We are planning to add the bf16 value type in the HPR register class
and this will make the codegen patterns ambiguous.
Differential Revision: https://reviews.llvm.org/D81505
Outline chunks of code which need to save and restore the link register
when a spare register can be used to it.
Differential Revision: https://reviews.llvm.org/D80127
Similar to a recent change to the X86 backend, this changes things so
that we always produce a reduction intrinsics for all reduction types,
not just the legal ones. This gives a better chance in the backend to
custom lower them to something more suitable for MVE. Especially for
something like fadd the in-order reduction produced during DAG lowering
is already better than the shuffles produced in the midend, and we can
do even better with a bit of custom lowering.
Differential Revision: https://reviews.llvm.org/D81398
Add the remaining arithmetic opcodes into the generic implementation
of getUserCost and then call this from getInstructionThroughput. Most
of the backends have been modified to return the base implementation
for cost kinds other RecipThroughput. The outlier here is AMDGPU
which already uses getArithmeticInstrCost for all the cost kinds.
This change means that most of the opcodes can be removed from that
backends implementation of getUserCost.
Differential Revision: https://reviews.llvm.org/D80992
Add cases for icmp, fcmp and select into the switch statement of the
generic getUserCost implementation with getInstructionThroughput then
calling into it. The BasicTTI and backend implementations have be set
to return a default value (1) when a cost other than throughput is
being queried.
Differential Revision: https://reviews.llvm.org/D80550
Summary: Note to downstream target maintainers: this might silently change the semantics of your code if you override `TargetLowering::HandleByVal` without marking it `override`.
This patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: sdardis, hiraditya, jrtc27, atanasyan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81365
Summary:
With -mbig-endian -mexecute-only and targeting an fpu,
an incorrect sequence of movw/movt was generated to construct a double literal.
The test suite was hardwired to check these wrong values.
The fault was caused by the explicit word swap in LowerConstantFP().
With -mbig-endian -mexecute-only -mfpu=none, a correct sequence of
movw/movt is generated to construct a double literal.
The test suite did not test this no fpu case.
The test suite expected values have been corrected.
The test file is updated to add testing of fpu=none case
Reviewers: christof, llvm-commits, dmgreen
Reviewed By: dmgreen
Subscribers: dmgreen, kristof.beyls, hiraditya, danielkiss
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81259
Change-Id: Ia3737df243218c89c82f02b7f9f4032ecd5a3917
Previously, it tried to infer the correct destination block from the
successor list, but this is a rather tricky propspect, given the
existence of successors that occur mid-block, such as invoke, and
potentially in the future, callbr/INLINEASM_BR. (INLINEASM_BR, in
particular would be problematic, because its successor blocks are not
distinct from "normal" successors, as EHPads are.)
Instead, require the caller to pass in the expected fallthrough
successor explicitly. In most callers, the correct block is
immediately clear. But, in MachineBlockPlacement, we do need to record
the original ordering, before starting to reorder blocks.
Unfortunately, the goal of decoupling the behavior of end-of-block
jumps from the successor list has not been fully accomplished in this
patch, as there is currently no other way to determine whether a block
is intended to fall-through, or end as unreachable. Further work is
needed there.
Differential Revision: https://reviews.llvm.org/D79605
Similar to VMOVN, a VQMOVN will only demand the top/bottom lanes of it's
first input. However unlike VMOVN it will need access to the entire
second argument, as that value is saturated not just moved in place.
Differential Revision: https://reviews.llvm.org/D80515
Use getMemoryOpCost from the generic implementation of getUserCost
and have getInstructionThroughput return the result of that for loads
and stores.
This also means that the X86 implementation of getUserCost can be
removed with the functionality folded into its getMemoryOpCost.
Differential Revision: https://reviews.llvm.org/D80984
Let the codegen recognized the nomerge attribute and disable branch folding when the attribute is given
Differential Revision: https://reviews.llvm.org/D79537
These patterns for i8 and i16 VMLA's were missing. They end up from
legalized vector.reduce.add.v8i16 and vector.reduce.add.v16i8, and
although the instruction works differently (the mul and add are
performed in a higher precision), I believe it is OK because only an
i8/i16 are demanded from them, and so the results will be the same. At
least, they pass any testing I can think to run on them.
There are some tests that end up looking worse, but are quite artificial
due to passing half vector types through a call boundary. I would not
expect the vmull to realistically come up like that, and a vmlava is
likely better a lot of the time.
Differential Revision: https://reviews.llvm.org/D80524
This is split off from D79100 and adds a new target hook emitGetActiveLaneMask
that can be queried to check if the intrinsic @llvm.get.active.lane.mask() is
supported by the backend and if it should be emitted for a given loop.
See also commit rG7fb8a40e5220 and its commit message for more details/context
on this new intrinsic.
Differential Revision: https://reviews.llvm.org/D80597
Summary:
Instead of generating two i32 instructions for each load or store of a volatile
i64 value (two LDRs or STRs), now emit LDRD/STRD.
These improvements cover architectures implementing ARMv5TE or Thumb-2.
The code generation explicitly deviates from using the register-offset
variant of LDRD/STRD. In this variant, the register allocated to the
register-offset cannot be reused in any of the remaining operands. Such
restriction seems to be non-trivial to implement in LLVM, thus it is
left as a to-do.
Differential Revision: https://reviews.llvm.org/D70072
Summary:
In Thumb2's frame index rewriting process, the address mode i8s4, which
is used by LDRD and STRD instructions, is handled by taking the
immediate offset operand and multiplying it by 4.
This behaviour is wrong, however. In this specific address mode, the
MachineInstr's immediate operand is already in the expected form. By
consequence of that, multiplying it once more by 4 yields a flawed
offset value, four times greater than it should be.
Differential Revision: https://reviews.llvm.org/D80557
Add the remaining cast instruction opcodes to the base implementation
of getUserCost and directly return the result. This allows
getInstructionThroughput to return getUserCost for the casts. This
has required changes to PPC and SystemZ because they implement
getUserCost and/or getCastInstrCost with adjustments for vector
operations. Adjusts have also been made in the remaining backends
that implement the method so that they still produce a cost of zero
or one for cost kinds other than throughput.
Differential Revision: https://reviews.llvm.org/D79848
Replace with forward declaration and move dependency down to source files that actually need it.
Both TargetLowering.h and TargetMachine.h are 2 of the most expensive headers (top 10) in the ClangBuildAnalyzer report when building llc.
If the caller needs to reponsible for making sure the MaybeAlign
has a value, then we should just make the caller convert it to an Align
with operator*.
I explicitly deleted the relational comparison operators that
were being inherited from Optional. It's unclear what the meaning
of two MaybeAligns were one is defined and the other isn't
should be. So make the caller reponsible for defining the behavior.
I left the ==/!= operators from Optional. But now that exposed a
weird quirk that ==/!= between Align and MaybeAlign required the
MaybeAlign to be defined. But now we use the operator== from
Optional that takes an Optional and the Value.
Differential Revision: https://reviews.llvm.org/D80455
Negations are incorrectly added in numerous places and the code just happens to work.
Also fix a missed DW_CFA_def_cfa_offset negation in c693b9c321d5a40d012340619674cf790c9ac86c:
ARMAsmBackendDarwin::generateCompactUnwindEncoding
This reverts commit 8a12553223.
A bug has been found when generating code for Thumb2. In some very
specific cases, the prologue/epilogue emitter generates erroneous stack
offsets for the new LDRD instructions that access the stack.
This bug does not seem to be caused by the reverted patch though. Likely
the latter has made an undiscovered issue emerge in the
prologue/epilogue emission pass. Nevertheless, this reversion is
necessary since it is blocking users of the ARM backend.
Previously, the LowOverheadLoops pass couldn't handle VPT blocks
with conditions, or with multiple VCTPs. This patch improves the
LowOverheadLoops pass so it can handle those cases.
It also adds support for VCMPs before the VCTP.
Differential Revision: https://reviews.llvm.org/D78206
SCEVExpander modifies the underlying function so it is more suitable in
Transforms/Utils, rather than Analysis. This allows using other
transform utils in SCEVExpander.
This patch was originally committed as b8a3c34eee, but broke the
modules build, as LoopAccessAnalysis was using the Expander.
The code-gen part of LAA was moved to lib/Transforms recently, so this
patch can be landed again.
Reviewers: sanjoy.google, efriedma, reames
Reviewed By: sanjoy.google
Differential Revision: https://reviews.llvm.org/D71537
Given a VQMOVN(VSHR), we can fold that into a VQSHRN simply enough using
a few tablegen patterns.
Differential Revision: https://reviews.llvm.org/D77720
This adds two combines for VMOVN, one to fold
VMOVN[tb](c, VQMOVNb(a, b)) => VQMOVN[tb](c, b)
The other to perform demand bits analysis on the lanes of a VMOVN. We
know that only the bottom lanes of the second operand and the top or
bottom lanes of the Qd operand are needed in the result, depending on if
the VMOVN is bottom or top.
Differential Revision: https://reviews.llvm.org/D77718
This adds some custom lowering for VQMOVN, an instruction that can be
used to perform saturating truncates from a pair of min(max(X, -0x8000),
0x7fff), providing those constants are correct. This leaves a VQMOVNBs
which saturates the value and inserts that into the bottom lanes of an
existing vector. We then need to do something with the other lanes,
extending the value using a vmovlb.
Ideally, as will often be the case, only the bottom lane of what remains
will be demanded, allowing the vmovlb to be removed. Which should mean
the instruction is either equal or a win most of the time, and allows
some extra follow-up folding to happen.
Differential Revision: https://reviews.llvm.org/D77590
Adds support to build pre-incrementing scatters.
If the increment (i.e., add instruction) that is merged into
the scatter is the loop increment, an incrementing write-back
scatter can be built, which then assumes the role of the loop
increment.
Differential Revision: https://reviews.llvm.org/D79859
Enables Machine Outlining for ARM and Thumb2 modes. This is the first
patch of the series which adds all the basic logic for the support, and
only handles tail-calls and thunks.
The outliner can be turned on by using clang -moutline option or -mllvm
-enable-machine-outliner one (like AArch64).
Differential Revision: https://reviews.llvm.org/D76066
This patch implements the final bits of CMSE code generation:
* emit special linker symbols
* restrict parameter passing to no use memory
* emit BXNS and BLXNS instructions for returns from non-secure entry
functions, and non-secure function calls, respectively
* emit code to save/restore secure floating-point state around calls
to non-secure functions
* emit code to save/restore non-secure floating-pointy state upon
entry to non-secure entry function, and return to non-secure state
* emit code to clobber registers not used for arguments and returns
* when switching to no-secure state
Patch by Momchil Velikov, Bradley Smith, Javed Absar, David Green,
possibly others.
Differential Revision: https://reviews.llvm.org/D76518
Under MVE a vdup will always take a gpr register, not a floating point
value. During DAG combine we convert the types to a bitcast to an
integer in an attempt to fold the bitcast into other instructions. This
is OK, but only works inside the same basic block. To do the same trick
across a basic block boundary we need to convert the type in
codegenprepare, before the splat is sunk into the loop.
This adds a convertSplatType function to codegenprepare to do that,
putting bitcasts around the splat to force the type to an integer. There
is then some adjustment to the code in shouldSinkOperands to handle the
extra bitcasts.
Differential Revision: https://reviews.llvm.org/D78728
Similar to fmul/fadd, we can sink a splat into a loop containing a fma
in order to use more register instruction variants. For that there are
also adjustments to the sinking code to handle more than 2 arguments.
Differential Revision: https://reviews.llvm.org/D78386
This patch adds a new TTI hook to allow targets to tell LSR that
a chain including some instruction is already profitable and
should not be optimized. This patch also adds an implementation
of this TTI hook for ARM so LSR doesn't optimize chains that include
the VCTP intrinsic.
Differential Revision: https://reviews.llvm.org/D79418
Summary:
In the assembler or inline assembler,
attempting to use an invalid fixup type
gives a crash with a segmentation fault.
__attribute__((naked))
void foo(void) {
__asm__("mov r9, :lower16:bar(prel31)");
}
This should give a proper error message when building for ARM or Thumb.
This brings it in line with AARCH64.
This fixes all 8 instances of llvm_unreachable("Unsupported Modifier");
in ARM/MCTargetDesc/ARMELFObjectWriter.cpp.
A test is provided for each instance.
Reviewers: llvm-commits, MarkMurrayARM
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, danielkiss
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79782
Change-Id: I6971ba37f129cc453568fe71514ccb2ac9d16831
Summary:
In 2e24219d3c, a number of ARM pcrel fixups were resolved at assembly
time, to solve PR44929. This only covered little-endian ARM however, so
add similar fixups for big-endian ARM. Also extend the test case to
cover big-endian ARM.
Reviewers: hans, psmith, MaskRay
Reviewed By: psmith, MaskRay
Subscribers: kristof.beyls, hiraditya, danielkiss, emaste, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79774
getARMVPTBlockMask was an outdated function that only handled basic
block masks: T, TT, TTT and TTTT. This worked fine before the MVE
VPT Block Insertion Pass improvements as it was the only kind of
masks that it could generate, but now it can generate more complex
masks that uses E predicates, so it's dangerous to use that function
to calculate VPT/VPST block masks.
I replaced it with 2 different functions:
- expandPredBlockMask, in ARMBaseInfo. This adds an "E" or "T" at
the end of an existing PredBlockMask.
- recomputeVPTBlockMask, in Thumb2InstrInfo. This takes an iterator
to a VPT/VPST instruction and recomputes its block mask by looking
at the predicated instructions that follows it. This should be
used to recompute a block mask after removing/adding a predicated
instruction to the block.
The expandPredBlockMask function is pretty much imported from the MVE
VPT Blocks pass.
I had to change the ARMLowOverheadLoops and MVEVPTBlocks passes as well
so they could use these new functions.
Differential Revision: https://reviews.llvm.org/D78201
- Specifically check for sext/zext users which have 'long' form NEON
instructions.
- Add more entries to the table for sext/zexts so that we can report
more accurately the number of vmovls required for NEON.
- Pass the instruction to the pass implementation.
Differential Revision: https://reviews.llvm.org/D79561
Unlike Neon, MVE does not have a way of duplicating from a vector lane,
so a VDUPLANE currently selects to a VDUP(move_from_lane(..)). This
forces that to be done earlier as a dag combine to allow other folds to
happen.
It converts to a VDUP(EXTRACT). On FP16 this is then folded to a
VGETLANEu to prevent it from creating a vmovx;vmovhr pair, using a
single move_from_reg instead.
Differential Revision: https://reviews.llvm.org/D79606
This patch stores the alignment for ConstantPoolSDNode as an
Align and updates the getConstantPool interface to take a MaybeAlign.
Removing getAlignment() will be done as a follow up.
Differential Revision: https://reviews.llvm.org/D79436
Enables the MVEGatherScatterLowering pass to build
pre-incrementing gathers. Incrementing writeback gathers
are built when it is possible to replace the loop increment
instruction.
Differential Revision: https://reviews.llvm.org/D76786
Much like the similar combine added recently for VMOVrh load, this
adds a fold for VMOVhr load turning it into a vldr.f16 as opposed to a
vldrh and vmov.f16.
Differential Revision: https://reviews.llvm.org/D78714
If we get into the situation where we are extracting from a VDUP, the
extracted value is just the origin, so long as the types match or we can
bitcast between the two.
Differential Revision: https://reviews.llvm.org/D78708
The idea, under MVE, is to introduce more bitcasts around VDUP's in an
attempt to get the type correct across basic block boundaries. In order
to do that without other regressions we need a few fixups, of which this
is the first. If the code is a bitcast of a VDUP, we can convert that
straight into a VDUP of the new type, so long as they have the same
size.
Differential Revision: https://reviews.llvm.org/D78706
This patch implements the final bits of CMSE code generation:
* emit special linker symbols
* restrict parameter passing to not use memory
* emit BXNS and BLXNS instructions for returns from non-secure entry
functions, and non-secure function calls, respectively
* emit code to save/restore secure floating-point state around calls
to non-secure functions
* emit code to save/restore non-secure floating-pointy state upon
entry to non-secure entry function, and return to non-secure state
* emit code to clobber registers not used for arguments and returns
when switching to no-secure state
Patch by Momchil Velikov, Bradley Smith, Javed Absar, David Green,
possibly others.
Differential Revision: https://reviews.llvm.org/D76518
getScalarizationOverhead is only ever called with vectors (and we already had a load of cast<VectorType> calls immediately inside the functions).
Followup to D78357
Reviewed By: @samparker
Differential Revision: https://reviews.llvm.org/D79341
A PREDICATE_CAST(PREDICATE_CAST(X)) can be converted to a
PREDICATE_CAST(X) as the operation can convert between any forms of
predicates (v4i1/v8i1/v16i1/i32). Unfortunately I got the type wrong on
one of the rarer converts, which would lead to invalid nodes during
isel. This fixes it up to use the correct type.
Differential Revision: https://reviews.llvm.org/D79402
Make the kind of cost explicit throughout the cost model which,
apart from making the cost clear, will allow the generic parts to
calculate better costs. It will also allow some backends to
approximate and correlate the different costs if they wish. Another
benefit is that it will also help simplify the cost model around
immediate and intrinsic costs, where we currently have multiple APIs.
RFC thread:
http://lists.llvm.org/pipermail/llvm-dev/2020-April/141263.html
Differential Revision: https://reviews.llvm.org/D79002
This patch makes the folding of or(A, B) into not(and(not(A), not(B)))
more agressive for I1 vector. This only affects Thumb2 MVE and improves
codegen, because it removes a lot of msr/mrs instructions on VPR.P0.
This patch also adds a xor(vcmp) -> !vcmp fold for MVE.
Differential Revision: https://reviews.llvm.org/D77202
This patch adds an implementation of PerformVSELECTCombine in the
ARM DAG Combiner that transforms vselect(not(cond), lhs, rhs) into
vselect(cond, rhs, lhs).
Normally, this should be done by the target-independent DAG Combiner,
but it doesn't handle the kind of constants that we generate, so we
have to reimplement it here.
Differential Revision: https://reviews.llvm.org/D77712
This changes the logic with lowering fp16 bitcasts to always produce
either a VMOVhr or a VMOVrh, instead of only trying to do it with
certain surrounding nodes. To perform the same optimisations demand bits
and known bits information has been added for them.
Differential Revision: https://reviews.llvm.org/D78587
There are several different types of cost that TTI tries to provide
explicit information for: throughput, latency, code size along with
a vague 'intersection of code-size cost and execution cost'.
The vectorizer is a keen user of RecipThroughput and there's at least
'getInstructionThroughput' and 'getArithmeticInstrCost' designed to
help with this cost. The latency cost has a single use and a single
implementation. The intersection cost appears to cover most of the
rest of the API.
getUserCost is explicitly called from within TTI when the user has
been explicit in wanting the code size (also only one use) as well
as a few passes which are concerned with a mixture of size and/or
a relative cost. In many cases these costs are closely related, such
as when multiple instructions are required, but one evident diverging
cost in this function is for div/rem.
This patch adds an argument so that the cost required is explicit,
so that we can make the important distinction when necessary.
Differential Revision: https://reviews.llvm.org/D78635
This method has been commented as deprecated for a while. Remove
it and replace all uses with the equivalent getCalledOperand().
I also made a few cleanups in here. For example, to removes use
of getElementType on a pointer when we could just use getFunctionType
from the call.
Differential Revision: https://reviews.llvm.org/D78882
D63847 added `MCInstrAnalysis::evaluateMemoryOperandAddress()`. This patch
leverages the feature to print the target addresses for evaluable instructions.
```
-400a: movl 4080(%rip), %eax
+400a: movl 4080(%rip), %eax # 5000 <data1>
```
This patch also deletes `MIA->isCall(Inst) || MIA->isUnconditionalBranch(Inst) || MIA->isConditionalBranch(Inst)`
which is used to guard `MCInstrAnalysis::evaluateBranch()`
Reviewed By: jhenderson, skan
Differential Revision: https://reviews.llvm.org/D78776
There are some intrinsics like this that currently block tail
predication, but should be fine. This allows fma through, as the one
that I ran into. There may be others that need the same treatment but
I've only done this one here.
Differential Revision: https://reviews.llvm.org/D78385
hasNoSchedulingInfo should be used for Pseudo's and other instructions
that are never expected to be scheduled. This removes the flag from new
ARM instructions, instead fixing the A57 schedule by marking the related
architecture features as unsupported.
When compiling for a arm5te cpu from clang, the +dsp attribute is set.
This meant we could try and generate qadd8 instructions where we would
end up having no pattern. I've changed the condition here to be hasV6Ops
&& hasDSP, which is what other parts of ARMISelLowering seem to use for
similar instructions.
Fixed PR45677.
Differential Revision: https://reviews.llvm.org/D78877
Follow-up of D78082 (x86-64).
This change avoids dynamic relocations in `xray_instr_map` for ARM/AArch64/powerpc64le.
MIPS64 cannot use 64-bit PC-relative addresses because R_MIPS_PC64 is not defined.
Because MIPS32 shares the same code, for simplicity, we don't use PC-relative addresses for MIPS32 as well.
Tested on AArch64 Linux and ppc64le Linux.
Reviewed By: ianlevesque
Differential Revision: https://reviews.llvm.org/D78590
This patch upstreams support for the Armv8.6-a Matrix Multiplication
Extension. A summary of the features can be found here:
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
This patch includes:
- Assembly support for AArch32 and Assembly Parsing
D77872 has already added the MC representations of the instructions so that
they can be used in code gen; this patch fills in the details needed to
make assembly parsing work, and adds tests for asm and disasm
This is part of a patch series, starting with BFloat16 support and
the other components in the armv8.6a extension (in previous patches
linked in phabricator)
Based on work by:
- Luke Geeson
- Oliver Stannard
- Luke Cheeseman
Reviewers: t.p.northover, simon_tatham
Reviewed By: simon_tatham
Subscribers: simon_tatham, ostannard, kristof.beyls, hiraditya,
danielkiss, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77874
This patch upstreams support for the Armv8.6-a Matrix Multiplication
Extension. A summary of the features can be found here:
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
This patch includes:
- Assembly support for AArch32
- Intrinsics Support for AArch32 Neon Intrinsics for Matrix
Multiplication
Note: these extensions are optional in the 8.6a architecture and so have
to be enabled by default
No additional IR types or C Types are needed for this extension.
This is part of a patch series, starting with BFloat16 support and
the other components in the armv8.6a extension (in previous patches
linked in phabricator)
Based on work by:
- Luke Geeson
- Oliver Stannard
- Luke Cheeseman
Reviewers: t.p.northover, miyuki
Reviewed By: miyuki
Subscribers: miyuki, ostannard, kristof.beyls, hiraditya, danielkiss,
cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77872
Summary:
This commit recommits the reversion of https://reviews.llvm.org/D75039.
Concensus appears to be in favour of assembly-time resolution of
these ADR and LDR relocations, in line with GNU. The previous
backout broke many lld tests, now fixed by Peter Smith in
61bccda9d9.
Reviewers: psmith
Subscribers: kristof.beyls, hiraditya, danielkiss, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78301
If a 16-bit thumb STM with writeback stores the base register but it isn't the
first register in the list, then an unknown value is stored. The load/store
optimizer knows this and generates a 32-bit STM without writeback instead, but
thumb2 size reduction converts it into a 16-bit STM. Fix this by having thumb2
size reduction notice such STMs and leave them as they are.
Differential Revision: https://reviews.llvm.org/D78493
This adds some extra processing into the Pre-RA ARM load/store optimizer
to detect and merge MVE loads/stores and adds of the same base. This we
don't always turn into a post-inc during ISel, and due to the nature of
it being a graph we don't always know an order to use for the nodes, not
knowing which nodes to make post-inc and which to use the new post-inc
of. After ISel, we have an order that we can use to post-inc the
following instructions.
So this looks for a loads/store with a starting offset of 0, and an
add/sub from the same base, plus a number of other loads/stores. We then
do some checks and convert the zero offset load/store into a postinc
variant. Any loads/stores after it have the offset subtracted from their
immediates. For example:
LDR #4 LDR #4
LDR #0 LDR_POSTINC #16
LDR #8 LDR #-8
LDR #12 LDR #-4
ADD #16
It only handles MVE loads/stores at the moment. Normal loads/store will
be added in a followup patch, they just have some extra details to
ensure that we keep generating LDRD/LDM successfully.
Differential Revision: https://reviews.llvm.org/D77813
Finding the loop tripcount is the first crucial step in preparing a loop for
tail-predication, and this adds a debug message if a tripcount cannot be found.
And while I was at it, I added some more comments here and there.
Differential Revision: https://reviews.llvm.org/D78485
The logic in ARMParallelDSP is setup to merge two 16-bits loads into
a 32-bit load and feed them into the smlads. This requires that four
loads are combined for the four inputs, but there wasn't actually a
check for this.
Differential Revision: https://reviews.llvm.org/D78492
Summary:
Before this patch, `relaxInstruction` takes three arguments, the first
argument refers to the instruction before relaxation and the third
argument is the output instruction after relaxation. There are two quite
strange things:
1) The first argument's type is `const MCInst &`, the third
argument's type is `MCInst &`, but they may be aliased to the same
variable
2) The backends of ARM, AMDGPU, RISC-V, Hexagon assume that the third
argument is a fresh uninitialized `MCInst` even if `relaxInstruction`
may be called like `relaxInstruction(Relaxed, STI, Relaxed)` in a
loop.
In this patch, we drop the thrid argument, and let `relaxInstruction`
directly modify the given instruction. Also, this patch fixes the bug https://bugs.llvm.org/show_bug.cgi?id=45580, which is introduced by D77851, and
breaks the assumption of ARM, AMDGPU, RISC-V, Hexagon.
Reviewers: Razer6, MaskRay, jyknight, asb, luismarques, enderby, rtaylor, colinl, bcain
Reviewed By: Razer6, MaskRay, bcain
Subscribers: bcain, nickdesaulniers, nathanchance, wuzish, annita.zhang, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, tpr, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78364
Summary:
This commit reverts https://reviews.llvm.org/D75039. Concensus appears to
be in favour of assembly-time resolution of these ADR and LDR relocations,
in line with GNU.
Reviewers: psmith
Subscribers: kristof.beyls, hiraditya, danielkiss, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78301
The API for shuffles and reductions uses generic Type parameters,
instead of VectorType, and so assertions and casts are used a lot.
This patch makes those types explicit, which means that the clients
can't be lazy, but results in less ambiguity, and that can only be a
good thing.
Bugzilla: https://bugs.llvm.org/show_bug.cgi?id=45562
Differential Revision: https://reviews.llvm.org/D78357
Add patterns that use a normal, non-wrapping, add and sub nodes along
with an arm vshr imm node.
Differential Revision: https://reviews.llvm.org/D77065
Fix for the address optimization for gathers and scatters which would in
some complex cases push out instructions not to the vector loop preheader,
but to other locations as well which lead to a scrambled order and the
compilation failing.
This patch ensures that said instructions are always pushed to the end
of the vector loop preheader.
Differential Revision: https://reviews.llvm.org/D78293
Summary:
The INLINEASM MIR instructions use immediate operands to encode the values of some operands.
The MachineInstr pretty printer function already handles those operands and prints human readable annotations instead of the immediates. This patch adds similar annotations to the output of the MIRPrinter, however uses the new MIROperandComment feature.
Reviewers: SjoerdMeijer, arsenm, efriedma
Reviewed By: arsenm
Subscribers: qcolombet, sdardis, jvesely, wdng, nhaehnle, hiraditya, jrtc27, atanasyan, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78088
Summary:
No error or warning is emitted when specific reserved registers are
written to in inline assembly. Therefore, writes to the program counter
or to the frame pointer, for instance, were permitted, which could have
led to undesirable behaviour.
Example:
int foo() {
register int a __asm__("r7"); // r7 = frame-pointer in M-class ARM
__asm__ __volatile__("mov %0, r1" : "=r"(a) : : );
return a;
}
In contrast, GCC issues an error in the same scenario.
This patch detects writes to specific reserved registers in inline
assembly for ARM and emits an error in such case. The detection works
for output and input operands. Clobber operands are not handled here:
they are already covered at a later point in
AsmPrinter::emitInlineAsm(const MachineInstr *MI). The registers
covered are: program counter, frame pointer and base pointer.
This is ARM only. Therefore the implementation of other targets'
counterparts remain open to do.
Reviewers: efriedma
Reviewed By: efriedma
Subscribers: kristof.beyls, hiraditya, danielkiss, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76848
The pass was incorrectly reverting back to a "T" when something wrote
to VPR inside a "E" block. This is not the correct behaviour, the
predicate should stay the same.
Differential Revision: https://reviews.llvm.org/D77798
It can be used to avoid passing the begin and end of a range.
This makes the code shorter and it is consistent with another
wrappers we already have.
Differential revision: https://reviews.llvm.org/D78016
The _GLOBAL_OFFSET_TABLE_ in SysVr4 ELF is conventionally the base of the
.got or .got.prel sections. Expressions such as _GLOBAL_OFFSET_TABLE_
- (.L1 +8) are used in assembler code to calculate offsets into the .got.
At present MC outputs a R_ARM_REL32 with respect to the
_GLOBAL_OFFSET_TABLE_ symbol, whereas gas outputs a R_ARM_BASE_PREL
relocation with respect to the _GLOBAL_OFFSET_TABLE_ symbol. While both are
correct the R_ARM_REL32 depends on the value of the _GLOBAL_OFFSET_TABLE_
symbol, wheras te R_ARM_BASE_PREL relocation is idependent of the symbol.
The R_ARM_BASE_PREL is therefore slightly more robust to linker's that may
not follow the conventional placement of _GLOBAL_OFFSET_TABLE_; for example
LLD for some time defined _GLOBAL_OFFSET_TABLE_ to 0.
Differential Revision: https://reviews.llvm.org/D46319
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: grosbach, efriedma, sdesmalen
Reviewed By: efriedma
Subscribers: hiraditya, dmgreen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77271
This patch adds an analysis of the offset addresses used by gathers
and scatters to the MVEGatherScatterLowering pass to find
multiplications and additions that are loop invariant and thus can
be moved into the loop preheader, avoiding to execute them each time.
Differential Revision: https://reviews.llvm.org/D76681
If the stack pointer is altered for local variables and we are generating
Thumb2 execute-only code the .pad directive is missing.
Usually the size of the adjustment is stored in a PC-relative location
and loaded into a register which is then added to the stack pointer.
However when we are generating execute-only code code the size of the
adjustment is instead generated using the MOVW/MOVT instruction pair.
As a by product of handling the execute-only case this also fixes an
existing issue that in the none execute-only case the .pad directive was
generated against the load of the constant to a register instruction,
instead of the instruction which adds the register to the stack pointer.
Differential Revision: https://reviews.llvm.org/D76849
From Arm v8 Architecture Reference Manual F5.1.84 LDREXD
The ldrexd instruction in Arm state has the following conditions:
t = UInt(Rt); t2 = t + 1; n = UInt(Rn);
if Rt<0> == '1' || t2 == 15 || n == 15 then UNPREDICTABLE;
In when Rt is odd or if Rt is 14 (making t2 15).
In the implementation when the pair is the UNPREDICTABLE R14_R15 we
would ideally return SOFT_FAIL. We can't because there is no R14_R15
value for us to return so we fail early returning FAIL.
The early return for registers outside the bounds of the table means
the check for Rt == 14 (0xE) redundant which causes a static analyzer
to flag the condition as never being true.
To fix the warning I've removed the check and replaced with a comment
explaining the difference with the specification.
Fixes pr41660
Differential Revision: https://reviews.llvm.org/D77463
Currently when the target is big-endian vmov.i64 reverses the order of the two
words of the vector. This is correct only when the underlying element type is
32-bit, as actually what it should be doing is considering it a vector of the
underlying type and reversing the elements of that.
Differential Revision: https://reviews.llvm.org/D76515
If we have an element-wise vmov immediate instruction then a subsequent vrev
with width greater or equal to the vmov element width, then that vrev won't do
anything. Add a DAG combine to convert bitcasts that would become such vrevs
into vector_reg_casts instead.
Differential Revision: https://reviews.llvm.org/D76514
This adds MVE vmull patterns, which are conceptually the same as
mul(vmovl, vmovl), and so the tablegen patterns follow the same
structure.
For i8 and i16 this is simple enough, but in the i32 version the
multiply (in 64bits) is illegal, meaning we need to catch the pattern
earlier in a dag fold. Because bitcasts are involved in the zext
versions and the patterns are a little different in little and big
endian. I have only added little endian support in this patch.
Differential Revision: https://reviews.llvm.org/D76740
The unpredictable/hasSideEffects flag is usually inferred by tablegen
from whether the instruction has a tablegen pattern (and that pattern
only has a single output instruction). Now that the MVE intrinsics are
all committed and producing code, the remaining instructions still
marked as unpredictable need to be specially handled. This adds the flag
directly to instructions that need it, notably the V*MLAL instructions
and some of the MOV's.
Differential Revision: https://reviews.llvm.org/D76910
This allows the MVE VPT Block insertion pass to remove VPNOTs in
order to create more complex VPT blocks such as TE, TEET, TETE, etc.
Differential Revision: https://reviews.llvm.org/D75993
VPTMaskValue was using the "instruction" encoding to represent the masks
(= the same encoding as the one used by the instructions in an object file),
but it is only used to build MCOperands, so it should use the MCOperand
encoding of the masks, which is slightly different.
Differential Revision: https://reviews.llvm.org/D76139
Instead, represent the mask as out-of-line data in the instruction. This
should be more efficient in the places that currently use
getShuffleVector(), and paves the way for further changes to add new
shuffles for scalable vectors.
This doesn't change the syntax in textual IR. And I don't currently plan
to change the bitcode encoding in this patch, although we'll probably
need to do something once we extend shufflevector for scalable types.
I expect that once this is finished, we can then replace the raw "mask"
with something more appropriate for scalable vectors. Not sure exactly
what this looks like at the moment, but there are a few different ways
we could handle it. Maybe we could try to describe specific shuffles.
Or maybe we could define it in terms of a function to convert a fixed-length
array into an appropriate scalable vector, using a "step", or something
like that.
Differential Revision: https://reviews.llvm.org/D72467
Leverage ARM ELF build attribute section to create ELF attribute section
for RISC-V. Extract the common part of parsing logic for this section
into ELFAttributeParser.[cpp|h] and ELFAttributes.[cpp|h].
Differential Revision: https://reviews.llvm.org/D74023
Add a bit more logic into the 'FalseLaneZeros' tracking to enable
horizontal reductions and also make the VADDV variants
validForTailPredication.
Differential Revision: https://reviews.llvm.org/D76708
Summary:
Also deprecate getOriginalAlignment, getAlignment will take much more time as it is pervasive through the codebase (including TableGened files).
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76933
In the original batch of MVE VMOVimm code generation VMOV.i64 was left
out due to the way it was done downstream. It turns out that it's fairly
simple though. This adds the codegen for it, similar to NEON.
Bigendian is technically incorrect in this version, which John is fixing
in a Neon patch.
Make these behave the same way unsafe-fp-math and co. The command line
flag should add the attribute to functions that do not already have
it, and leave existing attributes. The attribute is the actual
implementation, but the flag is useful in some testing situations.
AMDGPU has a variety of tests with denormals enabled/disabled that
would require a painful level of test duplication without a flag. This
doesn't expose setting the separate input/output modes, or add a flag
for the f32 version yet.
Tests will be included in future patch.
Generalizes D61992. In GNU as, the .reloc directive supports arbitrary relocation types.
A MCFixupKind value `V` larger than or equal to FirstLiteralRelocationKind
is used to represent the relocation type whose number is V-FirstLiteralRelocationKind.
This is useful for linker tests. Without the feature the assembler
cannot produce certain relocation records (e.g. R_ARM_ALU_PC_G0/R_ARM_LDR_PC_G0)
This helps move forward D75349 and D76575.
Differential Revision: https://reviews.llvm.org/D76746
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, dschuff, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, jrtc27, atanasyan, jfb, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76925
Given that some instructions generate wider result elements than
their inputs, flag them as being able to generate non zeros in the
false lanes.
Differential Revision: https://reviews.llvm.org/D76766
Add a flag for those instructions which read from the top/bottom
halves of their inputs and produce a vector of results with double
width elements.
Differential Revision: https://reviews.llvm.org/D76762
Follow-up of D72172 and D72180
This patch passes `uint64_t Address` to print methods of PC-relative
operands so that subsequent target specific patches can change
`*InstPrinter::print{Operand,PCRelImm,...}` to customize the output.
Add MCInstPrinter::PrintBranchImmAsAddress which is set to true by
llvm-objdump.
```
// Current llvm-objdump -d output
aarch64: 20000: bl #0
ppc: 20000: bl .+4
x86: 20000: callq 0
// Ideal output
aarch64: 20000: bl 0x20000
ppc: 20000: bl 0x20004
x86: 20000: callq 0x20005
// GNU objdump -d. The lack of 0x is not ideal because the result cannot be re-assembled
aarch64: 20000: bl 20000
ppc: 20000: bl 0x20004
x86: 20000: callq 20005
```
In `lib/Target/X86/X86GenAsmWriter1.inc` (generated by `llvm-tblgen -gen-asm-writer`):
```
case 12:
// CALL64pcrel32, CALLpcrel16, CALLpcrel32, EH_SjLj_Setup, JCXZ, JECXZ, J...
- printPCRelImm(MI, 0, O);
+ printPCRelImm(MI, Address, 0, O);
return;
```
Some targets have 2 `printOperand` overloads, one without `Address` and
one with `Address`. They should annotate derived `Operand` properly with
`let OperandType = "OPERAND_PCREL"`.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D76574
Summary:
This patch introduces command-line support for the Armv8.6-a architecture and assembly support for BFloat16. Details can be found
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a
in addition to the GCC patch for the 8..6-a CLI:
https://gcc.gnu.org/legacy-ml/gcc-patches/2019-11/msg02647.html
In detail this patch
- march options for armv8.6-a
- BFloat16 assembly
This is part of a patch series, starting with command-line and Bfloat16
assembly support. The subsequent patches will upstream intrinsics
support for BFloat16, followed by Matrix Multiplication and the
remaining Virtualization features of the armv8.6-a architecture.
Based on work by:
- labrinea
- MarkMurrayARM
- Luke Cheeseman
- Javed Asbar
- Mikhail Maltsev
- Luke Geeson
Reviewers: SjoerdMeijer, craig.topper, rjmccall, jfb, LukeGeeson
Reviewed By: SjoerdMeijer
Subscribers: stuij, kristof.beyls, hiraditya, dexonsmith, danielkiss, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D76062
Some MVE floating point instructions have gpr register variants that take
the scalar gpr value and splat them to all lanes. In order to accept
them in loops, the shuffle_vector and insert need to be sunk down into
the loop, next to the instruction so that ISel can see the whole
pattern.
This does that sinking for FAdd, FSub, FMul and FCmp. The patterns for
mul are slightly more constrained as there are no fms variants taking
register arguments.
Differential Revision: https://reviews.llvm.org/D76023
Summary:
This patch implements the following CDE intrinsics:
T __arm_vcx1q_m(int coproc, T inactive, uint32_t imm, mve_pred_t p);
T __arm_vcx2q_m(int coproc, T inactive, U n, uint32_t imm, mve_pred_t p);
T __arm_vcx3q_m(int coproc, T inactive, U n, V m, uint32_t imm, mve_pred_t p);
T __arm_vcx1qa_m(int coproc, T acc, uint32_t imm, mve_pred_t p);
T __arm_vcx2qa_m(int coproc, T acc, U n, uint32_t imm, mve_pred_t p);
T __arm_vcx3qa_m(int coproc, T acc, U n, V m, uint32_t imm, mve_pred_t p);
The intrinsics are not part of the released ACLE spec, but internally at
Arm we have reached consensus to add them to the next ACLE release.
Reviewers: simon_tatham, MarkMurrayARM, ostannard, dmgreen
Reviewed By: simon_tatham
Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76610
Move ARM ConstantIsland and LowOverheadLopps passes later in the pipeline
such that they will be run after the upcoming Machine Outlining pass.
Differential Revision: https://reviews.llvm.org/D76065
Add a target flag for instructions that reduce into one, or more,
scalar reg(s), including variants of:
- VADDV
- VABAV
- VMINV/VMAXV
- VMLADAV
Differential Revision: https://reviews.llvm.org/D76683
This adds a simple fold to combine VMOVrh load to a integer load.
Similar to what is already performed for BITCAST, but needs to account
for the types being of different sizes, creating an zero extending load.
Differential Revision: https://reviews.llvm.org/D76485
We deliberately split stores of the form
store(truncate(larger-than-legal-type)) into two stores, allowing each
store to perform part of the truncate for free.
There are times however where it makes more sense to use VMOVN to
de-interlace the results back into a single vector, and store that in
one go. This adds a check for that situation, not splitting the store if
it looks like a VMOVN can be more useful.
Differential Revision: https://reviews.llvm.org/D76511
Modify ValidateLiveOuts to track 'FalseLaneZeros' more precisely,
including checks on specific operations that can generate non-zeros
from zero values, e.g VMVN. We can then check that any instructions
that retain some information in their output register (all narrowing
instructions) that they only use and def registers that always have
zeros in their falsely predicated bytes, whether or not tail
predication happens.
Most of the logic remains the same, just the names of the data
structures and helpers have been renamed to reflect the change in
logic. The key change, apart from the opcode checkers, is that the
FalseZeros set now strictly contains only instructions which will
always generate zeros, and not instructions that could also have
their false bytes masked away later.
Differential Revision: https://reviews.llvm.org/D76235
Add a flag, 'RetainsPreviousHalfElement', for operations that operate
on top/bottom halves of their input and only write to half of their
destination, leaving the other half to retain its previous value.
Differential Revision: https://reviews.llvm.org/D76608
Summary:
I've implemented them as target-specific IR intrinsics rather than
using `@llvm.experimental.vector.reduce.add`, on the grounds that the
'experimental' intrinsic doesn't currently have much code generation
benefit, and my replacements encapsulate the sign- or zero-extension
so that you don't expose the illegal MVE vector type (`<4 x i64>`) in
IR.
The machine instructions come in two versions: with and without an
input accumulator. My new IR intrinsics, like the 'experimental' one,
don't take an accumulator parameter: we represent that by just adding
on the input value using an ordinary i32 or i64 add. So if you write
the `vaddvaq` C-language intrinsic with an input accumulator of zero,
it can be optimised to VADDV, and conversely, if you write something
like `x += vaddvq(y)` then that can be combined into VADDVA.
Most of this is achieved in isel lowering, by converting these IR
intrinsics into the existing `ARMISD::VADDV` family of custom SDNode
types. For the difficult case (64-bit accumulators), isel lowering
already implements the optimization of folding an addition into a
VADDLV to make a VADDLVA; so once we've made a VADDLV, our job is
already done, except that I had to introduce a parallel set of ARMISD
nodes for the //predicated// forms of VADDLV.
For the simpler VADDV, we handle the predicated form by just leaving
the IR intrinsic alone and matching it in an ordinary dag pattern.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76491
Summary:
I've implemented these as target-specific IR intrinsics, because
they're not //quite// enough like @llvm.experimental.vector.reduce.min
(which doesn't take the extra scalar parameter). Also this keeps the
predicated and unpredicated versions looking similar, and the
floating-point minnm/maxnm versions fold into the same schema.
We had a couple of min/max reductions already implemented, from the
initial pathfinding exercise in D67158. Those were done by having
separate IR intrinsic names for the signed and unsigned integer
versions; as part of this commit, I've changed them to use a flag
parameter indicating signedness, which is how we ended up deciding
that the rest of the MVE intrinsics family ought to work. So now
hopefully the ewhole lot is consistent.
In the new llc test, the output code from the `v8f16` test functions
looks quite unpleasant, but most of it is PCS lowering (you can't pass
a `half` directly in or out of a function). In other circumstances,
where you do something else with your `half` in the same function, it
doesn't look nearly as nasty.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76490
Summary:
This patch implements the following intrinsics:
uint8x16_t __arm_vcx1q_u8 (int coproc, uint32_t imm);
T __arm_vcx1qa(int coproc, T acc, uint32_t imm);
T __arm_vcx2q(int coproc, T n, uint32_t imm);
uint8x16_t __arm_vcx2q_u8(int coproc, T n, uint32_t imm);
T __arm_vcx2qa(int coproc, T acc, U n, uint32_t imm);
T __arm_vcx3q(int coproc, T n, U m, uint32_t imm);
uint8x16_t __arm_vcx3q_u8(int coproc, T n, U m, uint32_t imm);
T __arm_vcx3qa(int coproc, T acc, U n, V m, uint32_t imm);
Most of them are polymorphic. Furthermore, some intrinsics are
polymorphic by 2 or 3 parameter types, such polymorphism is not
supported by the existing MVE/CDE tablegen backends, also we don't
really want to have a combinatorial explosion caused by 1000 different
combinations of 3 vector types. Because of this some intrinsics are
implemented as macros involving a cast of the polymorphic arguments to
uint8x16_t.
The IR intrinsics are even more restricted in terms of types: all MVE
vectors are cast to v16i8.
Reviewers: simon_tatham, MarkMurrayARM, dmgreen, ostannard
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76299
Summary:
This change implements ACLE CDE intrinsics that translate to
instructions working with general-purpose registers.
The specification is available at
https://static.docs.arm.com/101028/0010/ACLE_2019Q4_release-0010.pdf
Each ACLE intrinsic gets a corresponding LLVM IR intrinsic (because
they have distinct function prototypes). Dual-register operands are
represented as pairs of i32 values. Because of this the instruction
selection for these intrinsics cannot be represented as TableGen
patterns and requires custom C++ code.
Reviewers: simon_tatham, MarkMurrayARM, dmgreen, ostannard
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76296
The MVE VDUP instruction take a GPR and splats into every lane of a
vector register. Unlike NEON we do not have a VDUPLANE equivalent
instruction, doing the same splat from a fp register. Previously a VDUP
to a v4f32/v8f16 would be represented as a (v4f32 VDUP f32), which
would mean the instruction pattern needs to add a COPY_TO_REGCLASS to
the GPR.
Instead this now converts that earlier during an ISel DAG combine,
converting (VDUP x) to (VDUP (bitcast x)). This can allow instruction
selection to tell that the input needs to be an i32, which in one of the
testcases allows it to use ldr (or specifically ldm) over (vldr;vmov).
Whilst being simple enough for floats, as the types sizes are the same,
these is no BITCAST equivalent for getting a half into a i32. This uses
a VMOVrh ARMISD node, which doesn't know the same tricks yet.
Differential Revision: https://reviews.llvm.org/D76292
Add pseudo instructions for ldrsbt/ldrht/ldrsht with implicit immediate
and add fall back C++ code to transform the instruction to the
equivalent LDRSBTi/LDRHTi/LDRSHTi form.
This is similar to how it has been done in commit
fb3950ec63
This fixes:
https://bugs.llvm.org/show_bug.cgi?id=45070
The existence of the class is more confusing than helpful, I think; the
commonality is mostly just "GEP is legal", which can be queried using
APIs on GetElementPtrInst.
Differential Revision: https://reviews.llvm.org/D75660
Summary:
This is another set of instructions too complicated to be sensibly
expressed in IR by anything short of a target-specific intrinsic.
Given input vectors a,b, the instruction generates intermediate values
2*(a[0]*b[0]+a[1]+b[1]), 2*(a[2]*b[2]+a[3]+b[3]), etc; takes the high
half of each double-width values, and overwrites half the lanes in the
output vector c, which you therefore have to provide the input value
of. Optionally you can swap the elements of b so that the are things
like a[0]*b[1]+a[1]*b[0]; optionally you can round to nearest when
taking the high half; and optionally you can take the difference
rather than sum of the two products. Finally, saturation is applied
when converting back to a single-width vector lane.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: miyuki
Subscribers: kristof.beyls, hiraditya, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76359
When optimising for code size at the expense of performance, it is often
worth saving and restoring some of r0-r3, if IPRA will be able to take
advantage of them. This doesn't cost any extra code size if we already
have a PUSH/POP pair, and increases the number of available registers
across any calls to the function.
We already have an optimisation which tries fold the subtract/add of the
SP into the PUSH/POP by using extra registers, which somewhat conflicts
with this. I've made the new optimisation less aggressive in cases where
the existing one is likely to trigger, which gives better results than
either of these optimisations by themselves.
Differential revision: https://reviews.llvm.org/D69936
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: jholewinski, arsenm, dschuff, jyknight, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76348
Rather than trying to work out which instructions are part of the
epilogue by examining them, we can just mark them with the FrameDestroy
flag, like we do in the AArch64 backend.
Summary:
These are complicated integer multiply+add instructions with extra
saturation, taking the high half of a double-width product, and
optional rounding. There's no sensible way to represent that in
standard IR, so I've converted the clang builtins directly to
target-specific intrinsics.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: miyuki
Subscribers: kristof.beyls, hiraditya, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76123
Summary:
These instructions compute multiply+add in integers, with one of the
operands being a splat of a scalar. (VMLA and VMLAS differ in whether
the splat operand is a multiplier or the addend.)
I've represented these in IR using existing standard IR operations for
the unpredicated forms. The predicated forms are done with target-
specific intrinsics, as usual.
When operating on n-bit vector lanes, only the bottom n bits of the
i32 scalar operand are used. So we have to tell that to isel lowering,
to allow it to remove a pointless sign- or zero-extension instruction
on that input register. That's done in `PerformIntrinsicCombine`, but
first I had to enable `PerformIntrinsicCombine` for MVE targets
(previously all the intrinsics it handled were for NEON), and make it
a method of `ARMTargetLowering` so that it can get at
`SimplifyDemandedBits`.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D76122
For context, the proposed RISC-V bit manipulation extension has a subset
of instructions which require one of two SubtargetFeatures to be
enabled, 'zbb' or 'zbp', and there is no defined feature which both of
these can imply to use as a constraint either (see comments in D65649).
AssemblerPredicates allow multiple SubtargetFeatures to be declared in
the "AssemblerCondString" field, separated by commas, and this means
that the two features must both be enabled. There is no equivalent to
say that _either_ feature X or feature Y must be enabled, short of
creating a dummy SubtargetFeature for this purpose and having features X
and Y imply the new feature.
To solve the case where X or Y is needed without adding a new feature,
and to better match a typical TableGen style, this replaces the existing
"AssemblerCondString" with a dag "AssemblerCondDag" which represents the
same information. Two operators are defined for use with
AssemblerCondDag, "all_of", which matches the current behaviour, and
"any_of", which adds the new proposed ORing features functionality.
This was originally proposed in the RFC at
http://lists.llvm.org/pipermail/llvm-dev/2020-February/139138.html
Changes to all current backends are mechanical to support the replaced
functionality, and are NFCI.
At this stage, it is illegal to combine features with ands and ors in a
single AssemblerCondDag. I suspect this case is sufficiently rare that
adding more complex changes to support it are unnecessary.
Differential Revision: https://reviews.llvm.org/D74338
The ASRL/LSRL long shifts are generated from 64bit shifts. Once we have
them, it might turn out that enough of the 64bit result was not required
that we can use a smaller shift to perform the same result. As the
smaller shift can in general be folded in more way, such as into add
instructions in one of the test cases here, we can use the demand bit
analysis to prefer the smaller shifts where we can.
Differential Revision: https://reviews.llvm.org/D75371
This changes the way that asrl and lsrl intrinsics are lowered, going
via a the ISEL ASRL and LSLL nodes instead of straight to machine nodes.
On top of that, it adds some constant folds for long shifts, in case it
turns out that the shift amount was either constant or 0.
Differential Revision: https://reviews.llvm.org/D75553
Summary:
This adds the ACLE intrinsic family for the VFMA and VFMS
instructions, which perform fused multiply-add on vectors of floats.
I've represented the unpredicated versions in IR using the cross-
platform `@llvm.fma` IR intrinsic. We already had isel rules to
convert one of those into a vector VFMA in the simplest possible way;
but we didn't have rules to detect a negated argument and turn it into
VFMS, or rules to detect a splat argument and turn it into one of the
two vector/scalar forms of the instruction. Now we have all of those.
The predicated form uses a target-specific intrinsic as usual, but
I've stuck to just one, for a predicated FMA. The subtraction and
splat versions are code-generated by passing an fneg or a splat as one
of its operands, the same way as the unpredicated version.
In arm_mve_defs.h, I've had to introduce a tiny extra piece of
infrastructure: a record `id` for use in codegen dags which implements
the identity function. (Just because you can't declare a Tablegen
value of type dag which is //only// a `$varname`: you have to wrap it
in something. Now I can write `(id $varname)` to get the same effect.)
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, danielkiss, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D75998
Refines the gather/scatter cost model, but also changes the TTI
function getIntrinsicInstrCost to accept an additional parameter
which is needed for the gather/scatter cost evaluation.
This did require trivial changes in some non-ARM backends to
adopt the new parameter.
Extending gathers and truncating scatters are now priced cheaper.
Differential Revision: https://reviews.llvm.org/D75525
Summary:
Instead of generating two i32 instructions for each load or store of a volatile
i64 value (two LDRs or STRs), now emit LDRD/STRD.
These improvements cover architectures implementing ARMv5TE or Thumb-2.
The code generation explicitly deviates from using the register-offset
variant of LDRD/STRD. In this variant, the register allocated to the
register-offset cannot be reused in any of the remaining operands. Such
restriction seems to be non-trivial to implement in LLVM, thus it is
left as a to-do.
Reviewers: dmgreen, efriedma, john.brawn, nickdesaulniers
Reviewed By: efriedma, nickdesaulniers
Subscribers: danielkiss, alanphipps, hans, nathanchance, nickdesaulniers, vvereschaka, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70072
On some Arm cores there is a performance penalty when forwarding from an
S register to a D register. Calculating VMAX in a D register creates
false forwarding hazards, so don't do that unless we're on a core which
specifically asks for it.
Patch by James Greenhalgh
Differential Revision: https://reviews.llvm.org/D75248
Iterate through the loop and check that the observable values
produced are the same whether tail predication happens or not.
We want to find out if the tail-predicated version of this loop will
produce the same values as the loop in its original form. For this to
be true, the newly inserted implicit predication must not change the
the (observable) results.
We're doing this because many instructions in the loop will not be
predicated and so the conversion from VPT predication to tail
predication can result in different values being produced, because of
falsely predicated lanes not being updated in the converted form.
A masked load, whether through VPT or tail predication, will write
zeros to any of the falsely predicated bytes. So, from the loads, we
know that the false lanes are zeroed and here we're trying to track
that those false lanes remain zero, or where they change, the
differences are masked away by their user(s).
All MVE loads and stores have to be predicated, so we know that any
load operands, or stored results are equivalent already. Other
explicitly predicated instructions will perform the same operation in
the original loop and the tail-predicated form too. Because of this,
we can insert loads, stores and other predicated instructions into
our KnownFalseZeros set and build from there.
Differential Revision: https://reviews.llvm.org/D75452
Summary:
ARMAsmParser was incorrectly dropping a leading dollar sign character
from symbol names in targets of branch instructions. This was caused by
an incorrect assumption that the contents following the dollar sign
token should be handled as a constant immediate, similarly to the #
token.
This patch avoids the operand parsing from consuming the dollar sign
token when it is followed by an identifier, making sure it is properly
parsed as part of the expression.
Reviewers: efriedma
Reviewed By: efriedma
Subscribers: danielkiss, chill, carwil, vhscampos, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73176
Summary:
The VSHLC instruction performs a left shift of a whole vector register
by an immediate shift count up to 32, shifting in new bits at the low
end from a GPR and delivering the shifted-out bits from the high end
back into the same GPR.
Since the instruction produces two outputs (the shifted vector
register and the output GPR of shifted-out bits), it has to be
instruction-selected in C++ rather than Tablegen.
Reviewers: MarkMurrayARM, dmgreen, miyuki, ostannard
Reviewed By: miyuki
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D75445
Summary:
These are exactly parallel to the existing `vadciq` intrinsics, which
we implemented last year as part of the original MVE intrinsics
framework setup.
Just like VADC/VADCI, the MVE VSBC/VSBCI instructions deliver two
outputs, both of which the intrinsic exposes: a modified vector
register and a carry flag. So they have to be instruction-selected in
C++ rather than Tablegen. However, in this case, that's trivial: the
same C++ isel routine we already have for VADC works unchanged, and
all we have to do is to pass it a different instruction id.
Reviewers: MarkMurrayARM, dmgreen, miyuki, ostannard
Reviewed By: miyuki
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D75444
Use MIOperand in collectLocalKilledOperands to make the search
global, as we already have to search for global uses too. This
allows us to delete more dead code when tail predicating.
Differential Revision: https://reviews.llvm.org/D75167