due to RTTI worries since llvm and clang don't use RTTI, but I was able to
switch back with no issues as far as I can tell. Once the RTTI issue wasn't
an issue, we were looking for a way to properly track weak pointers to objects
to solve some of the threading issues we have been running into which naturally
led us back to std::tr1::weak_ptr. We also wanted the ability to make a shared
pointer from just a pointer, which is also easily solved using the
std::tr1::enable_shared_from_this class.
The main reason for this move back is so we can start properly having weak
references to objects. Currently a lldb_private::Thread class has a refrence
to its parent lldb_private::Process. This doesn't work well when we now hand
out a SBThread object that contains a shared pointer to a lldb_private::Thread
as this SBThread can be held onto by external clients and if they end up
using one of these objects we can easily crash.
So the next task is to start adopting std::tr1::weak_ptr where ever it makes
sense which we can do with lldb_private::Debugger, lldb_private::Target,
lldb_private::Process, lldb_private::Thread, lldb_private::StackFrame, and
many more objects now that they are no longer using intrusive ref counted
pointer objects (you can't do std::tr1::weak_ptr functionality with intrusive
pointers).
llvm-svn: 149207
Fixed an ARM backtracing issue where if the previous frame was a thumb
function and it was a tail call so that the current frame returned to
an address that would fall into the next function, we would use the
next function as the basis for how we unwound the previous frame's
registers and of course get things wrong. We now fix the PC code
address using the current ABI plug-in, and the ARM ABI plug-in has
been modified to correctly fix the code address. So when we do the
symbol context lookup, instead of taking an address like 0x1001 and
decrementing 1, and looking up the symbol context for a frame, we
now correctly fix 0x1001 to 0x1000, then decrement that by 1 to
get the correct symbol context.
I added a bunch more logging to "log enable lldb uwnind" to help
us in the future. We now log the PC, FP and SP (if they are available),
and we also dump the "active_row" that we find for unwinding a frame.
llvm-svn: 147747
This patch combines common code from Linux and FreeBSD into
a new POSIX platform. It also contains fixes for 64bit FreeBSD.
The patch is based on changes by Mark Peek <mp@FreeBSD.org> and
"K. Macy" <kmacy@freebsd.org> in their github repo located at
https://github.com/fbsd/lldb.
llvm-svn: 147613
a new POSIX platform. It also contains fixes for 64bit FreeBSD.
The patch is based on changes by Mark Peek <mp@FreeBSD.org> and
"K. Macy" <kmacy@freebsd.org> in their github repo located at
https://github.com/fbsd/lldb.
llvm-svn: 147609
Switch from GetReturnValue, which was hardly ever used, to GetReturnValueObject
which is much more convenient.
Return the "return value object" as a persistent variable if requested.
llvm-svn: 147157
1 -- an address pointing off into non-executable memory -- don't
abort the unwind. We'll use the ABI's default UnwindPlan to try
to get out of frame 1 and on many platforms with a standard frame
chain stack layout we can get back on track and get a valid frame
2. This preserves the lldb behavior to-date; the change last week
to require the memory region to be executable broke it.
I'd like to mark this frame specially when displayed to the user;
I tried to override the places where the frame's pc value is returned
to change it to a sentinel value (e.g. LLDB_INVALID_ADDRESS) but
couldn't get that to work cleanly so I backed that part out for
now. When this happens we'll often miss one of the user's actual
frames, the one that's of most interest to the user, so I'd like
to make this visually distinctive.
Note that a frame in non-executable memory region is only allowed
for frame 1. After that we should be solid on the unwind and any
pc address in non-executable memory indicates a failure and we
should stop unwinding.
llvm-svn: 146723
dispatch functions that are implemented in hand-written assembly.
There is also hand-written eh_frame instructions for unwinding
from these functions.
Normally we don't use eh_frame instructions for the currently
executing function, prefering the assembly instruction profiling
method. But in these hand-written dispatch functions, the
profiling is doomed and we should use the eh_frame instructions.
Unfortunately there's no easy way to flag/extend the eh_frame/debug_frame
sections to annotate if the unwind instructions are accurate at
all addresses ("asynchronous") or if they are only accurate at locations
that can throw an exception ("synchronous" and the normal case for
gcc/clang generated eh_frame/debug_frame CFI).
<rdar://problem/10508134>
llvm-svn: 146551
Check that the pc value for frames up the stack is in a
mapped+executable region of memory.
Check that the stack pointer for frames up the stack is
in a mapped+readable region of memory.
If the unwinder ever makes a mistake walking the stack,
these checks will help to keep it from going too far into
the weeds.
These aren't fixing any bugs that I know of, but they
add extra robustness to a complicated task.
llvm-svn: 146478
if this is a mapped/executable region of memory. If it isn't, we've jumped
through a bad pointer and we know how to unwind the stack correctly based
on the ABI.
Previously I had 0x0 special cased but if you jumped to 0x2 on x86_64 one
frame would be skipped because the unwinder would try using the x86_64
ArchDefaultUnwindPlan which relied on the rbp.
Fixes <rdar://problem/10508291>
llvm-svn: 146477
will allow us to represent a process/thread ID using a pointer for the OS
plug-ins where they might want to represent the process or thread ID using
the address of the process or thread structure.
llvm-svn: 145644
1 - the DIE collections no longer have the NULL tags which saves up to 25%
of the memory on typical C++ code
2 - faster parsing by not having to run the SetDIERelations() function anymore
it is done when parsing the DWARF very efficiently.
llvm-svn: 144983
from a process and hooked it up to the new packet that was recently added
to our GDB remote executable named debugserver. Now Process has the following
new calls:
virtual Error
Process::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info);
virtual uint32_t
GetLoadAddressPermissions (lldb::addr_t load_addr);
Only the first one needs to be implemented by subclasses that can add this
support.
Cleaned up the way the new packet was implemented in debugserver to be more
useful as an API inside debugserver. Also found an error where finding a region
for an address actually will pick up the next region that follows the address
in the query so we also need ot make sure that the address we requested the
region for falls into the region that gets returned.
llvm-svn: 144976
turned out to be unitialized data in the ProcessLaunchInfo default constructor.
Turning on MallocScribble in the environment helped track this down.
When we launch and attach using the host layer, we now inform the process that
it shouldn't detach when by calling an accessor.
llvm-svn: 144882
After recent changes we weren't reaping child processes resulting in many
zombie processes.
This was fixed by adding more settings to the ProcessLaunchOptions class
that allow clients to specify a callback function and baton to be notified
when their process dies. If one is not supplied a default callback will be
used that "does the right thing".
Cleaned up a race condition in the ProcessGDBRemote class that would attempt
to monitor when debugserver died.
Added an extra boolean to the process monitor callbacks that indicate if a
process exited or not. If your process exited with a zero exit status and no
signal, both items could be zero.
Modified the process monitor functions to not require a callback function
in order to reap the child process.
llvm-svn: 144780
info for us to attach by pid, or by name and will also allow us to eventually
do a lot more powerful attaches. If you look at the options for the "platform
process list" command, there are many options which we should be able to
specify. This will allow us to do things like "attach to a process named 'tcsh'
that has a parent process ID of 123", or "attach to a process named 'x' which
has an effective user ID of 345".
I finished up the --shell implementation so that it can be used without the
--tty option in "process launch". The "--shell" option now can take an
optional argument which is the path to the shell to use (or a partial name
like "sh" which we will find using the current PATH environment variable).
Modified the Process::Attach to use the new ProcessAttachInfo as the sole
argument and centralized a lot of code that was in the "process attach"
Execute function so that everyone can take advantage of the powerful new
attach functionality.
llvm-svn: 144615
Joel Dillon that fixed 64 debugging for Linux.
I also added a patch to fix up the ProcessLinux::DoLaunch() to be up to date.
I wasn't able to verify it compiles, but it should b really close.
llvm-svn: 143772
- If you download and build the sources in the Xcode project, x86_64 builds
by default using the "llvm.zip" checkpointed LLVM.
- If you delete the "lldb/llvm.zip" and the "lldb/llvm" folder, and build the
Xcode project will download the right LLVM sources and build them from
scratch
- If you have a "lldb/llvm" folder already that contains a "lldb/llvm/lib"
directory, we will use the sources you have placed in the LLDB directory.
Python can now be disabled for platforms that don't support it.
Changed the way the libllvmclang.a files get used. They now all get built into
arch specific directories and never get merged into universal binaries as this
was causing issues where you would have to go and delete the file if you wanted
to build an extra architecture slice.
llvm-svn: 143678
on internal only (public API hasn't changed) to simplify the paramter list
to the launch calls down into just one argument. Also all of the argument,
envronment and stdio things are now handled in a much more centralized fashion.
llvm-svn: 143656
RegisterContextLLDBs it contains.
Previously RegisterContextLLDB objects had a pointer to their "next"
frame down the stack. e.g. stack starts at frame 0; frame 3 has a
pointer to frame 2. This is used to retreive callee saved register
values. When debugging an inferior that has blown out its own stack,
however, this could result in lldb blowing out its own stack while
recursing down to retrieve register values.
RegisterContextLLDB no longer has a pointer to its next frame; it
has a reference to the UnwindLLDB which contains it. When it needs
to retrieve a reg value, it asks the UnwindLLDB for that reg value
and UnwindLLDB iterates through the frames until it finds a location.
llvm-svn: 143423
"object borked"... Also made the error when the checker fails reflect this fact rather than
report a crash at 0x0.
Also a little cleanup:
- StopInfoMachException had a redundant copy of the description string.
- ThreadPlanCallFunction had a redundant copy of the thread, and had a
copy of the process that it didn't really need.
llvm-svn: 143419
Fixed an issue where async packets were incurring a delay even though they
were sent correctly. We now properly broadcast the private run state being
resumed correctly. Also fixed logging to reflect what is happening.
llvm-svn: 143154
lldb_private::Error objects the rules are:
- short strings that don't start with a capitol letter unless the name is a
class or anything else that is always capitolized
- no trailing newline character
- should be one line if possible
Implemented a first pass at adding "--gdb-format" support to anything that
accepts format with optional size/count.
llvm-svn: 142999
process IDs, and thread IDs, but was mainly needed for for the UserID's for
Types so that DWARF with debug map can work flawlessly. With DWARF in .o files
the type ID was the DIE offset in the DWARF for the .o file which is not
unique across all .o files, so now the SymbolFileDWARFDebugMap class will
make the .o file index part (the high 32 bits) of the unique type identifier
so it can uniquely identify the types.
llvm-svn: 142534
with the same CFA (or an alternating sequence between two CFA values) to catch a handful of
unwind cases where lldb will inf loop trying to unwind a stack.
llvm-svn: 142331
a watchpoint for either the variable encapsulated by SBValue (Watch) or the pointee
encapsulated by SBValue (WatchPointee).
Removed SBFrame::WatchValue() and SBFrame::WatchLocation() API as a result of that.
Modified the watchpoint related test suite to reflect the change.
Plus replacing WatchpointLocation with Watchpoint throughout the code base.
There are still cleanups to be dome. This patch passes the whole test suite.
Check it in so that we aggressively catch regressions.
llvm-svn: 141925
set up yet, if we're talking to an Apple arm device set the register set based on the
arm device's attributes; this is a safe assumption to make in this particular environment.
llvm-svn: 141265
symbol context that represents an inlined function. This function has been
renamed internally to:
bool
SymbolContext::GetParentOfInlinedScope (const Address &curr_frame_pc,
SymbolContext &next_frame_sc,
Address &next_frame_pc) const;
And externally to:
SBSymbolContext
SBSymbolContext::GetParentOfInlinedScope (const SBAddress &curr_frame_pc,
SBAddress &parent_frame_addr) const;
The correct blocks are now correctly calculated.
Switched the stack backtracing engine (in StackFrameList) and the address
context printing over to using the internal SymbolContext::GetParentOfInlinedScope(...)
so all inlined callstacks will match exactly.
llvm-svn: 140910
iterate on the available watchpoint locations and to perform watchpoint manipulations.
I still need to export the SBWatchpointLocation class as well as the added watchpoint
manipulation methods to the Python interface. And write test cases for them.
llvm-svn: 140575
etc to specific source files.
Added SB API's to specify these source files & also more than one module.
Added an "exact" option to CompileUnit's FindLineEntry API.
llvm-svn: 140362
stdarg formats to use __attribute__ format so the compiler can flag
incorrect uses. Fix all incorrect uses. Most of these are innocuous,
a few were resulting in crashes.
llvm-svn: 140185
data sent back to the debugger. On the debugger side, use the opportunity during the
StopInfoMachException::CreateStopReasonWithMachException() method to set the hardware index
for the very watchpoint location.
llvm-svn: 139975
the arm emulate instruction unwinder so you can leave it
on by default and not be overwhelmed. Set verbose mode to
get the full story on how the unwindplans were created.
llvm-svn: 139897
UnwindPlan for unwinding from the first instruction of an otherwise
unknown function call (GetUnwindPlanArchitectureDefaultAtFunctionEntry()).
Update RegisterContextLLDB::GetFullUnwindPlanForFrame() to detect the
case of a frame 0 at address 0x0 which indicates that we jumped through
a NULL function pointer. Use the ABI's FunctionEntryUnwindPlan to
find the caller frame.
These changes make it so lldb can identify the calling frame correctly
in code like
int main ()
{
void (*f)(void) = 0;
f();
}
llvm-svn: 139760
register names when dumping variable locations and location lists. Also did
some cleanup where "int" types were being used for "lldb::RegisterKind"
values.
llvm-svn: 138988
plug-ins are add on plug-ins for the lldb_private::Process class that can add
thread contexts that are read from memory. It is common in kernels to have
a lot of threads that are not currently executing on any cores (JTAG debugging
also follows this sort of thing) and are context switched out whose state is
stored in memory data structures. Clients can now subclass the OperatingSystem
plug-ins and then make sure their Create functions correcltly only enable
themselves when the right binary/target triple are being debugged. The
operating system plug-ins get a chance to attach themselves to processes just
after launching or attaching and are given a lldb_private::Process object
pointer which can be inspected to see if the main executable, target triple,
or any shared libraries match a case where the OS plug-in should be used.
Currently the OS plug-ins can create new threads, define the register contexts
for these threads (which can all be different if desired), and populate and
manage the thread info (stop reason, registers in the register context) as
the debug session goes on.
llvm-svn: 138228
- reorganizing the PTS (Partial Template Specializations) in FormatManager.h
- applied a patch by Filipe Cabecinhas to make LLDB compile with GCC
Functional changes:
- fixed an issue where command type summary add for type "struct Foo" would not match any types.
currently, "struct" will be stripped off and type "Foo" will be matched.
similar behavior occurs for class, enum and union specifiers.
llvm-svn: 138020
This is helping us track down some extra references to ModuleSP objects that
are causing things to get kept around for too long.
Added a module pointer accessor to target and change a lot of code to use
it where it would be more efficient.
"taret delete" can now specify "--clean=1" which will cleanup the global module
list for any orphaned module in the shared module cache which can save memory
and also help track down module reference leaks like we have now.
llvm-svn: 137294
10 second timeout zone. When launching we increase the
timeout to 10 seconds to ensure we have time to launch a
process, and then set it back.
llvm-svn: 137256
ability to dump more information about modules in "target modules list". We
can now dump the shared pointer reference count for modules, the pointer to
the module itself (in case performance tools can help track down who has
references to said pointer), and the modification time.
Added "target delete [target-idx ...]" to be able to delete targets when they
are no longer needed. This will help track down memory usage issues and help
to resolve when module ref counts keep getting incremented. If the command gets
no arguments, the currently selected target will be deleted. If any arguments
are given, they must all be valid target indexes (use the "target list"
command to get the current target indexes).
Took care of a bunch of "no newline at end of file" warnings.
TimeValue objects can now dump their time to a lldb_private::Stream object.
Modified the "target modules list --global" command to not error out if there
are no targets since it doesn't require a target.
Fixed an issue in the MacOSX DYLD dynamic loader plug-in where if a shared
library was updated on disk, we would keep using the older one, even if it was
updated.
Don't allow the ModuleList::GetSharedModule(...) to return an empty module.
Previously we could specify a valid path on disc to a module, and specify an
architecture that wasn't contained in that module and get a shared pointer to
a module that wouldn't be able to return an object file or a symbol file. We
now make sure an object file can be extracted prior to adding the shared pointer
to the module to get added to the shared list.
llvm-svn: 137196
an executable file if it is right next to a dSYM file that is found using
DebugSymbols. The code also looks into a bundle if the dSYM file is right
next to a bundle.
Modified the MacOSX kernel dynamic loader plug-in to correctly set the load
address for kext sections. This is a tad tricky because of how LLDB chooses
to treat mach-o segments with no name. Also modified the loader to properly
handle the older version 1 kext summary info.
Fixed a crasher in the Mach-o object file parser when it is trying to set
the section size correctly for dSYM sections.
Added packet dumpers to the CommunicationKDP class. We now also properly
detect address byte sizes based on the cpu type and subtype that is provided.
Added a read memory and read register support to CommunicationKDP. Added a
ThreadKDP class that now uses subclasses of the RegisterContextDarwin_XXX for
arm, i386 and x86_64.
Fixed some register numbering issues in the RegisterContextDarwin_arm class
and added ARM GDB numbers to the ARM_GCC_Registers.h file.
Change the RegisterContextMach_XXX classes over to subclassing their
RegisterContextDarwin_XXX counterparts so we can share the mach register
contexts between the user and kernel plug-ins.
llvm-svn: 135466
invoking the Read(...) method to read in bytes. This seems to fix the infinite looping
I was seeing on SnowLeopard while running the test suite.
llvm-svn: 135461
method so process plug-ins that are requested by name can answer yes when
asked if they can debug a target that might not have any file in the target.
Modified the ConnectionFileDescriptor to have both a read and a write file
descriptor. This allows us to support UDP, and eventually will allow us to
support pipes. The ConnectionFileDescriptor class also has a file descriptor
type for each of the read and write file decriptors so we can use the correct
read/recv/recvfrom call when reading, or write/send/sendto for writing.
Finished up an initial implementation of UDP where you can use the "udp://"
URL to specify a host and port to connect to:
(lldb) process connect --plugin kdp-remote udp://host:41139
This will cause a ConnectionFileDescriptor to be created that can send UDP
packets to "host:41139", and it will also bind to a localhost port that can
be given out to receive the connectionless UDP reply.
Added the ability to get to the IPv4/IPv6 socket port number from a
ConnectionFileDescriptor instance if either file descriptor is a socket.
The ProcessKDP can now successfully connect to a remote kernel and detach
using the above "processs connect" command!!! So far we have the following
packets working:
KDP_CONNECT
KDP_DISCONNECT
KDP_HOSTINFO
KDP_VERSION
KDP_REATTACH
Now that the packets are working, adding new packets will go very quickly.
llvm-svn: 135363
Implemented connect, disconnect, reattach, version, and hostinfo.
Modified the ConnectionFileDescriptor class to be able to handle UDP.
Added a new Stream subclass called StreamBuffer that is backed by a
llvm::SmallVector for better efficiency.
Modified the DataExtractor class to have a static function that can
dump hex bytes into a stream. This is currently being used to dump incoming
binary packet data in the KDP plug-in.
llvm-svn: 135338
same as the old "connect://<host>:<port>". Also added the ability to
connect using "udp://<host>:<port>" which will open a connected
datagram socket. I need to find a way to specify a non connected
datagram socket as well.
We might need to start setting some settings in the URL itself,
maybe something like:
udp://<host>:<port>?connected=yes
udp://<host>:<port>?connected=no
I am open to suggestions for URL settings.
Also did more work on the KDP darwin kernel plug-in.
llvm-svn: 135277
- you can use a Python script to write a summary string for data-types, in one of
three ways:
-P option and typing the script a line at a time
-s option and passing a one-line Python script
-F option and passing the name of a Python function
these options all work for the "type summary add" command
your Python code (if provided through -P or -s) is wrapped in a function
that accepts two parameters: valobj (a ValueObject) and dict (an LLDB
internal dictionary object). if you use -F and give a function name,
you're expected to define the function on your own and with the right
prototype. your function, however defined, must return a Python string
- test case for the Python summary feature
- a few quirks:
Python summaries cannot have names, and cannot use regex as type names
both issues will be fixed ASAP
major redesign of type summary code:
- type summary working with strings and type summary working with Python code
are two classes, with a common base class SummaryFormat
- SummaryFormat classes now are able to actively format objects rather than
just aggregating data
- cleaner code to print descriptions for summaries
the public API now exports a method to easily navigate a ValueObject hierarchy
New InputReaderEZ and PriorityPointerPair classes
Several minor fixes and improvements
llvm-svn: 135238
variables prior to running your binary. Zero filled sections now get
section data correctly filled with zeroes when Target::ReadMemory
reads from the object file section data.
Added new option groups and option values for file lists. I still need
to hook up all of the options to "target variable" to allow more complete
introspection by file and shlib.
Added the ability for ValueObjectVariable objects to be created with
only the target as the execution context. This allows them to be read
from the object files through Target::ReadMemory(...).
Added a "virtual Module * GetModule()" function to the ValueObject
class. By default it will look to the parent variable object and
return its module. The module is needed when we have global variables
that have file addresses (virtual addresses that are specific to
module object files) and in turn allows global variables to be displayed
prior to running.
Removed all of the unused proxy object support that bit rotted in
lldb_private::Value.
Replaced a lot of places that used "FileSpec::Compare (lhs, rhs) == 0" code
with the more efficient "FileSpec::Equal (lhs, rhs)".
Improved logging in GDB remote plug-in.
llvm-svn: 134579
instructions if they are conditional. Also fixed issues where the PC wasn't
getting bit zero stripped for ARM targets when a stack frame was thumb. We
now properly call through the GetOpcodeLoadAddress() functions to make sure
the addresses are properly stripped for any targets that may decorate up
their addresses.
We now don't pass the SIGSTOP signals along. We can revisit this soon, but
currently this was interfering with debugging some older ARM targets that
don't have vCont support in the GDB server.
llvm-svn: 134461
a file or socket. We now make a getsockopt call to check if the fd is a socket.
Also, the previous logic in the GDB communication needs to watch for success
with an error so we can deal with EAGAIN and other normal "retry" error codes.
llvm-svn: 134359
_only_ in the resulting stream, not in the error objects (lldb_private::Error).
lldb_private::Error objects should always just have an error string with no
terminating newline characters or periods.
Fixed an issue with GDB remote packet detection that could end up deadlocking
if a full packet wasn't received in one chunk. Also modified the packet
checking function to properly toss one or more bytes when it detects bad
data.
llvm-svn: 134357
connected process connection.
Also added support for more kinds of continue packet when multiple threads
need to continue where some want to continue with signals.
llvm-svn: 133785
libraries and headers exist. This can be specified using the platform select
function:
platform select --sysroot /Volumes/remote-root remote-macosx
Each platform subclass is free to interpret the sysroot as needed.
Expose the new SDK root directory through the SBDebugger class.
Fixed an issue with the GDB remote protocol where unimplemented packets were
not being handled correctly.
llvm-svn: 133231
darwin (not sure about other platforms).
Modified the communication and connection classes to not require the
BytesAvailable function. Now the "Read(...)" function has a timeout in
microseconds.
Fixed a lot of assertions that were firing off in certain cases and replaced
them with error output and code that can deal with the assertion case.
llvm-svn: 133224
virtual bool
ABI::StackUsesFrames () = 0;
Should return true if your ABI uses frames when doing stack backtraces. This
means a frame pointer is used that points to the previous stack frame in some
way or another.
virtual bool
ABI::CallFrameAddressIsValid (lldb::addr_t cfa) = 0;
Should take a look at a call frame address (CFA) which is just the stack
pointer value upon entry to a function. ABIs usually impose alignment
restrictions (4, 8 or 16 byte aligned), and zero is usually not allowed.
This function should return true if "cfa" is valid call frame address for
the ABI, and false otherwise. This is used by the generic stack frame unwinding
code to help determine when a stack ends.
virtual bool
ABI::CodeAddressIsValid (lldb::addr_t pc) = 0;
Validates a possible PC value and returns true if an opcode can be at "pc".
Some ABIs or architectures have fixed width instructions and must be aligned
to a 2 or 4 byte boundary. "pc" can be an opcode or a callable address which
means the load address might be decorated with extra bits (such as bit zero
to indicate a thumb function call for ARM targets), so take this into account
when returning true or false. The address should also be validated to ensure
it is a valid address for the address size of the inferior process. 32 bit
targets should make sure the address is less than UINT32_MAX.
Modified UnwindLLDB to use the new ABI functions to help it properly terminate
stacks.
Modified the mach-o function that extracts dependent files to not resolve the
path as the paths inside a binary might not match those on the current
host system.
llvm-svn: 132021
parse NOP instructions. I added the new table entries for the NOP for the
plain NOP, Yield, WFE, WFI, and SEV variants. Modified the opcode emulation
function EmulateInstructionARM::EmulateMOVRdSP(...) to notify us when it is
creating a frame. Also added an abtract way to detect the frame pointer
register for both the standard ARM ABI and for Darwin.
Fixed GDBRemoteRegisterContext::WriteAllRegisterValues(...) to correctly be
able to individually write register values back if case the 'G' packet is
not implemented or returns an error.
Modified the StopInfoMachException to "trace" stop reasons. On ARM we currently
use the BVR/BCR register pairs to say "stop when the PC is not equal to the
current PC value", and this results in a EXC_BREAKPOINT mach exception that
has 0x102 in the code.
Modified debugserver to create the short option string from long option
definitions to make sure it doesn't get out of date. The short option string
was missing many of the newer short option values due to a modification of
the long options defs, and not modifying the short option string.
llvm-svn: 131911
and set the address as an opcode address or as a callable address. This is
needed in various places in the thread plans to make sure that addresses that
might be found in symbols or runtime might already have extra bits set (ARM/Thumb).
The new functions are:
bool
Address::SetCallableLoadAddress (lldb::addr_t load_addr, Target *target);
bool
Address::SetOpcodeLoadAddress (lldb::addr_t load_addr, Target *target);
SetCallableLoadAddress will initialize a section offset address if it can,
and if so it might possibly set some bits in the address to make the address
callable (bit zero might get set for ARM for Thumb functions).
SetOpcodeLoadAddress will initialize a section offset address using the
specified target and it will strip any special address bits if needed
depending on the target.
Fixed the ABIMacOSX_arm::GetArgumentValues() function to require arguments
1-4 to be in the needed registers (previously this would incorrectly fallback
to the stack) and return false if unable to get the register values. The
function was also modified to first look for the generic argument registers
and then fall back to finding the registers by name.
Fixed the objective trampoline handler to use the new Address::SetOpcodeLoadAddress
function when needed to avoid address mismatches when trying to complete
steps into objective C methods. Make similar fixes inside the
AppleThreadPlanStepThroughObjCTrampoline::ShouldStop() function.
Modified ProcessGDBRemote::BuildDynamicRegisterInfo(...) to be able to deal with
the new generic argument registers.
Modified RNBRemote::HandlePacket_qRegisterInfo() to handle the new generic
argument registers on the debugserver side.
Modified DNBArchMachARM::NumSupportedHardwareBreakpoints() to be able to
detect how many hardware breakpoint registers there are using a darwin sysctl.
Did the same for hardware watchpoints in
DNBArchMachARM::NumSupportedHardwareWatchpoints().
llvm-svn: 131834
the "payload_length" argument for the "payload" packet data. This meant we
could end up sending random extra data with a packet depending on how the
packet was constructed.
Fixed GDBRemoteRegisterContext to properly save and restore all registers.
Previous fixes had been added to work around the "payload_length" issues fixed
above and aren't needed anymore.
Fix logging in GDBRemoteCommunication to make sure we log the correct packet
data being sent by using the packet length when dumping the packet contents.
Added register definitions for 'arm-lldb' in the "disasm-gdb-remote.pl" script
so if you have a register dump from the GDB remote that doesn't include the
qRegisterInfo packets, you can manually tell the script which registers are
which.
llvm-svn: 131715
Removed ifdeffed out functions and added the implementation of
WriteRegister for x86_64 architecture.
Signed-off-by: Johnny Chen <johnny.chen@apple.com>
llvm-svn: 131696
Fixed ThreadPlanCallFunction::ReportRegisterState(...) to only dump when
verbose logging is enabled and fixed the function to use the new
RegisterValue method of reading registers.
Fixed the GDB remote client to not send a continue packet after receiving
stdout or stderr from the inferior process.
llvm-svn: 131628
bool
Address::SetLoadAddress (lldb::addr_t load_addr, Target *target);
Added an == and != operator to RegisterValue.
Modified the ThreadPlanTracer to use RegisterValue objects to store the
register values when single stepping. Also modified the output to be a bit
less wide.
Fixed the ABIMacOSX_arm to not overwrite stuff on the stack. Also made the
trivial function call be able to set the ARM/Thumbness of the target
correctly, and also sets the return value ARM/Thumbness.
Fixed the encoding on the arm s0-s31 and d16 - d31 registers when the default
register set from a standard GDB server register sets.
llvm-svn: 131517
all register values. There is some junk that was appearing at the end
of the result the 'g' packet (read all register values). This function
was being called in:
bool
GDBRemoteRegisterContext::ReadAllRegisterValues (lldb::DataBufferSP &data_sp)
Then the packet data for the 'G' packet (write all registers) was being
placed into "data_sp" so the:
bool
GDBRemoteRegisterContext::WriteAllRegisterValues (const lldb::DataBufferSP &data_sp)
could restore it. In attempting to clean up the extra junk at the end of this
packet data, the packet was getting truncated.
llvm-svn: 131468
Modified ClangUserExpression and ClangUtilityFunction to display the actual
error (if one is available) that made the JIT fail instead of a canned
response.
Fixed the restoring of all register values when the 'G' packet doesn't work
to use the correct data.
llvm-svn: 131454
over when running JITed expressions. The allocated memory cache will cache
allocate memory a page at a time for each permission combination and divvy up
the memory and hand it out in 16 byte increments.
llvm-svn: 131453
Prior to this fix we would often call SendPacketAndWaitForResponse() which
returns the number of bytes in the response. The UNSUPPORTED response in the
GDB remote protocol is zero bytes and we were checking for it inside an if
statement:
if (SendPacketAndWaitForResponse(...))
{
if (response.IsUnsupportedResponse())
{
// UNSUPPORTED...
// This will never happen...
}
}
We now handle is properly as:
if (SendPacketAndWaitForResponse(...))
{
}
else
{
// UNSUPPORTED...
}
llvm-svn: 131393
thread plan. In order to get the return value, you can call:
void
ThreadPlanCallFunction::RequestReturnValue (lldb::ValueSP &return_value_sp);
This registers a shared pointer to a return value that will get filled in if
everything goes well. After the thread plan is run the return value will be
extracted for you.
Added an ifdef to be able to switch between the LLVM MCJIT and the standand JIT.
We currently have the standard JIT selected because we have some work to do to
get the MCJIT fuctioning properly.
Added the ability to call functions with 6 argument in the x86_64 ABI.
Added the ability for GDBRemoteCommunicationClient to detect if the allocate
and deallocate memory packets are supported and to not call allocate memory
("_M") or deallocate ("_m") if we find they aren't supported.
Modified the ProcessGDBRemote::DoAllocateMemory(...) and ProcessGDBRemote::DoDeallocateMemory(...)
to be able to deal with the allocate and deallocate memory packets not being
supported. If they are not supported, ProcessGDBRemote will switch to calling
"mmap" and "munmap" to allocate and deallocate memory instead using our
trivial function call support.
Modified the "void ProcessGDBRemote::DidLaunchOrAttach()" to correctly ignore
the qHostInfo triple information if any was specified in the target. Currently
if the target only specifies an architecture when creating the target:
(lldb) target create --arch i386 a.out
Then the vendor, os and environemnt will be adopted by the target.
If the target was created with any triple that specifies more than the arch:
(lldb) target create --arch i386-unknown-unknown a.out
Then the target will maintain its triple and not adopt any new values. This
can be used to help force bare board debugging where the dynamic loader for
static files will get used and users can then use "target modules load ..."
to set addressses for any files that are desired.
Added back some convenience functions to the lldb_private::RegisterContext class
for writing registers with unsigned values. Also made all RegisterContext
constructors explicit to make sure we know when an integer is being converted
to a RegisterValue.
llvm-svn: 131370
solve the build break due to the lack of this method.
It also propose a solution to the API changes in RegisterContext.
I upgraded also the the python version in the makefile. My linux
installation has python2.7 and AFAIK also the latest ubuntu
has this version of python so maybe is worth upgrading.
Patch by Marco Minutoli <mminutoli@gmail.com>
[Note: I had to hand merge in the diffs since patch thinks it is a corrupt patch.]
llvm-svn: 131313
respective ABI plugins as they were plug-ins that supplied ABI specfic info.
Also hookep up the UnwindAssemblyInstEmulation so that it can generate the
unwind plans for ARM.
Changed the way ABI plug-ins are handed out when you get an instance from
the plug-in manager. They used to return pointers that would be mananged
individually by each client that requested them, but now they are handed out
as shared pointers since there is no state in the ABI objects, they can be
shared.
llvm-svn: 131193
into some cleanup I have been wanting to do when reading/writing registers.
Previously all RegisterContext subclasses would need to implement:
virtual bool
ReadRegisterBytes (uint32_t reg, DataExtractor &data);
virtual bool
WriteRegisterBytes (uint32_t reg, DataExtractor &data, uint32_t data_offset = 0);
There is now a new class specifically designed to hold register values:
lldb_private::RegisterValue
The new register context calls that subclasses must implement are:
virtual bool
ReadRegister (const RegisterInfo *reg_info, RegisterValue ®_value) = 0;
virtual bool
WriteRegister (const RegisterInfo *reg_info, const RegisterValue ®_value) = 0;
The RegisterValue class must be big enough to handle any register value. The
class contains an enumeration for the value type, and then a union for the
data value. Any integer/float values are stored directly in an appropriate
host integer/float. Anything bigger is stored in a byte buffer that has a length
and byte order. The RegisterValue class also knows how to copy register value
bytes into in a buffer with a specified byte order which can be used to write
the register value down into memory, and this does the right thing when not
all bytes from the register values are needed (getting a uint8 from a uint32
register value..).
All RegiterContext and other sources have been switched over to using the new
regiter value class.
llvm-svn: 131096
a new "QLaunchArch:<arch-name>" where <arch-name> is the architecture name.
This allows us to remotely launch a debugserver and then set the architecture
for the binary we will launch.
llvm-svn: 131064
interface.
Added a quick way to set the platform though the SBDebugger interface. I will
actually an a SBPlatform support soon, but for now this will do.
ConnectionFileDescriptor can be passed a url formatted as: "fd://<fd>" where
<fd> is a file descriptor in the current process. This is handy if you have
services, deamons, or other tools that can spawn processes and give you a
file handle.
llvm-svn: 130565
Switch the EmulateInstruction to use the standard RegisterInfo structure
that is defined in the lldb private types intead of passing the reg kind and
reg num everywhere. EmulateInstruction subclasses also need to provide
RegisterInfo structs given a reg kind and reg num. This eliminates the need
for the GetRegisterName() virtual function and allows more complete information
to be passed around in the read/write register callbacks. Subclasses should
always provide RegiterInfo structs with the generic register info filled in as
well as at least one kind of register number in the RegisterInfo.kinds[] array.
llvm-svn: 130256
are defined as enumerations. Current bits include:
eEmulateInstructionOptionAutoAdvancePC
eEmulateInstructionOptionIgnoreConditions
Modified the EmulateInstruction class to have a few more pure virtuals that
can help clients understand how many instructions the emulator can handle:
virtual bool
SupportsEmulatingIntructionsOfType (InstructionType inst_type) = 0;
Where instruction types are defined as:
//------------------------------------------------------------------
/// Instruction types
//------------------------------------------------------------------
typedef enum InstructionType
{
eInstructionTypeAny, // Support for any instructions at all (at least one)
eInstructionTypePrologueEpilogue, // All prologue and epilogue instructons that push and pop register values and modify sp/fp
eInstructionTypePCModifying, // Any instruction that modifies the program counter/instruction pointer
eInstructionTypeAll // All instructions of any kind
} InstructionType;
This allows use to tell what an emulator can do and also allows us to request
these abilities when we are finding the plug-in interface.
Added the ability for an EmulateInstruction class to get the register names
for any registers that are part of the emulation. This helps with being able
to dump and log effectively.
The UnwindAssembly class now stores the architecture it was created with in
case it is needed later in the unwinding process.
Added a function that can tell us DWARF register names for ARM that goes
along with the source/Utility/ARM_DWARF_Registers.h file:
source/Utility/ARM_DWARF_Registers.c
Took some of plug-ins out of the lldb_private namespace.
llvm-svn: 130189
inline contexts when the deepest most block is not inlined.
Added source path remappings to the lldb_private::Target class that allow it
to remap paths found in debug info so we can find source files that are elsewhere
on the current system.
Fixed disassembly by function name to disassemble inline functions that are
inside other functions much better and to show enough context before the
disassembly output so you can tell where things came from.
Added the ability to get more than one address range from a SymbolContext
class for the case where a block or function has discontiguous address ranges.
llvm-svn: 130044
the CommandInterpreter where it was always being used.
Make sure that Modules can track their object file offsets correctly to
allow opening of sub object files (like the "__commpage" on darwin).
Modified the Platforms to be able to launch processes. The first part of this
move is the platform soon will become the entity that launches your program
and when it does, it uses a new ProcessLaunchInfo class which encapsulates
all process launching settings. This simplifies the internal APIs needed for
launching. I want to slowly phase out process launching from the process
classes, so for now we can still launch just as we used to, but eventually
the platform is the object that should do the launching.
Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able
to launch processes with all of the new eLaunchFlag settings. Modified any
code that was manually launching processes to use the Host::LaunchProcess
functions.
Fixed an issue where lldb_private::Args had implicitly defined copy
constructors that could do the wrong thing. This has now been fixed by adding
an appropriate copy constructor and assignment operator.
Make sure we don't add empty ModuleSP entries to a module list.
Fixed the commpage module creation on MacOSX, but we still need to train
the MacOSX dynamic loader to not get rid of it when it doesn't have an entry
in the all image infos.
Abstracted many more calls from in ProcessGDBRemote down into the
GDBRemoteCommunicationClient subclass to make the classes cleaner and more
efficient.
Fixed the default iOS ARM register context to be correct and also added support
for targets that don't support the qThreadStopInfo packet by selecting the
current thread (only if needed) and then sending a stop reply packet.
Debugserver can now start up with a --unix-socket (-u for short) and can
then bind to port zero and send the port it bound to to a listening process
on the other end. This allows the GDB remote platform to spawn new GDB server
instances (debugserver) to allow platform debugging.
llvm-svn: 129351
This allows you to have a platform selected, then specify a triple using
"i386" and have the remaining triple items (vendor, os, and environment) set
automatically.
Many interpreter commands take the "--arch" option to specify an architecture
triple, so now the command options needed to be able to get to the current
platform, so the Options class now take a reference to the interpreter on
construction.
Modified the build LLVM building in the Xcode project to use the new
Xcode project level user definitions:
LLVM_BUILD_DIR - a path to the llvm build directory
LLVM_SOURCE_DIR - a path to the llvm sources for the llvm that will be used to build lldb
LLVM_CONFIGURATION - the configuration that lldb is built for (Release,
Release+Asserts, Debug, Debug+Asserts).
I also changed the LLVM build to not check if "lldb/llvm" is a symlink and
then assume it is a real llvm build directory versus the unzipped llvm.zip
package, so now you can actually have a "lldb/llvm" directory in your lldb
sources.
llvm-svn: 129112
NSEC_PER_SEC is not defined in sys/time.h on Linux. Replaced that macro with a
static constant inside TimeValue.
Patch by Marco Minutoli.
llvm-svn: 129071
GDBRemoteCommunicationServer classes. This involved adding a new packet
named "qSpeedTest" which can test the speed of a packet send/response pairs
using a wide variety of send/recv packet sizes.
Added a few new connection classes: one for shared memory, and one for using
mach messages (Apple only). The mach message stuff is experimental and not
working yet, but added so I don't lose the code. The shared memory stuff
uses pretty standard calls to setup shared memory.
llvm-svn: 128837
event.
Modified the ProcessInfo structure to contain all process arguments. Using the
new function calls on MacOSX allows us to see the full process name, not just
the first 16 characters.
Added a new platform command: "platform process info <pid> [<pid> <pid> ...]"
that can be used to get detailed information for a process including all
arguments, user and group info and more.
llvm-svn: 128694
class now implements the Host functionality for a lot of things that make
sense by default so that subclasses can check:
int
PlatformSubclass::Foo ()
{
if (IsHost())
return Platform::Foo (); // Let the platform base class do the host specific stuff
// Platform subclass specific code...
int result = ...
return result;
}
Added new functions to the platform:
virtual const char *Platform::GetUserName (uint32_t uid);
virtual const char *Platform::GetGroupName (uint32_t gid);
The user and group names are cached locally so that remote platforms can avoid
sending packets multiple times to resolve this information.
Added the parent process ID to the ProcessInfo class.
Added a new ProcessInfoMatch class which helps us to match processes up
and changed the Host layer over to using this new class. The new class allows
us to search for processs:
1 - by name (equal to, starts with, ends with, contains, and regex)
2 - by pid
3 - And further check for parent pid == value, uid == value, gid == value,
euid == value, egid == value, arch == value, parent == value.
This is all hookup up to the "platform process list" command which required
adding dumping routines to dump process information. If the Host class
implements the process lookup routines, you can now lists processes on
your local machine:
machine1.foo.com % lldb
(lldb) platform process list
PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME
====== ====== ========== ========== ========== ========== ======================== ============================
99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge
94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker
94852 244 username usergroup username usergroup x86_64-apple-darwin Safari
94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode
92742 92710 username usergroup username usergroup i386-apple-darwin debugserver
This of course also works remotely with the lldb-platform:
machine1.foo.com % lldb-platform --listen 1234
machine2.foo.com % lldb
(lldb) platform create remote-macosx
Platform: remote-macosx
Connected: no
(lldb) platform connect connect://localhost:1444
Platform: remote-macosx
Triple: x86_64-apple-darwin
OS Version: 10.6.7 (10J869)
Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386
Hostname: machine1.foo.com
Connected: yes
(lldb) platform process list
PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME
====== ====== ========== ========== ========== ========== ======================== ============================
99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation
99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb
99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge
94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker
94852 244 username usergroup username usergroup x86_64-apple-darwin Safari
The lldb-platform implements everything with the Host:: layer, so this should
"just work" for linux. I will probably be adding more stuff to the Host layer
for launching processes and attaching to processes so that this support should
eventually just work as well.
Modified the target to be able to be created with an architecture that differs
from the main executable. This is needed for iOS debugging since we can have
an "armv6" binary which can run on an "armv7" machine, so we want to be able
to do:
% lldb
(lldb) platform create remote-ios
(lldb) file --arch armv7 a.out
Where "a.out" is an armv6 executable. The platform then can correctly decide
to open all "armv7" images for all dependent shared libraries.
Modified the disassembly to show the current PC value. Example output:
(lldb) disassemble --frame
a.out`main:
0x1eb7: pushl %ebp
0x1eb8: movl %esp, %ebp
0x1eba: pushl %ebx
0x1ebb: subl $20, %esp
0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18
0x1ec3: popl %ebx
-> 0x1ec4: calll 0x1f12 ; getpid
0x1ec9: movl %eax, 4(%esp)
0x1ecd: leal 199(%ebx), %eax
0x1ed3: movl %eax, (%esp)
0x1ed6: calll 0x1f18 ; printf
0x1edb: leal 213(%ebx), %eax
0x1ee1: movl %eax, (%esp)
0x1ee4: calll 0x1f1e ; puts
0x1ee9: calll 0x1f0c ; getchar
0x1eee: movl $20, (%esp)
0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6
0x1efa: movl $12, %eax
0x1eff: addl $20, %esp
0x1f02: popl %ebx
0x1f03: leave
0x1f04: ret
This can be handy when dealing with the new --line options that was recently
added:
(lldb) disassemble --line
a.out`main + 13 at test.c:19
18 {
-> 19 printf("Process: %i\n\n", getpid());
20 puts("Press any key to continue..."); getchar();
-> 0x1ec4: calll 0x1f12 ; getpid
0x1ec9: movl %eax, 4(%esp)
0x1ecd: leal 199(%ebx), %eax
0x1ed3: movl %eax, (%esp)
0x1ed6: calll 0x1f18 ; printf
Modified the ModuleList to have a lookup based solely on a UUID. Since the
UUID is typically the MD5 checksum of a binary image, there is no need
to give the path and architecture when searching for a pre-existing
image in an image list.
Now that we support remote debugging a bit better, our lldb_private::Module
needs to be able to track what the original path for file was as the platform
knows it, as well as where the file is locally. The module has the two
following functions to retrieve both paths:
const FileSpec &Module::GetFileSpec () const;
const FileSpec &Module::GetPlatformFileSpec () const;
llvm-svn: 128563
This patch upgrades the Linux process plugin to handle a larger range of signal
events. For example, we can detect when the inferior has "crashed" and why,
interrupt a running process, deliver an arbitrary signal, and so on.
llvm-svn: 128547