it is unconditionally present now.
ObjectContainerBSDArchive::CreateInstance %z8.8x is not a valid printf arg specifier, %8.8zx would work
for size_t arg but this arg is addr_t. use %8.8llx and cast up to uint64_t.
ObjectFile::FindPlugin ditto.
DynamicRegisterInfo::SetRegisterInfo ifdef this function out if LLDB_DISABLE_PYTHON.
llvm-svn: 163599
The attached patch fixes a problem with performing an attach from the SBTarget API on Linux (and other systems that use ProcessPOSIX).
When Process::Attach was called from SBTarget, it resulted in a call to a form of the DoAttachWithID function that wasn't implemented in ProcessPOSIX, and so it fell back to the default implementation (which just returns an error). It didn't seem necessary to use the attach_info parameter for this case, so I just implemented it as a call to the simpler version of the function.
In debugging this problem, I also found that SBTarget wasn't checking the return value from the Attach call, causing it to hang when the attach fails.
llvm-svn: 163399
The attached patch adds support for debugging 32-bit processes when running a 64-bit lldb on an x86_64 Linux system.
Making this work required two basic changes:
1) Getting lldb to report that it could debug 32-bit processes
2) Changing an assumption about how ptrace works when debugging cross-platform
For the first change, I took a conservative approach and only enabled this for x86_64 Linux platforms. It may be that the change I made in Host.cpp could be extended to other 64-bit Linux platforms, but I'm not familiar enough with the other platforms to know for sure.
For the second change, the Linux ProcessMonitor class was assuming that ptrace(PTRACE_[PEEK|POKE]DATA...) would read/write a "word" based on the child process word size. However, the ptrace documentation says that the "word" size read or written is "determined by the OS variant." I verified experimentally that when ptracing a 32-bit child from a 64-bit parent a 64-bit word is read or written.
llvm-svn: 163398
on, basic inlined stepping works, including step-over of inlined functions. But for some as yet mysterious reason i386 debugging gets an
assert and dies immediately. So for now its off.
llvm-svn: 163044
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
Added code the initialize the register context in the OperatingSystemPython plug-in with the new PythonData classes, and added a test OperatingSystemPython module in lldb/examples/python/operating_system.py that we can use for testing.
llvm-svn: 162530
Previously we put a WatchpointSentry object within StopInfo.cpp to disable-and-then-enable the watchpoint itself
while we are performing the actions associated with the triggered watchpoint, which can cause the user-initiated
watchpoint disabling action to be negated.
Add a test case to verify that a watchpoint can be disabled during the callbacks.
llvm-svn: 162483
when you want to find the caller's saved pc, you look up the return address
register and use that. On arm, for instance, this would be the contents of
the link register (lr).
If the eh_frame CIE defines an RA, record that fact in the UnwindPlan.
When we're finding a saved register, if it's the pc, lok for the location
of the return address register instead.
<rdar://problem/12062310>
llvm-svn: 162167
Convert from calling Halt in the lldb Driver.cpp's input reader's sigint handler to sending this AsyncInterrupt so it can be handled in the
event loop.
If you are attaching and get an async interrupt, abort the attach attempt.
Also remember to destroy the process if get interrupted while attaching.
Getting this to work also required handing the eBroadcastBitInterrupt in a few more places in Process WaitForEvent & friends.
<rdar://problem/10792425>
llvm-svn: 160903
calling functions. This is necessary on Mac OS X, since bad things can happen if you set
the registers of a thread that's sitting in a kernel trap.
<rdar://problem/11145013>
llvm-svn: 160756
a shared pointer to ease some memory management issues with a patch
I'm working on.
The main complication with using SPs for these objects is that most
methods that build up an UnwindPlan will construct a Row to a given
instruction point in a function, then add additional regsaves in
the next instruction point to that row and push it again. A little
care is needed to not mutate the previous instruction point's Row
once these are switched to being held behing shared pointers.
llvm-svn: 160214
Fixed an issue where GDB servers that don't support the thread suffix could get registers states incorrectly due to an incorrect assumption that the current register thread (set using the "Hg%x" packet) will always be cached between runs. Now we clear the cached register thred when the process is resumed.
llvm-svn: 159603
than being given the pthread_mutex_t from the Mutex and locks that. That allows us to
track ownership of the Mutex better.
Used this to switch the LLDB_CONFIGURATION_DEBUG enabled assert when we can't get the
gdb-remote sequence mutex to assert when the thread that had the mutex releases it. This
is generally more useful information than saying just who failed to get it (since the
code that had it locked often had released it by the time the assert fired.)
llvm-svn: 158240
m_interrupt_sent into account. Also don't reset m_interrupt_sent in SendInterrupt but do so in SendPacketAndWaitForResponse
when we know we've handled the interrupt.
Fix a code path through ProcessGDBRemote::DoDestroy where we were tearing down the debug session but
not setting the exit status.
llvm-svn: 158043
Fixed a case where multiple threads can be asking to send a packet to the GDB server and one of three things will happen:
1 - everything works
2 - one thread will fail to send the packet due to not being able to get the sequence mutex
3 - one thread will try and interrupt the other packet sending and fail and not send the packet
Now the flow is a bit different. Prior to this fix we did:
if (try_get_sequence_mutex()) {
send_packet()
return success;
} else {
if (async_ok) {
interrupt()
send_packet()
resume()
return success;
}
}
return fail
The issue is that the call to "try_get_sequence_mutex()" could fail if another thread was sending a packet and could cause us to just not send the packet and an error would be returned.
What we really want is to try and get the sequence mutex, and if this succeeds, send the packet. Else check if we are running and if we are, do what we used to do. The big difference is when we aren't running, we wait for the sequence mutex so we don't drop packets. Pseudo code is:
if (try_get_sequence_mutex()) {
// Safe to send the packet right away
send_packet()
return success;
} else {
if (running) {
// We are running, interrupt and send async packet if ok to do so,
// else it is ok to fail
if (async_ok) {
interrupt()
send_packet()
resume()
return success;
}
}
else {
// Not running, wait for the sequence mutex so we don't drop packets
get_sequence_mutex()
send_packet()
return success;
}
}
return fail
llvm-svn: 157751
Sending async packets can deadlock a program on darwin. We currently allow breakpoint packets and memory read/write packets (for software breakpoints) to be sent while a program is running. In the GDB remote plug-in, we will interrupt the run, send the async packet and resume (currently with the continue packet that caused the program to resume). If the GDB server supports the "vCont" packet, we might have initially continued with each thread stating it should continue. If new threads show up while we are stopped, which happend when running GCD, we can end up with new threads that we aren't mentioning in the continue list. So we start with a thread list of 1,2,3 and continue:
continue thread 1, continue thread 2, continue thread 3
Now we interrupt and set a breakpoint and we actually have threads 1,2,3,4 now when we are about to resume, yet we send:
continue thread 1, continue thread 2, continue thread 3
Any thread that isn't mentioned is currently going to stay suspended. This causes the deadlock.
llvm-svn: 157439
Add default Process::GetWatchpointSupportInfo() impl which returns an error of "not supported".
Add "qWatchpointSupportInfo" packet to the gdb communication layer to support this, and modify TestWatchpointCommands.py to test it.
llvm-svn: 157345
the value_regs field, which is useful for future expansion purposes. As of now, we have:
calculated_offset_of_eax = offset_of_rax + (offset_of_eax_from_the_descriptor which is 0)
llvm-svn: 157275
Add convenience registers eax, ebx, ecx, edx, edi, esi, ebp, esp to the 'register read' command for x86_64.
Add a GDBRemoteRegisterContext::Addx86_64ConvenienceRegisters() method called from ProcessGDBRemote::BuildDynamicRegisterInfo().
Servicing of eax, for example, is accomplished by delegating to rax with an adjusted offset into the register context.
llvm-svn: 157230
that dynamically discovers remote register context information.
o GDBRemoteRegisterContext.h:
Change the prototype of HardcodeARMRegisters() to take a boolean flag, which now becomes
void
HardcodeARMRegisters(bool from_scratch);
o GDBRemoteRegisterContext.cpp:
HardcodeARMRegisters() now checks the from_scratch flag and decides whether to add composite registers to the already
existing primordial registers based on a table called g_composites which describes the composite registers.
o ProcessGDBRemote.cpp:
Modify the logic of ProcessGDBRemote::BuildDynamicRegisterInfo() to call m_register_info.HardcodeARMRegisters()
with the newly introduced 'bool from_scrach' flag.
rdar://problem/10652076
llvm-svn: 156773
Switch over to the "*-apple-macosx" for desktop and "*-apple-ios" for iOS triples.
Also make the selection process for auto selecting platforms based off of an arch much better.
llvm-svn: 156354