry Makogon 5ec2386332 Reapply db28934 "[IndVars] Pass TTI to replaceCongruentIVs"
This reapplies patch db289340c8.

The test failures on build with expensive checks caused by the patch happened due
to the fact that we sorted loop Phis in replaceCongruentIVs using llvm::sort,
which shuffles the given container if the expensive checks are enabled,
so equivalent Phis in the sorted vector had different mutual order from run
to run. replaceCongruentIVs tries to replace narrow Phis with truncations
of wide ones. In some test cases there were several Phis with the same
width, so if their order differs from run to run, the narrow Phis would
be replaced with a different Phi, depending on the shuffling result.

The patch ae14fae0ff fixed this issue by
replacing llvm::sort with llvm::stable_sort.
2021-11-09 17:42:29 +07:00
Florian Hahn e3bfb6a146
[VPlan] Make sure recurrence splice is not inserted between phis.
All phi-like recipes should be at the beginning of a VPBasicBlock with
no other recipes in between. Ensure that the recurrence-splicing recipe
is not added between phi-like recipes, but after them.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D111301
2021-11-08 17:42:32 +00:00
Sander de Smalen 2829376bb2 [LV] Use VScaleForTuning to fine-tune the cost per lane.
When targeting a specific CPU with scalable vectorization, the knowledge
of that particular CPU's vscale value can be used to tune the cost-model
and make the cost per lane less pessimistic.

If the target implements 'TTI.getVScaleForTuning()', the cost-per-lane
is calculated as:

  Cost / (VScaleForTuning * VF.KnownMinLanes)

Otherwise, it assumes a value of 1 meaning that the behavior
is unchanged and calculated as:

  Cost / VF.KnownMinLanes

Reviewed By: kmclaughlin, david-arm

Differential Revision: https://reviews.llvm.org/D113209
2021-11-08 16:59:46 +00:00
Dmitry Makogon 8d4eba6c0d Revert "[IndVars] Pass TTI to replaceCongruentIVs"
This reverts commit db289340c8.

The patch caused 2 crashes with expensive checks enabled.
2021-11-08 19:35:14 +07:00
Dmitry Makogon db289340c8 [IndVars] Pass TTI to replaceCongruentIVs
In IndVarSimplify after simplifying and extending loop IVs we call 'replaceCongruentIVs'.
This function optionally takes a TTI argument to be able to replace narrow IVs uses
with truncates of the widest one.
For some reason the TTI wasn't passed to the function, so it couldn't perform such
transform.
This patch fixes it.

Reviewed By: mkazantsev

Differential Revision: https://reviews.llvm.org/D113024
2021-11-08 19:20:53 +07:00
David Sherwood c42bb30b9e [LoopVectorize] Permit fixed-width epilogue loops for scalable vector bodies
At the moment in LoopVectorizationCostModel::selectEpilogueVectorizationFactor
we bail out if the main vector loop uses a scalable VF. This patch adds
support for generating epilogue vector loops using a fixed-width VF when the
main vector loop uses a scalable VF.

I've changed LoopVectorizationCostModel::selectEpilogueVectorizationFactor
so that we convert the scalable VF into a fixed-width VF and do profitability
checks on that instead. In addition, since the scalable and fixed-width VFs
live in different VPlans that means I had to change the calls to
LVP.hasPlanWithVFs so that we only pass in the fixed-width VF.

New tests added here:

  Transforms/LoopVectorize/AArch64/sve-epilog-vect.ll

Differential Revision: https://reviews.llvm.org/D109432
2021-11-08 09:41:13 +00:00
David Sherwood 9da8dde7fd [NFC][LoopVectorize] Add test for tail-folding loop with conditional uniform load
I've added a test for a loop containing a conditional uniform load for
a target that supports masked loads. The test just ensures that we
correctly use gather instructions and have the correct mask.

Differential Revision: https://reviews.llvm.org/D112619
2021-11-03 09:51:11 +00:00
Florian Hahn e515d3a433
[LV] Add test case from PR51794 for over-eager truncation.
This patch adds a test case for PR51794 where reductions are performed
on types that are too small.
2021-11-02 22:15:09 +01:00
Rosie Sumpter dcb8222d87 [LoopVectorize] Propagate fast-math flags for inloop reductions
This patch updates VPReductionRecipe::execute so that the fast-math
flags associated with the underlying instruction of the VPRecipe are
propagated through to the reductions which are created.

Differential Revision: https://reviews.llvm.org/D112548
2021-11-02 08:59:53 +00:00
David Sherwood 87a294d5eb [LoopVectorize] Change getRuntimeVFAsFloat to use unsigned int->FP conversion
We never expect the runtime VF to be negative so we should use
the uitofp instruction instead of sitofp.

Differential revision: https://reviews.llvm.org/D112610
2021-11-01 09:58:14 +00:00
Florian Hahn c45045bfd0
[VPlan] Keep induction recipes in header.
This patch updates recipe creation to ensure all
VPWidenIntOrFpInductionRecipes are in the header block. At the moment,
new induction recipes can be created in different blocks when trying to
optimize casts and induction variables.

Having all induction recipes in the header makes it easier to
analyze/transform them in VPlan.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D111300
2021-10-28 18:22:05 +01:00
Philip Reames 6caff716da Regen some autogen tests to account for format change 2021-10-28 09:22:20 -07:00
Roman Lebedev b291597112
Revert rest of `IRBuilderBase`'s short-circuiting folds
Upon further investigation and discussion,
this is actually the opposite direction from what we should be taking,
and this direction wouldn't solve the motivational problem anyway.

Additionally, some more (polly) tests have escaped being updated.
So, let's just take a step back here.

This reverts commit f3190dedee.
This reverts commit 749581d21f.
This reverts commit f3df87d57e.
This reverts commit ab1dbcecd6.
2021-10-28 02:15:14 +03:00
Roman Lebedev 101aaf62ef
Revert "[NFC] `IRBuilderBase::CreateAdd()`: place constant onto RHS"
Clang OpenMP codegen tests are failing,
will recommit afterwards.

This reverts commit 4723c9b3c6.
2021-10-27 22:21:37 +03:00
Roman Lebedev 42712698fd
Revert "[IR] `IRBuilderBase::CreateAdd()`: short-circuit `x + 0` --> `x`"
Clang OpenMP codegen tests are failing.

This reverts commit 288f1f8abe.
This reverts commit cb90e5356a.
2021-10-27 22:21:37 +03:00
Roman Lebedev cb90e5356a
[IR] `IRBuilderBase::CreateAdd()`: short-circuit `x + 0` --> `x`
There's precedent for that in `CreateOr()`/`CreateAnd()`.

The motivation here is to avoid bloating the run-time check's IR
in `SCEVExpander::generateOverflowCheck()`.

Refs. https://reviews.llvm.org/D109368#3089809
2021-10-27 21:34:38 +03:00
Roman Lebedev 4723c9b3c6
[NFC] `IRBuilderBase::CreateAdd()`: place constant onto RHS 2021-10-27 21:34:38 +03:00
Roman Lebedev 156f10c840
[IR] `SCEVExpander::generateOverflowCheck()`: short-circuit `umul_with_overflow`-by-one
It's a no-op, no overflow happens ever: https://alive2.llvm.org/ce/z/Zw89rZ

While generally i don't like such hacks,
we have a very good reason to do this: here we are expanding
a run-time correctness check for the vectorization,
and said `umul_with_overflow` will not be optimized out
before we query the cost of the checks we've generated.

Which means, the cost of run-time checks would be artificially inflated,
and after https://reviews.llvm.org/D109368 that will affect
the minimal trip count for which these checks are even evaluated.
And if they aren't even evaluated, then the vectorized code
certainly won't be run.

We could consider doing this in IRBuilder,  but then we'd need to
also teach `CreateExtractValue()` to look into chain of `insertvalue`'s,
and i'm not sure there's precedent for that.

Refs. https://reviews.llvm.org/D109368#3089809
2021-10-27 19:45:55 +03:00
Roman Lebedev f3df87d57e
[IR] `IRBuilderBase::CreateOr()`: fix short-circuiting for constant on LHS
There is no guarantee that the constant is on RHS here,
we have to handle both cases.

Refs. https://reviews.llvm.org/D109368#3089809
2021-10-27 18:01:06 +03:00
Roman Lebedev ab1dbcecd6
[IR] `IRBuilderBase::CreateSelect()`: if cond is a constant i1, short-circuit
While we could emit such a tautological `select`,
it will stick around until the next instsimplify invocation,
which may happen after we count the cost of this redundant `select`.
Which is precisely what happens with loop vectorization legality checks,
and that artificially increases the cost of said checks,
which is bad.

There is prior art for this in `IRBuilderBase::CreateAnd()`/`IRBuilderBase::CreateOr()`.

Refs. https://reviews.llvm.org/D109368#3089809
2021-10-27 18:01:05 +03:00
Roman Lebedev 5a8a7b3bf8
[NFC] Re-autogenerate check lines in some tests to ease of future update 2021-10-27 18:01:05 +03:00
David Sherwood 3d706c20f8 [NFC][LoopVectorize] Remove setBestPlan in favour of getBestPlanFor
I have removed LoopVectorizationPlanner::setBestPlan, since this
function is quite aggressive because it deletes all other plans
except the one containing the <VF,UF> pair required. The code is
currently written to assume that all <VF,UF> pairs will live in the
same vplan. This is overly restrictive, since scalable VFs live in
different plans to fixed-width VFS. When we add support for
vectorising epilogue loops when the main loop uses scalable vectors
then we will the vplan for the main loop will be different to the
epilogue.

Instead I have added a new function called

  LoopVectorizationPlanner::getBestPlanFor

that returns the best vplan for the <VF,UF> pair requested and leaves
all the vplans untouched. We then pass this best vplan to

  LoopVectorizationPlanner::executePlan

which now takes an additional VPlanPtr argument.

Differential revision: https://reviews.llvm.org/D111125
2021-10-27 09:38:27 +01:00
Roman Lebedev e1db72703f
[NFC] Re-harden test/Transforms/LoopVectorize/X86/pr48340.ll
This test is quite fragile WRT improvements to the interleaved load cost
modelling. Let's bump the stride way up so that is no longer a concern.
2021-10-22 15:07:53 +03:00
Roman Lebedev 6f6842d782
Revert "[NFC][LV] Autogenerate check lines in a test for ease of future update"
This reverts commit 8ae83a1baf.
2021-10-22 15:07:53 +03:00
Roman Lebedev 2eaef53023
[TTI] `BasicTTIImplBase::getInterleavedMemoryOpCost()`: fix load discounting
The math here is:
Cost of 1 load = cost of n loads / n
Cost of live loads = num live loads * Cost of 1 load
Cost of live loads = num live loads * (cost of n loads / n)
Cost of live loads = cost of n loads * (num live loads / n)

But, all the variables here are integers,
and integer division rounds down,
but this calculation clearly expects float semantics.

Instead multiply upfront, and then perform round-up-division.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D112302
2021-10-22 14:08:58 +03:00
Roman Lebedev 8ae83a1baf
[NFC][LV] Autogenerate check lines in a test for ease of future update 2021-10-22 14:08:58 +03:00
David Sherwood 9448cdc900 [SVE][Analysis] Tune the cost model according to the tune-cpu attribute
This patch introduces a new function:

  AArch64Subtarget::getVScaleForTuning

that returns a value for vscale that can be used for tuning the cost
model when using scalable vectors. The VScaleForTuning option in
AArch64Subtarget is initialised according to the following rules:

1. If the user has specified the CPU to tune for we use that, else
2. If the target CPU was specified we use that, else
3. The tuning is set to "generic".

For CPUs of type "generic" I have assumed that vscale=2.

New tests added here:

  Analysis/CostModel/AArch64/sve-gather.ll
  Analysis/CostModel/AArch64/sve-scatter.ll
  Transforms/LoopVectorize/AArch64/sve-strict-fadd-cost.ll

Differential Revision: https://reviews.llvm.org/D110259
2021-10-21 09:33:50 +01:00
Arthur Eubanks 15fefcb9eb [opt] Directly translate -O# to -passes='default<O#>'
Right now when we see -O# we add the corresponding 'default<O#>' into
the list of passes to run when translating legacy -pass-name. This has
the side effect of not using the default AA pipeline.

Instead, treat -O# as -passes='default<O#>', but don't allow any other
-passes or -pass-name. I think we can keep `opt -O#` as shorthand for
`opt -passes='default<O#>` but disallow anything more than just -O#.

Tests need to be updated to not use `opt -O# -pass-name`.

Reviewed By: asbirlea

Differential Revision: https://reviews.llvm.org/D112036
2021-10-18 16:48:10 -07:00
Florian Hahn 74c4d44d47
[LV] Update test that was missed in e844f05397. 2021-10-18 18:23:00 +01:00
Florian Hahn e844f05397
[LoopUtils] Simplify addRuntimeCheck to return a single value.
This simplifies the return value of addRuntimeCheck from a pair of
instructions to a single `Value *`.

The existing users of addRuntimeChecks were ignoring the first element
of the pair, hence there is not reason to track FirstInst and return
it.

Additionally all users of addRuntimeChecks use the second returned
`Instruction *` just as `Value *`, so there is no need to return an
`Instruction *`. Therefore there is no need to create a redundant
dummy `and X, true` instruction any longer.

Effectively this change should not impact the generated code because the
redundant AND will be folded by later optimizations. But it is easy to
avoid creating it in the first place and it allows more accurately
estimating the cost of the runtime checks.
2021-10-18 18:03:09 +01:00
Simon Pilgrim 85b87179f4 [TTI][X86] Add v8i16 -> 2 x v4i16 stride 2 interleaved load costs
Split SSE2 and SSSE3 costs to correctly handle PSHUFB lowering - as was noted on D111938
2021-10-16 17:28:07 +01:00
Simon Pilgrim 6ec644e215 [TTI][X86] Add SSE2 sub-128bit vXi16/32 and v2i64 stride 2 interleaved load costs
These cases use the same codegen as AVX2 (pshuflw/pshufd) for the sub-128bit vector deinterleaving, and unpcklqdq for v2i64.

It's going to take a while to add full interleaved cost coverage, but since these are the same for SSE2 -> AVX2 it should be an easy win.

Fixes PR47437

Differential Revision: https://reviews.llvm.org/D111938
2021-10-16 16:21:45 +01:00
Simon Pilgrim d5f5121ea6 [LV][X86] Add PR47437 test case 2021-10-16 13:40:54 +01:00
Roman Lebedev d137f1288e
[X86][LV] X86 does *not* prefer vectorized addressing
And another attempt to start untangling this ball of threads around gather.
There's `TTI::prefersVectorizedAddressing()`hoop, which confusingly defaults to `true`,
which tells LV to try to vectorize the addresses that lead to loads,
but X86 generally can not deal with vectors of addresses,
the only instructions that support that are GATHER/SCATTER,
but even those aren't available until AVX2, and aren't really usable until AVX512.

This specializes the hook for X86, to return true only if we have AVX512 or AVX2 w/ fast gather.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D111546
2021-10-16 12:32:18 +03:00
Roman Lebedev 3d7bf6625a
[X86][Costmodel] Improve cost modelling for not-fully-interleaved load
While i've modelled most of the relevant tuples for AVX2,
that only covered fully-interleaved groups.

By definition, interleaving load of stride N means:
load N*VF elements, and shuffle them into N VF-sized vectors,
with 0'th vector containing elements `[0, VF)*stride + 0`,
and 1'th vector containing elements `[0, VF)*stride + 1`.
Example: https://godbolt.org/z/df561Me5E (i64 stride 4 vf 2 => cost 6)

Now, not fully interleaved load, is when not all of these vectors is demanded.
So at worst, we could just pretend that everything is demanded,
and discard the non-demanded vectors. What this means is that the cost
for not-fully-interleaved group should be not greater than the cost
for the same fully-interleaved group, but perhaps somewhat less.
Examples:
https://godbolt.org/z/a78dK5Geq (i64 stride 4 (indices 012u) vf 2 => cost 4)
https://godbolt.org/z/G91ceo8dM (i64 stride 4 (indices 01uu) vf 2 => cost 2)
https://godbolt.org/z/5joYob9rx (i64 stride 4 (indices 0uuu) vf 2 => cost 1)

As we have established over the course of last ~70 patches, (wow)
`BaseT::getInterleavedMemoryOpCos()` is absolutely bogus,
it is usually almost an order of magnitude overestimation,
so i would claim that we should at least use the hardcoded costs
of fully interleaved load groups.

We could go further and adjust them e.g. by the number of demanded indices,
but then i'm somewhat fearful of underestimating the cost.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D111174
2021-10-14 23:14:36 +03:00
Roman Lebedev a8a64eaafc
[NFC][X86][LV] Autogenerate checklines in cost-model.ll to simplify further updates 2021-10-13 22:47:43 +03:00
Roman Lebedev 18eef13dad
[X86][Costmodel] Fix `X86TTIImpl::getGSScalarCost()`
`X86TTIImpl::getGSScalarCost()` has (at least) two issues:
* it naively computes the cost of sequence of `insertelement`/`extractelement`.
  If we are operating not on the XMM (but YMM/ZMM),
  this widely overestimates the cost of subvector insertions/extractions.
* Gather/scatter takes a vector of pointers, and scalarization results in us performing
  scalar memory operation for each of these pointers, but we never account for the cost
  of extracting these pointers out of the vector of pointers.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D111222
2021-10-13 22:35:39 +03:00
Ayal Zaks 15692fd6b5 [LV] Fix 2nd crash for reverse interleaved groups under mask/fold-tail.
This patch fixes another crash revealed by PR51614:
when *deciding* to vectorize with masked interleave groups, check if the access
is reverse (which is currently not supported).

Differential Revision: https://reviews.llvm.org/D108900
2021-10-12 21:44:42 +03:00
Kerry McLaughlin 1439ef1a3f [LoopVectorize] Classify pointer induction updates as scalar only if they have one use
collectLoopScalars collects pointer induction updates in ScalarPtrs, assuming
that the instruction will be scalar after vectorization. This may crash later
in VPReplicateRecipe::execute() if there there is another user of the instruction
other than the Phi node which needs to be widened.

This changes collectLoopScalars so that if there are any other users of
Update other than a Phi node, it is not added to ScalarPtrs.

Reviewed By: david-arm, fhahn

Differential Revision: https://reviews.llvm.org/D111294
2021-10-12 13:24:49 +01:00
Florian Hahn ab33427c86
[VPlan] Print live-in backedge taken count as part of plan.
At the moment, a VPValue is created for the backedge-taken count, which
is used by some recipes. To make it easier to identify the operands of
recipes using the backedge-taken count, print it at the beginning of the
VPlan if it is used.

Reviewed By: a.elovikov

Differential Revision: https://reviews.llvm.org/D111298
2021-10-11 20:13:01 +01:00
David Sherwood 26b7d9d622 [LoopVectorize] Permit vectorisation of more select(cmp(), X, Y) reduction patterns
This patch adds further support for vectorisation of loops that involve
selecting an integer value based on a previous comparison. Consider the
following C++ loop:

  int r = a;
  for (int i = 0; i < n; i++) {
    if (src[i] > 3) {
      r = b;
    }
    src[i] += 2;
  }

We should be able to vectorise this loop because all we are doing is
selecting between two states - 'a' and 'b' - both of which are loop
invariant. This just involves building a vector of values that contain
either 'a' or 'b', where the final reduced value will be 'b' if any lane
contains 'b'.

The IR generated by clang typically looks like this:

  %phi = phi i32 [ %a, %entry ], [ %phi.update, %for.body ]
  ...
  %pred = icmp ugt i32 %val, i32 3
  %phi.update = select i1 %pred, i32 %b, i32 %phi

We already detect min/max patterns, which also involve a select + cmp.
However, with the min/max patterns we are selecting loaded values (and
hence loop variant) in the loop. In addition we only support certain
cmp predicates. This patch adds a new pattern matching function
(isSelectCmpPattern) and new RecurKind enums - SelectICmp & SelectFCmp.
We only support selecting values that are integer and loop invariant,
however we can support any kind of compare - integer or float.

Tests have been added here:

  Transforms/LoopVectorize/AArch64/sve-select-cmp.ll
  Transforms/LoopVectorize/select-cmp-predicated.ll
  Transforms/LoopVectorize/select-cmp.ll

Differential Revision: https://reviews.llvm.org/D108136
2021-10-11 09:41:38 +01:00
Florian Hahn 09fdfd03ea
[VPlan] Replace hard-coded VPValue ids with patterns in tests.
This makes the tests a bit more robust with respect to small changes in
the value numbering.
2021-10-07 09:52:01 +01:00
Roman Lebedev 62d67d9e7c
[NFC][X86][LoopVectorize] Autogenerate check lines in a few tests for ease of updating
For D111220
2021-10-06 22:54:15 +03:00
Philip Reames d652724c0b [test] refresh a couple of autogen tests 2021-10-05 18:41:24 -07:00
Roman Lebedev 3a0643e9c2
[X86][Costmodel] Load/store i32/f32 Stride=2 VF=8 interleaving costs
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3

For load we have:
https://godbolt.org/z/n8aMKeo4E - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `4`.

For store we have:
https://godbolt.org/z/n8aMKeo4E - for intels `Block RThroughput: =4.0`; for ryzens, `Block RThroughput: =2.0`
So pick cost of `4`.

I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D110755
2021-10-01 17:48:13 +03:00
Roman Lebedev b12aeaec9a
[X86][Costmodel] Load/store i32/f32 Stride=2 VF=4 interleaving costs
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3

For load we have:
https://godbolt.org/z/EM5Ean7bd - for intels `Block RThroughput: =2.0`; for ryzens, `Block RThroughput: =1.0`
So pick cost of `2`.

For store we have:
https://godbolt.org/z/EM5Ean7bd - for intels `Block RThroughput: =2.0`; for ryzens, `Block RThroughput: <=2.0`
So pick cost of `2`.

I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D110754
2021-10-01 17:48:13 +03:00
Roman Lebedev f44d9009c2
[X86][Costmodel] Load/store i32/f32 Stride=2 VF=2 interleaving costs
The only sched models that for cpu's that support avx2
but not avx512 are: haswell, broadwell, skylake, zen1-3

For load we have:
https://godbolt.org/z/4rY96hnGT - for intels `Block RThroughput: =2.0`; for ryzens, `Block RThroughput: =1.0`
So pick cost of `2`.

For store we have:
https://godbolt.org/z/vbo37Y3r9 - for intels `Block RThroughput: =1.0`; for ryzens, `Block RThroughput: =0.5`
So pick cost of `1`.

I'm directly using the shuffling asm the llc produced,
without any manual fixups that may be needed
to ensure sequential execution.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D110753
2021-10-01 17:48:13 +03:00
Krasimir Georgiev 685f1bfd0a Revert "[LoopVectorize] Permit vectorisation of more select(cmp(), X, Y) reduction patterns"
It appears to cause stage2 clang build failures, e.g.,
https://lab.llvm.org/buildbot/#/builders/74/builds/7145.

This reverts commit 1fb37334bd.
2021-10-01 11:39:43 +02:00
David Sherwood 1fb37334bd [LoopVectorize] Permit vectorisation of more select(cmp(), X, Y) reduction patterns
This patch adds further support for vectorisation of loops that involve
selecting an integer value based on a previous comparison. Consider the
following C++ loop:

  int r = a;
  for (int i = 0; i < n; i++) {
    if (src[i] > 3) {
      r = b;
    }
    src[i] += 2;
  }

We should be able to vectorise this loop because all we are doing is
selecting between two states - 'a' and 'b' - both of which are loop
invariant. This just involves building a vector of values that contain
either 'a' or 'b', where the final reduced value will be 'b' if any lane
contains 'b'.

The IR generated by clang typically looks like this:

  %phi = phi i32 [ %a, %entry ], [ %phi.update, %for.body ]
  ...
  %pred = icmp ugt i32 %val, i32 3
  %phi.update = select i1 %pred, i32 %b, i32 %phi

We already detect min/max patterns, which also involve a select + cmp.
However, with the min/max patterns we are selecting loaded values (and
hence loop variant) in the loop. In addition we only support certain
cmp predicates. This patch adds a new pattern matching function
(isSelectCmpPattern) and new RecurKind enums - SelectICmp & SelectFCmp.
We only support selecting values that are integer and loop invariant,
however we can support any kind of compare - integer or float.

Tests have been added here:

  Transforms/LoopVectorize/AArch64/sve-select-cmp.ll
  Transforms/LoopVectorize/select-cmp-predicated.ll
  Transforms/LoopVectorize/select-cmp.ll

Differential Revision: https://reviews.llvm.org/D108136
2021-10-01 08:41:03 +01:00
Florian Hahn 1fbdbb5595
Revert "Recommit "[SCEV] Look through single value PHIs." (take 2)"
This reverts commit 764d9aa979.

This patch exposed a few additional cases where SCEV expressions are not
properly invalidated.

See PR52024, PR52023.
2021-09-30 20:53:51 +01:00
Craig Topper 765348298c [CostModel] Update default cost model for sadd/ssub overflow to match TargetLowering
The expansion for these was updated in https://reviews.llvm.org/D47927 but the cost model was not adjusted.

I believe the cost model was also incorrect for the old expansion.
The expansion prior to D47927 used 3 icmps using LHS, RHS, and Result
to calculate theirs signs. Then 2 icmps to compare the signs. Followed
by an And. The previous cost model was using 3 icmps and 2 selects.
Digging back through git blame, those 2 selects in the cost model used to
be 2 icmps, but were changed in https://reviews.llvm.org/D90681

Differential Revision: https://reviews.llvm.org/D110739
2021-09-30 09:41:14 -07:00
Simon Pilgrim 17f1fc1e54 [TTI] BasicTTI::getInterleavedMemoryOpCost(): use getScalarizationOverhead()
getScalarizationOverhead() results in a somewhat better cost estimation than counting the insertion/extraction costs directly. Notably, this is still overestimating the costs.

Original Patch by: @lebedev.ri (Roman Lebedev)

Differential Revision: https://reviews.llvm.org/D110713
2021-09-29 16:41:53 +01:00
Florian Hahn 764d9aa979
Recommit "[SCEV] Look through single value PHIs." (take 2)
This reverts commit 8fdac7cb7a.

The issue causing the revert has been fixed a while ago in 60b852092c.

Original message:

    Now that SCEVExpander can preserve LCSSA form,
    we do not have to worry about LCSSA form when
    trying to look through PHIs. SCEVExpander will take
    care of inserting LCSSA PHI nodes as required.

    This increases precision of the analysis in some cases.

    Reviewed By: mkazantsev, bmahjour

    Differential Revision: https://reviews.llvm.org/D71539
2021-09-28 10:32:17 +01:00
Florian Hahn 4b581e87df
[LV] Add tests where rt checks may make vectorization unprofitable.
Add a few additional tests which require a large number of runtime
checks for D109368.
2021-09-27 10:32:28 +01:00
Simon Pilgrim 8c83bd3bd4 [CostModel][X86] Adjust vXi32 multiply costs if it can be performed using PMADDWD
Update the costs to match the codegen from combineMulToPMADDWD - not only can we use PMADDWD is its zero-extended, but also if its a constant or sign-extended from a vXi16 (which can be replaced with a zero-extension).
2021-09-25 16:28:48 +01:00
Simon Pilgrim 41492d77ba [LoopVectorize][X86] Add operands to make it more obvious what line the CHECK concerns
As we're checking the cost debug analysis these should match the original IR line - so we shouldn't have any variable naming issues.

I'm investigating v4i32 mul -> PMADDDW costs handling (for PR47437) and these CHECK lines were proving tricky to keep track of
2021-09-22 10:08:32 +01:00
Ayal Zaks ab6a69dfea [LV] Fix crash for reverse interleaved loads with gap under fold-tail.
This patch fixes the crash found by PR51614:
whenever doing tail folding, interleave groups must be considered under mask.

Another fix D108900 follows for targets that support masked loads and stores:
when *deciding* to vectorize with masked interleave groups, check if the access
is reverse - which is currently not supported; rather than (only) asserting when
computing cost and generating code.

Differential Revision: https://reviews.llvm.org/D108891
2021-09-21 20:13:32 +03:00
Usman Nadeem f417d9d821 [InstCombine] Eliminate vector reverse if all inputs/outputs to an instruction are reverses
Differential Revision: https://reviews.llvm.org/D109808

Change-Id: I1a10d2bc33acbe0ea353c6cb3d077851391fe73e
2021-09-20 18:32:24 -07:00
David Sherwood f988f68064 [Analysis] Add support for vscale in computeKnownBitsFromOperator
In ValueTracking.cpp we use a function called
computeKnownBitsFromOperator to determine the known bits of a value.
For the vscale intrinsic if the function contains the vscale_range
attribute we can use the maximum and minimum values of vscale to
determine some known zero and one bits. This should help to improve
code quality by allowing certain optimisations to take place.

Tests added here:

  Transforms/InstCombine/icmp-vscale.ll

Differential Revision: https://reviews.llvm.org/D109883
2021-09-20 15:01:59 +01:00
Nikita Popov 80110aafa0 [Tests] Fix incorrect noalias metadata
Mostly this fixes cases where !noalias or !alias.scope were passed
a scope rather than a scope list. In some cases I opted to drop
the metadata entirely instead, because it is not really relevant
to the test.
2021-09-18 20:51:00 +02:00
David Green 61cc873a8e [LV] Recognize intrinsic min/max reductions
This extends the reduction logic in the vectorizer to handle intrinsic
versions of min and max, both the floating point variants already
created by instcombine under fastmath and the integer variants from
D98152.

As a bonus this allows us to match a chain of min or max operations into
a single reduction, similar to how add/mul/etc work.

Differential Revision: https://reviews.llvm.org/D109645
2021-09-15 10:45:50 +01:00
David Green bddfbf91ed [LV] Min/max intrinsic reduction test cases. 2021-09-15 09:56:19 +01:00
Florian Hahn e90d55e1c9
[VPlan] Support sinking recipes with uniform users outside sink target.
This is a first step towards addressing the last remaining limitation of
the VPlan version of sinkScalarOperands: the legacy version can
partially sink operands. For example, if a GEP has uniform users outside
the sink target block, then the legacy version will sink all scalar
GEPs, other than the one for lane 0.

This patch works towards addressing this case in the VPlan version by
detecting such cases and duplicating the sink candidate. All users
outside of the sink target will be updated to use the uniform clone.

Note that this highlights an issue with VPValue naming. If we duplicate
a replicate recipe, they will share the same underlying IR value and
both VPValues will have the same name ir<%gep>.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D104254
2021-09-15 09:21:39 +01:00
Florian Hahn e248d69036
Recommit "[LAA] Support pointer phis in loop by analyzing each incoming pointer."
SCEV does not look through non-header PHIs inside the loop. Such phis
can be analyzed by adding separate accesses for each incoming pointer
value.

This results in 2 more loops vectorized in SPEC2000/186.crafty and
avoids regressions when sinking instructions before vectorizing.

Fixes PR50296, PR50288.

Reviewed By: Meinersbur

Differential Revision: https://reviews.llvm.org/D102266
2021-09-14 11:19:12 +01:00
Florian Hahn 4b342268c0
[VPlan] Add test that requires duplicating recipe for sinking. 2021-09-13 14:21:20 +01:00
Florian Hahn 368af7558e
[VPlan] Fix crash caused by not updating all users properly.
Users of VPValues are managed in a vector, so we need to be more
careful when iterating over users while updating them. For now, just
copy them.

Fixes 51798.
2021-09-12 18:10:53 +01:00
Nikita Popov 90ec6dff86 [OpaquePtr] Forbid mixing typed and opaque pointers
Currently, opaque pointers are supported in two forms: The
-force-opaque-pointers mode, where all pointers are opaque and
typed pointers do not exist. And as a simple ptr type that can
coexist with typed pointers.

This patch removes support for the mixed mode. You either get
typed pointers, or you get opaque pointers, but not both. In the
(current) default mode, using ptr is forbidden. In -opaque-pointers
mode, all pointers are opaque.

The motivation here is that the mixed mode introduces additional
issues that don't exist in fully opaque mode. D105155 is an example
of a design problem. Looking at D109259, it would probably need
additional work to support mixed mode (e.g. to generate GEPs for
typed base but opaque result). Mixed mode will also end up
inserting many casts between i8* and ptr, which would require
significant additional work to consistently avoid.

I don't think the mixed mode is particularly valuable, as it
doesn't align with our end goal. The only thing I've found it to
be moderately useful for is adding some opaque pointer tests in
between typed pointer tests, but I think we can live without that.

Differential Revision: https://reviews.llvm.org/D109290
2021-09-10 15:18:23 +02:00
Rosie Sumpter 9d1bea9c88 [SVE][LoopVectorize] Optimise code generated by widenPHIInstruction
For SVE, when scalarising the PHI instruction the whole vector part is
generated as opposed to creating instructions for each lane for fixed-
width vectors. However, in some cases the lane values may be needed
later (e.g for a load instruction) so we still need to calculate
these values to avoid extractelement being called on the vector part.

Differential Revision: https://reviews.llvm.org/D109445
2021-09-10 11:58:04 +01:00
Simon Pilgrim f114ef3731 [CostModel][X86] Add generic costs for vXi32 MUL -> v2Xi16 PMADDDW folds
Based off the improved fold in D108522

This should eventually allow us to replace the SLM only cost patterns with generic versions.
2021-09-05 16:08:11 +01:00
Nikita Popov 02f74eadbe [IVDescriptors] Make pointer inductions compatible with opaque pointers
Store the used element type in the InductionDescriptor. For typed
pointers, it remains the pointer element type. For opaque pointers,
we always use an i8 element type, such that the step is a simple
offset.

A previous version of this patch instead tried to guess the element
type from an induction GEP, but this is not reliable, as the GEP
may be hidden (see @both in iv_outside_user.ll).

Differential Revision: https://reviews.llvm.org/D104795
2021-09-01 21:02:05 +02:00
Simon Pilgrim 10c982e0b3 Revert rG1c9bec727ab5c53fa060560dc8d346a911142170 : [InstCombine] Fold (gep (oneuse(gep Ptr, Idx0)), Idx1) -> (gep Ptr, (add Idx0, Idx1)) (PR51069)
Reverted (manually due to merge conflicts) while regressions reported on PR51540 are investigated

As noticed on D106352, after we've folded "(select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))" if the inner Ptr was also a (now one use) gep we could then merge the geps, using the sum of the indices instead.

I've limited this to basic 2-op geps - a more general case further down InstCombinerImpl.visitGetElementPtrInst doesn't have the one-use limitation but only creates the add if it can be created via SimplifyAddInst.

https://alive2.llvm.org/ce/z/f8pLfD (Thanks Roman!)

Differential Revision: https://reviews.llvm.org/D106450
2021-08-23 21:09:26 +01:00
Florian Hahn d024a01511
Recommit "[LoopVectorize][AArch64] Enable ordered reductions by default for AArch64"
This reverts the revert ab9296f13b.

The issue causing the revert should be fixed in 9baed023b4.
2021-08-23 11:25:27 +01:00
Florian Hahn 9baed023b4
[LV] Adjust reduction recipes before recurrence handling.
Adjusting the reduction recipes still relies on references to the
original IR, which can become outdated by the first-order recurrence
handling. Until reduction recipe construction does not require IR
references, move it before first-order recurrence handling, to prevent a
crash as exposed by D106653.
2021-08-22 11:02:33 +01:00
Florian Hahn ab9296f13b
Revert "[LoopVectorize][AArch64] Enable ordered reductions by default for AArch64"
This reverts commit f4122398e7 to
investigate a crash exposed by it.

The patch breaks building the code below with `clang -O2 --target=aarch64-linux`

     int a;
     double b, c;
     void d() {
       for (; a; a++) {
         b += c;
         c = a;
       }
     }
2021-08-20 21:24:28 +01:00
David Sherwood f4122398e7 [LoopVectorize][AArch64] Enable ordered reductions by default for AArch64
I have added a new TTI interface called enableOrderedReductions() that
controls whether or not ordered reductions should be enabled for a
given target. By default this returns false, whereas for AArch64 it
returns true and we rely upon the cost model to make sensible
vectorisation choices. It is still possible to override the new TTI
interface by setting the command line flag:

  -force-ordered-reductions=true|false

I have added a new RUN line to show that we use ordered reductions by
default for SVE and Neon:

  Transforms/LoopVectorize/AArch64/strict-fadd.ll
  Transforms/LoopVectorize/AArch64/scalable-strict-fadd.ll

Differential Revision: https://reviews.llvm.org/D106653
2021-08-19 09:29:40 +01:00
David Sherwood 219d4518fc [Analysis][AArch64] Make fixed-width ordered reductions slightly more expensive
For tight loops like this:

  float r = 0;
  for (int i = 0; i < n; i++) {
    r += a[i];
  }

it's better not to vectorise at -O3 using fixed-width ordered reductions
on AArch64 targets. Although the resulting number of instructions in the
generated code ends up being comparable to not vectorising at all, there
may be additional costs on some CPUs, for example perhaps the scheduling
is worse. It makes sense to deter vectorisation in tight loops.

Differential Revision: https://reviews.llvm.org/D108292
2021-08-18 17:01:56 +01:00
Dylan Fleming ef198cd99e [SVE] Remove usage of getMaxVScale for AArch64, in favour of IR Attribute
Removed AArch64 usage of the getMaxVScale interface, replacing it with
the vscale_range(min, max) IR Attribute.

Reviewed By: paulwalker-arm

Differential Revision: https://reviews.llvm.org/D106277
2021-08-17 14:42:47 +01:00
Nikita Popov 570c9beb8e [MemorySSA] Remove unnecessary MSSA dependencies
LoopLoadElimination, LoopVersioning and LoopVectorize currently
fetch MemorySSA when construction LoopAccessAnalysis. However,
LoopAccessAnalysis does not actually use MemorySSA and we can pass
nullptr instead.

This saves one MemorySSA calculation in the default pipeline, and
thus improves compile-time.

Differential Revision: https://reviews.llvm.org/D108074
2021-08-16 20:40:55 +02:00
Paul Walker f7a831daa6 [LoopVectorize] Don't emit remarks about lack of scalable vectors unless they're specifically requested.
Previously we emitted a "does not support scalable vectors"
remark for all targets whenever vectorisation is attempted. This
pollutes the output for architectures that don't support scalable
vectors and is likely confusing to the user.

Instead this patch introduces a debug message that reports when
scalable vectorisation is allowed by the target and only issues
the previous remark when scalable vectorisation is specifically
requested, for example:

  #pragma clang loop vectorize_width(2, scalable)

Differential Revision: https://reviews.llvm.org/D108028
2021-08-15 12:15:52 +01:00
David Sherwood 3ce8c31eb8 [NFC] Add extra RUN line to strict reduction tests
I have added RUN lines to both:

  Transforms/LoopVectorize/AArch64/strict-fadd.ll
  Transforms/LoopVectorize/AArch64/scalable-strict-fadd.ll

to show the default behaviour is to not vectorise when the following
flag is unset:

  -force-ordered-reductions
2021-08-10 14:48:38 +01:00
David Sherwood 8439415333 [IR] Let ConstantVector::getSplat use poison instead of undef
This patch updates ConstantVector::getSplat to use poison instead
of undef when using insertelement/shufflevector to splat.

This follows on from D93793.

Differential Revision: https://reviews.llvm.org/D107751
2021-08-10 08:27:43 +01:00
Dorit Nuzman 67278b8a90 [LV] Support Interleaved Store Group With Gaps
Teach LV to use masked-store to support interleave-store-group with
gaps (instead of scatters/scalarization).

The symmetric case of using masked-load to support
interleaved-load-group with gaps was introduced a while ago, by
https://reviews.llvm.org/D53668; This patch completes the store-scenario
leftover from D53668, and solves PR50566.

Reviewed by: Ayal Zaks

Differential Revision: https://reviews.llvm.org/D104750
2021-08-08 10:32:02 +03:00
David Sherwood 3fd96e1b2e [LoopVectorize] Improve vectorisation of some intrinsics by treating them as uniform
This patch adds more instructions to the Uniforms list, for example certain
intrinsics that are uniform by definition or whose operands are loop invariant.
This list includes:

  1. The intrinsics 'experimental.noalias.scope.decl' and 'sideeffect', which
  are always uniform by definition.
  2. If intrinsics 'lifetime.start', 'lifetime.end' and 'assume' have
  loop invariant input operands then these are also uniform too.

Also, in VPRecipeBuilder::handleReplication we check if an instruction is
uniform based purely on whether or not the instruction lives in the Uniforms
list. However, there are certain cases where calls to some intrinsics can
be effectively treated as uniform too. Therefore, we now also treat the
following cases as uniform for scalable vectors:

  1. If the 'assume' intrinsic's operand is not loop invariant, then we
  are free to treat this as uniform anyway since it's only a performance
  hint. We will get the benefit for the first lane.
  2. When the input pointers for 'lifetime.start' and 'lifetime.end' are loop
  variant then for scalable vectors we assume these still ultimately come
  from the broadcast of an alloca. We do not support scalable vectorisation
  of loops containing alloca instructions, hence the alloca itself would
  be invariant. If the pointer does not come from an alloca then the
  intrinsic itself has no effect.

I have updated the assume test for fixed width, since we now treat it
as uniform:

  Transforms/LoopVectorize/assume.ll

I've also added new scalable vectorisation tests for other intriniscs:

  Transforms/LoopVectorize/scalable-assume.ll
  Transforms/LoopVectorize/scalable-lifetime.ll
  Transforms/LoopVectorize/scalable-noalias-scope-decl.ll

Differential Revision: https://reviews.llvm.org/D107284
2021-08-06 10:13:15 +01:00
David Sherwood 43a5c750d1 Revert "[LoopVectorize] Add support for replication of more intrinsics with scalable vectors"
This reverts commit 95800da914.
2021-08-06 09:48:16 +01:00
Sander de Smalen 3e47f009ff [LV] Consider ExtractValue as uniform.
Since all operands to ExtractValue must be loop-invariant when we deem
the loop vectorizable, we can consider ExtractValue to be uniform.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D107286
2021-08-05 16:20:50 +01:00
David Sherwood 95800da914 [LoopVectorize] Add support for replication of more intrinsics with scalable vectors
This patch adds more instructions to the Uniforms list, for example certain
intrinsics that are uniform by definition or whose operands are loop invariant.
This list includes:

  1. The intrinsics 'experimental.noalias.scope.decl' and 'sideeffect', which
  are always uniform by definition.
  2. If intrinsics 'lifetime.start', 'lifetime.end' and 'assume' have
  loop invariant input operands then these are also uniform too.

Also, in VPRecipeBuilder::handleReplication we check if an instruction is
uniform based purely on whether or not the instruction lives in the Uniforms
list. However, there are certain cases where calls to some intrinsics can
be effectively treated as uniform too. Therefore, we now also treat the
following cases as uniform for scalable vectors:

  1. If the 'assume' intrinsic's operand is not loop invariant, then we
  are free to treat this as uniform anyway since it's only a performance
  hint. We will get the benefit for the first lane.
  2. When the input pointers for 'lifetime.start' and 'lifetime.end' are loop
  variant then for scalable vectors we assume these still ultimately come
  from the broadcast of an alloca. We do not support scalable vectorisation
  of loops containing alloca instructions, hence the alloca itself would
  be invariant. If the pointer does not come from an alloca then the
  intrinsic itself has no effect.

I have updated the assume test for fixed width, since we now treat it
as uniform:

  Transforms/LoopVectorize/assume.ll

I've also added new scalable vectorisation tests for other intriniscs:

  Transforms/LoopVectorize/scalable-assume.ll
  Transforms/LoopVectorize/scalable-lifetime.ll
  Transforms/LoopVectorize/scalable-noalias-scope-decl.ll

Differential Revision: https://reviews.llvm.org/D107284
2021-08-05 15:17:27 +01:00
David Sherwood 1172a8a763 [NFC] Clean up tests in test/Transforms/LoopVectorize/assume.ll
The tests previously had lots of unnecessary CHECK lines, where
all we really need to check is the presence (or absence) of the
assume intrinsic and the correct input operands.

Differential Revision: https://reviews.llvm.org/D107157
2021-08-05 14:58:40 +01:00
Sander de Smalen 8d08a84745 [LV] Remove a change that was added in D106164.
This change wasn't strictly necessary for D106164 and could be removed.
This patch addresses the post-commit comments from @fhahn on D106164, and
also changes sve-widen-gep.ll to use the same IR test as shown in
pointer-induction.ll.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D106878
2021-08-05 14:44:53 +01:00
David Sherwood 21bf8172db [NFC] Remove redundant test in Transforms/LoopVectorize/lifetime.ll
The two tests (@testloopvariant and @testbitcast) are actually
identical as in both loops the bitcast gets widened, forcing the
lifetime marker to be replicated using each lane of the input
vector.

Differential Revision: https://reviews.llvm.org/D107150
2021-08-05 14:39:08 +01:00
David Sherwood 0156f91f3b [NFC] Rename enable-strict-reductions to force-ordered-reductions
I'm renaming the flag because a future patch will add a new
enableOrderedReductions() TTI interface and so the meaning of this
flag will change to be one of forcing the target to enable/disable
them. Also, since other places in LoopVectorize.cpp use the word
'Ordered' instead of 'strict' I changed the flag to match.

Differential Revision: https://reviews.llvm.org/D107264
2021-08-03 09:33:01 +01:00
Florian Hahn bb725c9803
[VPlan] Use defined and ops VPValues to print VPInterleaveRecipe.
This patch updates VPInterleaveRecipe::print to print the actual defined
VPValues for load groups and the store VPValue operands for store
groups.

The IR references may become outdated while transforming the VPlan and
the defined and stored VPValues always are up-to-date.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D107223
2021-08-02 18:36:36 +01:00
Florian Hahn c726b627ad
[VPlan] Add interleave group printing test. 2021-07-31 16:11:01 +01:00
Kerry McLaughlin 9d35594993 Reland "[LV] Use lookThroughAnd with logical reductions"
If a reduction Phi has a single user which `AND`s the Phi with a type mask,
`lookThroughAnd` will return the user of the Phi and the narrower type represented
by the mask. Currently this is only used for arithmetic reductions, whereas loops
containing logical reductions will create a reduction intrinsic using the widened
type, for example:

  for.body:
    %phi = phi i32 [ %and, %for.body ], [ 255, %entry ]
    %mask = and i32 %phi, 255
    %gep = getelementptr inbounds i8, i8* %ptr, i32 %iv
    %load = load i8, i8* %gep
    %ext = zext i8 %load to i32
    %and = and i32 %mask, %ext
    ...

^ this will generate an and reduction intrinsic such as the following:
    call i32 @llvm.vector.reduce.and.v8i32(<8 x i32>...)

The same example for an add instruction would create an intrinsic of type i8:
    call i8 @llvm.vector.reduce.add.v8i8(<8 x i8>...)

This patch changes AddReductionVar to call lookThroughAnd for other integer
reductions, allowing loops similar to the example above with reductions such
as and, or & xor to vectorize.

Reviewed By: david-arm, dmgreen

Differential Revision: https://reviews.llvm.org/D105632
2021-07-30 18:04:09 +01:00
David Green 41cedb1c9a [LV][ARM] Tighten up MLA reduction costing
This makes a couple of changes to the costing of MLA reduction patterns,
to more accurately cost various patterns that can come up from
vectorization.

 - The Arm implementation of getExtendedAddReductionCost is altered to
   only provide costs for legal or smaller types. Larger than legal types
   need to be split, which currently does not work very well, especially
   for predicated reductions where the predicate may be legal but needs to
   be split. Currently we limit it to legal or smaller input types.
 - The getReductionPatternCost has learnt that reduce(ext(mul(ext, ext))
   is a pattern that can come up, and can be treated the same as
   reduce(mul(ext, ext)) providing the extension types match.
 - And it has been adjusted to not count the ext in reduce(mul(ext, ext))
   as part of a reduce(mul) pattern.

Together these changes help to more accurately cost the mla reductions
in cases such as where the extend types don't match or the extend
opcodes are different, picking better vector factors that don't result
in expanded reductions.

Differential Revision: https://reviews.llvm.org/D106166
2021-07-28 12:50:58 +01:00
David Green 037b7715dd [ARM] Extra MVE reduction vectorizer tests. NFC 2021-07-28 10:55:06 +01:00
James Y Knight 3d272eea08 Fix test/Transforms/LoopVectorize/AArch64/strict-fadd-vf1.ll.
It was writing to the source directory (which may not be writeable),
rather than using %t.

Fixes: a5dd6c6cf9 ("[LoopVectorize] Don't interleave scalar ordered reductions for inner loops")
2021-07-27 18:32:29 -04:00
David Sherwood a5dd6c6cf9 [LoopVectorize] Don't interleave scalar ordered reductions for inner loops
Consider the following loop:

  void foo(float *dst, float *src, int N) {
    for (int i = 0; i < N; i++) {
      dst[i] = 0.0;
      for (int j = 0; j < N; j++) {
        dst[i] += src[(i * N) + j];
      }
    }
  }

When we are not building with -Ofast we may attempt to vectorise the
inner loop using ordered reductions instead. In addition we also try
to select an appropriate interleave count for the inner loop. However,
when choosing a VF=1 the inner loop will be scalar and there is existing
code in selectInterleaveCount that limits the interleave count to 2
for reductions due to concerns about increasing the critical path.
For ordered reductions this problem is even worse due to the additional
data dependency, and so I've added code to simply disable interleaving
for scalar ordered reductions for now.

Test added here:

  Transforms/LoopVectorize/AArch64/strict-fadd-vf1.ll

Differential Revision: https://reviews.llvm.org/D106646
2021-07-27 17:41:01 +01:00
Anna Thomas c78b9542e3 Update reduction test. Remove standalone test file
Based on post commit review comments at 68ffed12b.
2021-07-27 12:35:04 -04:00
Anna Thomas 68ffed12b7 [IVDescriptors] Fix bug in checkOrderedReduction
The Exit instruction passed in for checking if it's an ordered reduction need not be
an FPAdd operation. We need to bail out at that point instead of
assuming it is an FPAdd (and hence has two operands). See added testcase.
It crashes without the patch because the Exit instruction is a phi with
exactly one operand.
This latent bug was exposed by 95346ba which added support for
multi-exit loops for vectorization.

Reviewed-By: kmclaughlin
Differential Revision: https://reviews.llvm.org/D106843
2021-07-27 09:31:44 -04:00
Sander de Smalen d7dd12aee3 [LV] Disable Scalable VFs when tail folding is enabled b/c of low tripcount.
The loop vectorizer may decide to use tail folding when the trip-count
is low. When that happens, scalable VFs are no longer a candidate,
since tail folding/predication is not yet supported for scalable vectors.

This can be re-enabled in a future patch.

Reviewed By: kmclaughlin

Differential Revision: https://reviews.llvm.org/D106657
2021-07-27 11:37:21 +01:00
Masoud Ataei 45951ad323 [PowerPC] Add pwr7 and pwr10 support to IBM MASSV pass on AIX
Before MASSV only supported P8 and P9 on AIX ans Linux . This patch proposes
MASSV to add support of P7 and P10 only on AIX too.

Differential: https://reviews.llvm.org/D106678
2021-07-26 23:21:38 +00:00
Sander de Smalen 13ccb09725 [LV] Don't let ForceTargetInstructionCost override Invalid cost.
Invalid costs can be used to avoid vectorization with a given VF, which is
used for scalable vectors to avoid things that the code-generator cannot
handle. If we override the cost using the -force-target-instruction-cost
option of the LV, we would override this mechanism, rendering the flag useless.

This change ensures the cost is only overriden when the original cost that
was calculated is valid. That allows the flag to be used in combination
with the -scalable-vectorization option.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D106677
2021-07-26 20:27:49 +01:00
Sander de Smalen e745277012 [AArch64] NFC: Make some AArch64-SVE LoopVectorize tests generic.
This change moves most of `sve-inductions.ll` to non-AArch64 specific
LV tests using the `-target-supports-scalable-vectors` flag, because they're
not explicitly AArch64-specific. One test builds on AArch64-specific
knowledge regarding masked loads/stores, and remains in sve-inductions.ll.
2021-07-26 20:27:48 +01:00
Sander de Smalen b9051ba848 [LV] Remove assert that VF cannot be scalable in setCostBasedWideningDecision.
Scalarization for scalable vectors is not (yet) supported, so the
LV discards a VF when scalarization is chosen as the widening
decision. It should therefore not assert that the VF is not scalable
when it computes the decision to scalarize.

The code can get here when both the interleave-cost, gather/scatter cost
and scalarization-cost are all illegal. This may e.g. happen for SVE
when the VF=1, to avoid generating `<vscale x 1 x eltty>` types that
the code-generator cannot yet handle.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D106656
2021-07-26 17:11:45 +01:00
Sander de Smalen 981e9dce54 [LV] Don't assume isScalarAfterVectorization if one of the uses needs widening.
This fixes an issue that was found in D105199, where a GEP instruction
is used both as the address of a store, as well as the value of a store.
For the former, the value is scalar after vectorization, but the latter
(as value) requires widening.

Other code in that function seems to prevent similar cases from happening,
but it seems this case was missed.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D106164
2021-07-26 16:01:55 +01:00
Florian Hahn 7a1e73f0b9
Recommit "[VPlan] Add recipe for first-order rec phis, make splicing explicit."
This reverts the revert commit b1777b04dc.

The patch originally got reverted due to a crash:
https://bugs.chromium.org/p/chromium/issues/detail?id=1232798#c2

The underlying issue was that we were not using the stored values from
the modified memory recipes, but the out-of-date values directly from
the IR (accessed via the VPlan). This should be fixed in d995d6376. A
reduced version of the reproducer has been added in 93664503be.
2021-07-26 15:50:30 +01:00
Florian Hahn 93664503be
[LV] Add test to store a first-order rec via interleave group.
This is a reduced version of the reproducer from
https://bugs.chromium.org/p/chromium/issues/detail?id=1232798#c2
2021-07-26 15:20:04 +01:00
Dylan Fleming 20b0fa91c9 [SVE] Add support for folding for select + masked loads
Add folds to instcombine to support the removal of select instruction when the masked_load is guaranteed to zero the same lanes, i.e. select(mask, mload(,,mask,0), 0) -> mload(,,mask,0).

Patch originally authored by @paulwalker-arm

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D106376
2021-07-26 11:58:41 +01:00
David Sherwood b2a5f0029f Fix test failures caused by 0aff1798b5 2021-07-26 11:40:26 +01:00
David Sherwood 0aff1798b5 [Analysis] Add simple cost model for strict (in-order) reductions
I have added a new FastMathFlags parameter to getArithmeticReductionCost
to indicate what type of reduction we are performing:

  1. Tree-wise. This is the typical fast-math reduction that involves
  continually splitting a vector up into halves and adding each
  half together until we get a scalar result. This is the default
  behaviour for integers, whereas for floating point we only do this
  if reassociation is allowed.
  2. Ordered. This now allows us to estimate the cost of performing
  a strict vector reduction by treating it as a series of scalar
  operations in lane order. This is the case when FP reassociation
  is not permitted. For scalable vectors this is more difficult
  because at compile time we do not know how many lanes there are,
  and so we use the worst case maximum vscale value.

I have also fixed getTypeBasedIntrinsicInstrCost to pass in the
FastMathFlags, which meant fixing up some X86 tests where we always
assumed the vector.reduce.fadd/mul intrinsics were 'fast'.

New tests have been added here:

  Analysis/CostModel/AArch64/reduce-fadd.ll
  Analysis/CostModel/AArch64/sve-intrinsics.ll
  Transforms/LoopVectorize/AArch64/strict-fadd-cost.ll
  Transforms/LoopVectorize/AArch64/sve-strict-fadd-cost.ll

Differential Revision: https://reviews.llvm.org/D105432
2021-07-26 10:26:06 +01:00
Nico Weber b1777b04dc Revert "[VPlan] Add recipe for first-order rec phis, make splicing explicit."
Makes clang crash: https://reviews.llvm.org/D105008#2903350
This reverts commit d2a73fb44e.

Also revert a minor formatting follow-up:
This reverts commit 82834a6732.
2021-07-25 17:39:28 -04:00
Caroline Concatto 5a4de84d55 [LoopVectorize] Fix crash for predicated instruction with scalable VF
This patch avoids computing discounts for predicated instructions  when the
VF is scalable.
There is no support for vectorization of loops with division because the
vectorizer cannot guarantee that zero divisions will not happen.

This loop now does not use VF scalable

```
for (long long i = 0; i < n; i++)
    if (cond[i])
      a[i] /= b[i];
```

Differential Revision: https://reviews.llvm.org/D101916
2021-07-22 12:48:27 +01:00
Simon Pilgrim 1c9bec727a [InstCombine] Fold (gep (oneuse(gep Ptr, Idx0)), Idx1) -> (gep Ptr, (add Idx0, Idx1)) (PR51069)
As noticed on D106352, after we've folded "(select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))" if the inner Ptr was also a (now one use) gep we could then merge the geps, using the sum of the indices instead.

I've limited this to basic 2-op geps - a more general case further down InstCombinerImpl.visitGetElementPtrInst doesn't have the one-use limitation but only creates the add if it can be created via SimplifyAddInst.

https://alive2.llvm.org/ce/z/f8pLfD (Thanks Roman!)

Differential Revision: https://reviews.llvm.org/D106450
2021-07-22 10:58:51 +01:00
Kerry McLaughlin be753b207f Revert "[LV] Use lookThroughAnd with logical reductions"
Reverting patch due to buildbot failures.

This reverts commit e22a599672.
2021-07-21 15:16:00 +01:00
Simon Pilgrim ca9b60f9de [LoopVectorize] Regenerate sve-vector-reverse.ll test checks 2021-07-21 15:14:04 +01:00
Kerry McLaughlin e22a599672 [LV] Use lookThroughAnd with logical reductions
If a reduction Phi has a single user which `AND`s the Phi with a type mask,
`lookThroughAnd` will return the user of the Phi and the narrower type represented
by the mask. Currently this is only used for arithmetic reductions, whereas loops
containing logical reductions will create a reduction intrinsic using the widened
type, for example:

  for.body:
    %phi = phi i32 [ %and, %for.body ], [ 255, %entry ]
    %mask = and i32 %phi, 255
    %gep = getelementptr inbounds i8, i8* %ptr, i32 %iv
    %load = load i8, i8* %gep
    %ext = zext i8 %load to i32
    %and = and i32 %mask, %ext
    ...

^ this will generate an and reduction intrinsic such as the following:
    call i32 @llvm.vector.reduce.and.v8i32(<8 x i32>...)

The same example for an add instruction would create an intrinsic of type i8:
    call i8 @llvm.vector.reduce.add.v8i8(<8 x i8>...)

This patch changes AddReductionVar to call lookThroughAnd for other integer
reductions, allowing loops similar to the example above with reductions such
as and, or & xor to vectorize.

Reviewed By: david-arm, dmgreen

Differential Revision: https://reviews.llvm.org/D105632
2021-07-21 09:56:00 +01:00
Florian Hahn d2a73fb44e
[VPlan] Add recipe for first-order rec phis, make splicing explicit.
This patch adds a VPFirstOrderRecurrencePHIRecipe, to further untangle
VPWidenPHIRecipe into distinct recipes for distinct use cases/lowering.
See D104989 for a new recipe for reduction phis.

This patch also introduces a new `FirstOrderRecurrenceSplice`
VPInstruction opcode, which is used to make the forming of the vector
recurrence value explicit in VPlan. This more accurately models def-uses
in VPlan and also simplifies code-generation. Now, the vector recurrence
values are created at the right place during VPlan-codegeneration,
rather than during post-VPlan fixups.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D105008
2021-07-20 16:14:17 +02:00
Mindong Chen e908e063d1 [LoopUtils] Fix incorrect RT check bounds of loop-invariant mem accesses
This fixes the lower and upper bound calculation of a
RuntimeCheckingPtrGroup when it has more than one loop
invariant pointers. Resolves PR50686.

Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D104148
2021-07-19 19:38:24 +08:00
Mindong Chen f3814ed3e9 [LV] Re-generate check lines of some fragile tests (NFC)
Reviewed By: fhahn

Differential Revision: https://reviews.llvm.org/D105438
2021-07-19 19:38:24 +08:00
Florian Hahn 156b431c66
[LV] Add test with ptr induction used as scalar and vector.
Test case inspired by D105199.
2021-07-19 13:15:17 +02:00
Kerry McLaughlin 49d73130ca [LV] Avoid scalable vectorization for loops containing alloca
This patch returns an Invalid cost from getInstructionCost() for alloca
instructions if the VF is scalable, as otherwise loops which contain
these instructions will crash when attempting to scalarize the alloca.

Reviewed By: sdesmalen

Differential Revision: https://reviews.llvm.org/D105824
2021-07-16 11:47:13 +01:00
Sander de Smalen 239d01fa88 Reland "[LV] Print remark when loop cannot be vectorized due to invalid costs."
The original patch was:
  https://reviews.llvm.org/D105806

There were some issues with undeterministic behaviour of the sorting
function, which led to scalable-call.ll passing and/or failing. This
patch fixes the issue by numbering all instructions in the array first,
and using that number as the order, which should provide a consistent
ordering.

This reverts commit a607f64118.
2021-07-16 10:52:01 +01:00
Philip Reames 95346ba877 [LV] Enable vectorization of multiple exit loops w/computable exit counts
This change enables vectorization of multiple exit loops when the exit count is statically computable. That requirement - shared with the rest of LV - in turn requires each exit to be analyzeable and to dominate the latch.

The majority of work to support this was done in a set of previous patches. In particular,, 72314466 avoids having multiple edges from the middle block to the exits, and 4b33b2387 which added support for non-latch single exit and multiple exits with a single exiting block. As a result, this change is basically just removing a bailout and adjusting some tests now that the prerequisite work is done and has stuck in tree for a bit.

Differential Revision: https://reviews.llvm.org/D105817
2021-07-15 08:53:51 -07:00
Sander de Smalen a607f64118 Revert "[LV] Print remark when loop cannot be vectorized due to invalid costs."
This reverts commit efaf3099c8.
This reverts commit dc7bdc1e71.

Reverting patches due to buildbot failures.
2021-07-15 15:21:57 +01:00
Sander de Smalen dc7bdc1e71 [LV] Fix determinism for failing scalable-call.ll test.
The sort function for emitting an OptRemark was not deterministic,
which caused scalable-call.ll to fail on some buildbots. This patch
fixes that.

This patch also fixes an issue where `Instruction::comesBefore()`
is called when two Instructions are in different basic blocks,
which would otherwise cause an assertion failure.
2021-07-15 13:16:59 +01:00
Sander de Smalen efaf3099c8 [LV] Print remark when loop cannot be vectorized due to invalid costs.
This patch emits remarks for instructions that have invalid costs for
a given set of vectorization factors. Some example output:

  t.c:4:19: remark: Instruction with invalid costs prevented vectorization at VF=(vscale x 1): load
      dst[i] = sinf(src[i]);
                    ^
  t.c:4:14: remark: Instruction with invalid costs prevented vectorization at VF=(vscale x 1, vscale x 2, vscale x 4): call to llvm.sin.f32
      dst[i] = sinf(src[i]);
               ^
  t.c:4:12: remark: Instruction with invalid costs prevented vectorization at VF=(vscale x 1): store
      dst[i] = sinf(src[i]);
             ^

Reviewed By: fhahn, kmclaughlin

Differential Revision: https://reviews.llvm.org/D105806
2021-07-14 17:11:33 +01:00
Sander de Smalen eac1670739 [CostModel][AArch64] Make loads/stores of <vscale x 1 x eltty> invalid.
At the moment, <vscale x 1 x eltty> are not yet fully handled by the
code-generator, so to avoid vectorizing loops with that VF, we mark the
cost for these types as invalid.
The reason for not adding a new "TTI::getMinimumScalableVF" is because
the type is supposed to be a type that can be legalized. It partially is,
although the support for these types need some more work.

Reviewed By: paulwalker-arm, dmgreen

Differential Revision: https://reviews.llvm.org/D103882
2021-07-14 16:44:22 +01:00
Simon Pilgrim ae0d73ac3b [CostModel][X86] Adjust fptosi/fptoui SSE/AVX legalized costs based on llvm-mca reports.
Update (mainly) vXf32/vXf64 -> vXi8/vXi16 fptosi/fptoui costs based on the worst case costs from the script in D103695.

Move to using legalized types wherever possible, which allows us to prune the cost tables.
2021-07-12 20:38:25 +01:00
Sander de Smalen d2e4ccc790 [LV] Ignore candidate VFs with invalid costs.
This follows on from discussion on the mailing-list:
  https://lists.llvm.org/pipermail/llvm-dev/2021-June/151047.html

to interpret an Invalid cost as 'infinitely expensive', as this
simplifies some of the legalization issues with scalable vectors.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D105473
2021-07-12 09:58:22 +01:00
Alexey Bataev 0d74fd3fdf [SLP][COST][X86]Improve cost model for masked gather.
Revived D101297 in its original form + added some changes in X86
legalization cehcking for masked gathers.

This solution is the most stable and the most correct one. We have to
check the legality before trying to build the masked gather in SLP.
Without this check we have incorrect cost (for SLP) in case if the masked gather
is not legal/slower than the gather. And we're missing some
vectorization opportunities.

This can be fixed in the cost model, but in this case we need to add
special checks for the cost of GEPs for ScatterVectorize node, add
special check for small trees, etc., i.e. there are a lot of corner
cases here and there, which insrease code base and make it harder to
maintain the code.

> Can't we rely on cost model to deal with this? This can be profitable for futher vectorization, when we can start from such gather loads as seed.

The question from D101297. Actually, no, it can't. Actually, simple
gather may give us better result, especially after we started
vectorization of insertelements. Plus, like I said before, the cost for
non-legal masked gathers leads to missed vectorization opportunities.

Differential Revision: https://reviews.llvm.org/D105042
2021-07-08 11:53:30 -07:00
Philip Reames 723144665b [LV] Unconditionally branch from middle to scalar preheader if the scalar loop must execute (try 4)
Resubmit after the following changes:

* Fix a latent bug related to unrolling with required epilogue (see e49d65f). I believe this is the cause of the prior PPC buildbot failure.
* Disable non-latch exits for epilogue vectorization to be safe (9ffa90d)
* Split out assert movement (600624a) to reduce churn if this gets reverted again.

Previous commit message (try 3)

Resubmit after fixing test/Transforms/LoopVectorize/ARM/mve-gather-scatter-tailpred.ll

Previous commit message...

This is a resubmit of 3e5ce4 (which was reverted by 7fe41ac).  The original commit caused a PPC build bot failure we never really got to the bottom of.  I can't reproduce the issue, and the bot owner was non-responsive.  In the meantime, we stumbled across an issue which seems possibly related, and worked around a latent bug in 80e8025.  My best guess is that the original patch exposed that latent issue at higher frequency, but it really is just a guess.

Original commit message follows...

If we know that the scalar epilogue is required to run, modify the CFG to end the middle block with an unconditional branch to scalar preheader. This is instead of a conditional branch to either the preheader or the exit block.

The motivation to do this is to support multiple exit blocks. Specifically, the current structure forces us to identify immediate dominators and *which* exit block to branch from in the middle terminator. For the multiple exit case - where we know require scalar will hold - these questions are ill formed.

This is the last change needed to support multiple exit loops, but since the diffs are already large enough, I'm going to land this, and then enable separately. You can think of this as being NFCIish prep work, but the changes are a bit too involved for me to feel comfortable tagging the review that way.

Differential Revision: https://reviews.llvm.org/D94892
2021-07-07 07:44:35 -07:00
Dylan Fleming 7215dcfe36 [SVE] Fix ShuffleVector cast<FixedVectorType> in truncateToMinimalBitwidths
Depends on D104239

Reviewed By: sdesmalen

Differential Revision: https://reviews.llvm.org/D105341
2021-07-07 15:30:10 +01:00
Dylan Fleming 7586b47fb6 [SVE] Fix cast<FixedVectorType> in truncateToMinimalBitwidths
Reviewed By: sdesmalen

Differential Revision: https://reviews.llvm.org/D104239
2021-07-07 09:58:05 +01:00
Florian Hahn ef0d147cdc
Recommit "[VPlan] Add VPReductionPHIRecipe (NFC)." and follow-ups.
This reverts commit 706bbfb35b.

The committed version moves the definition of VPReductionPHIRecipe out
of an ifdef only intended for ::print helpers. This should resolve the
build failures that caused the revert
2021-07-06 14:15:42 +01:00
Kerry McLaughlin a7512401e5 [LV] Prevent vectorization with unsupported element types.
This patch adds a TTI function, isElementTypeLegalForScalableVector, to query
whether it is possible to vectorize a given element type. This is called by
isLegalToVectorizeInstTypesForScalable to reject scalable vectorization if
any of the instruction types in the loop are unsupported, e.g:

  int foo(__int128_t* ptr, int N)
    #pragma clang loop vectorize_width(4, scalable)
    for (int i=0; i<N; ++i)
      ptr[i] = ptr[i] + 42;

This example currently crashes if we attempt to vectorize since i128 is not a
supported type for scalable vectorization.

Reviewed By: sdesmalen, david-arm

Differential Revision: https://reviews.llvm.org/D102253
2021-07-06 13:06:21 +01:00
Florian Hahn 706bbfb35b
Revert "[VPlan] Add VPReductionPHIRecipe (NFC)." and follow-ups
This reverts commit 3fed6d443f,
bbcbf21ae6 and
6c3451cd76.

The changes causing build failures with certain configurations, e.g.
https://lab.llvm.org/buildbot/#/builders/67/builds/3365/steps/6/logs/stdio

    lib/libLLVMVectorize.a(LoopVectorize.cpp.o): In function `llvm::VPRecipeBuilder::tryToCreateWidenRecipe(llvm::Instruction*, llvm::ArrayRef<llvm::VPValue*>, llvm::VFRange&, std::unique_ptr<llvm::VPlan, std::default_delete<llvm::VPlan> >&) [clone .localalias.8]':
    LoopVectorize.cpp:(.text._ZN4llvm15VPRecipeBuilder22tryToCreateWidenRecipeEPNS_11InstructionENS_8ArrayRefIPNS_7VPValueEEERNS_7VFRangeERSt10unique_ptrINS_5VPlanESt14default_deleteISA_EE+0x63b): undefined reference to `vtable for llvm::VPReductionPHIRecipe'
    collect2: error: ld returned 1 exit status
2021-07-06 12:10:03 +01:00
Florian Hahn 6c3451cd76
[VPlan] Add VPReductionPHIRecipe (NFC).
This patch is a first step towards splitting up VPWidenPHIRecipe into
separate recipes for the 3 distinct cases they model:

    1. reduction phis,
    2. first-order recurrence phis,
    3. pointer induction phis.

This allows untangling the code generation and allows us to reduce the
reliance on LoopVectorizationCostModel during VPlan code generation.

Discussed/suggested in D100102, D100113, D104197.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D104989
2021-07-06 11:25:28 +01:00
Florian Hahn 0bb9c05b1e
[LV] Extend FIXME in test add in 91ee1e3799. 2021-07-05 15:56:03 +01:00
Florian Hahn 91ee1e3799
[LV] Add initial test cases with small clamped indices. 2021-07-05 15:51:12 +01:00
Sjoerd Meijer ee752134ac [AArch64] Cost-model i8 vector loads/stores
Loads of <4 x i8> vectors were modeled as extremely expensive. And while we
don't have a load instruction that supports this, it isn't that expensive to
create a vector of i8 elements. The codegen for this was fixed/optimised in
D105110. This now tweaks the cost model and enables SLP vectorisation of my
motivating case loadi8.ll.

Differential Revision: https://reviews.llvm.org/D103629
2021-07-05 11:25:10 +01:00
Simon Pilgrim cdca1785d3 [CostModel][X86] Adjust uitofp(vXi64) SSE/AVX legalized costs based on llvm-mca reports.
Update v4i64 -> v4f32/v4f64 uitofp costs based on the worst case costs from the script in D103695.

Fixes a few regressions before we start adding AVX costs for legalized types.
2021-07-02 13:09:00 +01:00
Simon Pilgrim 0af9b25aff [LoopVectorize][X86] Regenerate conversion-cost.ll tests 2021-07-01 15:34:20 +01:00
Philip Reames e49d65f36d [LV] Fix bug when unrolling (only) a loop with non-latch exit
If we unroll a loop in the vectorizer (without vectorizing), and the cost model requires a epilogue be generated for correctness, the code generation must actually do so.

The included test case on an unmodified opt will access memory one past the expected bound.  As a result, this patch is fixing a latent miscompile.

Differential Revision: https://reviews.llvm.org/D103700
2021-06-29 08:04:26 -07:00
Florian Hahn 47215e1c62
[LV] Fix crash when target instruction for sinking is dead.
This patch fixes a crash when the target instruction for sinking is
dead. In that case, no recipe is created and trying to get the recipe
for it results in a crash. To ensure all sink targets are alive, find &
use the first previous alive instruction.

Note that the case where the sink source is dead is already handled.

Found by
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=35320

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D104603
2021-06-29 13:31:22 +01:00
David Sherwood 303b6d5e98 [LoopVectorize] Add support for scalable vectorization of invariant stores
Previously in setCostBasedWideningDecision if we encountered an
invariant store we just assumed that we could scalarize the store
and called getUniformMemOpCost to get the associated cost.
However, for scalable vectors this is not an option because it is
not currently possibly to scalarize the store. At the moment we
crash in VPReplicateRecipe::execute when trying to scalarize the
store.

Therefore, I have changed setCostBasedWideningDecision so that if
we are storing a scalable vector out to a uniform address and the
target supports scatter instructions, then we should use those
instead.

Tests have been added here:

  Transforms/LoopVectorize/AArch64/sve-inv-store.ll

Differential Revision: https://reviews.llvm.org/D104624
2021-06-29 11:56:09 +01:00
Philip Reames 716d2fedbf Precommit miscompile test from D103700 2021-06-28 16:00:42 -07:00
Kerry McLaughlin f99672568f [LoopVectorize] Fix strict reductions where VF = 1
Currently we will allow loops with a fixed width VF of 1 to vectorize
if the -enable-strict-reductions flag is set. However, the loop vectorizer
will not use ordered reductions if `VF.isScalar()` and the resulting
vectorized loop will be out of order.

This patch removes `VF.isVector()` when checking if ordered reductions
should be used. Also, instead of converting the FAdds to reductions if the
VF = 1, operands of the FAdds are changed such that the order is preserved.

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D104533
2021-06-28 11:27:10 +01:00
Florian Hahn 80aa7e147e
[VPlan] Merge predicated-triangle regions, after sinking.
Sinking scalar operands into predicated-triangle regions may allow
merging regions. This patch adds a VPlan-to-VPlan transform that tries
to merge predicate-triangle regions after sinking.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D100260
2021-06-28 11:10:38 +01:00
Florian Hahn f1a6430272
[VPlan] Track both incoming values for first-order recurrence phis.
This patch updates VPWidenPHI recipes for first-order recurrences to
also track the incoming value from the back-edge. Similar to D99294,
which did the same for reductions.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D104197
2021-06-27 14:29:35 +01:00
Florian Hahn f6ba845da3
[VPlan] Fix indentation of check lines in sinking test (NFC). 2021-06-24 16:39:16 +01:00
Florian Hahn 833bdbe93c
[LV] Support sinking recipe in replicate region after another region.
This patch handles sinking a replicate region after another replicate
region. In that case, we can connect the sink region after the target
region. This properly handles the case for which an assertion has been
added in 337d765282.

Fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=34842.

Reviewed By: Ayal

Differential Revision: https://reviews.llvm.org/D103514
2021-06-24 13:58:42 +01:00
Eli Friedman 8f3d16905d [ScalarEvolution] Ensure backedge-taken counts are not pointers.
A backedge-taken count doesn't refer to memory; returning a pointer type
is nonsense. So make sure we always return an integer.

The obvious way to do this would be to just convert the operands of the
icmp to integers, but that doesn't quite work out at the moment:
isLoopEntryGuardedByCond currently gets confused by ptrtoint operations.
So we perform the ptrtoint conversion late for lt/gt operations.

The test changes are mostly innocuous. The most interesting changes are
more complex SCEV expressions of the form "(-1 * (ptrtoint i8* %ptr to
i64)) + %ptr)". This is expected: we can't fold this to zero because we
need to preserve the pointer base.

The call to isLoopEntryGuardedByCond in howFarToZero is less precise
because of ptrtoint operations; this shows up in the function
pr46786_c26_char in ptrtoint.ll. Fixing it here would require more
complex refactoring.  It should eventually be fixed by future
improvements to isImpliedCond.

See https://bugs.llvm.org/show_bug.cgi?id=46786 for context.

Differential Revision: https://reviews.llvm.org/D103656
2021-06-21 16:24:16 -07:00
Bjorn Pettersson 4c7f820b2b Update @llvm.powi to handle different int sizes for the exponent
This can be seen as a follow up to commit 0ee439b705,
that changed the second argument of __powidf2, __powisf2 and
__powitf2 in compiler-rt from si_int to int. That was to align with
how those runtimes are defined in libgcc.
One thing that seem to have been missing in that patch was to make
sure that the rest of LLVM also handle that the argument now depends
on the size of int (not using the si_int machine mode for 32-bit).
When using __builtin_powi for a target with 16-bit int clang crashed.
And when emitting libcalls to those rtlib functions, typically when
lowering @llvm.powi), the backend would always prepare the exponent
argument as an i32 which caused miscompiles when the rtlib was
compiled with 16-bit int.

The solution used here is to use an overloaded type for the second
argument in @llvm.powi. This way clang can use the "correct" type
when lowering __builtin_powi, and then later when emitting the libcall
it is assumed that the type used in @llvm.powi matches the rtlib
function.

One thing that needed some extra attention was that when vectorizing
calls several passes did not support that several arguments could
be overloaded in the intrinsics. This patch allows overload of a
scalar operand by adding hasVectorInstrinsicOverloadedScalarOpd, with
an entry for powi.

Differential Revision: https://reviews.llvm.org/D99439
2021-06-17 09:38:28 +02:00
Florian Hahn 9e77526d46
[VPlan] Add additional tests for region merging.
Add additional tests suggested in D100260.

Also drop the unneeded `indvars.` prefix from induction phi name.
2021-06-14 11:25:06 +01:00
Mindong Chen 8449af41e5 [LoopVectorize] precommit pr50686.ll for D104148 2021-06-14 13:58:25 +08:00
Florian Hahn 0d9e8f5f4b
[VPlan] Add more sinking/merging tests with predicated loads/stores. 2021-06-12 15:36:51 +01:00
Joachim Meyer 4f01122c3f [LV] Parallel annotated loop does not imply all loads can be hoisted.
As noted in https://bugs.llvm.org/show_bug.cgi?id=46666, the current behavior of assuming if-conversion safety if a loop is annotated parallel (`!llvm.loop.parallel_accesses`), is not expectable, the documentation for this behavior was since removed from the LangRef again, and can lead to invalid reads.
This was observed in POCL (https://github.com/pocl/pocl/issues/757) and would require similar workarounds in current work at hipSYCL.

The question remains why this was initially added and what the implications of removing this optimization would be.
Do we need an alternative mechanism to propagate the information about legality of if-conversion?
Or is the idea that conditional loads in `#pragma clang loop vectorize(assume_safety)` can be executed unmasked without additional checks flawed in general?
I think this implication is not part of what a user of that pragma (and corresponding metadata) would expect and thus dangerous.

Only two additional tests failed, which are adapted in this patch. Depending on the further direction force-ifcvt.ll should be removed or further adapted.

Reviewed By: jdoerfert

Differential Revision: https://reviews.llvm.org/D103907
2021-06-10 23:37:57 +02:00
Kerry McLaughlin 5db52751a5 [CostModel] Return an invalid cost for memory ops with unsupported types
Fixes getTypeConversion to return `TypeScalarizeScalableVector` when a scalable vector
type cannot be legalized by widening/splitting. When this is the method of legalization
found, getTypeLegalizationCost will return an Invalid cost.

The getMemoryOpCost, getMaskedMemoryOpCost & getGatherScatterOpCost functions already call
getTypeLegalizationCost and will now also return an Invalid cost for unsupported types.

Reviewed By: sdesmalen, david-arm

Differential Revision: https://reviews.llvm.org/D102515
2021-06-08 12:07:36 +01:00