I noticed this problem as part of the ongoing attempt to canonicalize min/max ops in IR.
The debug output shows nodes like this:
t4: i32 = xor t2, Constant:i32<-1>
t21: i8 = setcc t4, Constant:i32<0>, setlt:ch
t14: i32 = select t21, t4, Constant:i32<-1>
And because the select is holding onto the t4 (xor) node while EmitTest creates a new
x86-specific xor node, the lowering results in:
t4: i32 = xor t2, Constant:i32<-1>
t25: i32,i32 = X86ISD::XOR t2, Constant:i32<-1>
t28: i32,glue = X86ISD::CMOV Constant:i32<-1>, t4, Constant:i8<15>, t25:1
Differential Revision: https://reviews.llvm.org/D28374
llvm-svn: 291392
The 'fast' costs should only work for shifts by uniform constants (uniform non-constant are lowered using the slow default implementation).
Logical shifts were not taking into account that we must mask the psrlw result, so the costs needed to be doubled.
Added missing AVX2/AVX512BW costs as well.
llvm-svn: 291391
We should probably teach the two address instruction pass to turn masked moves into BLENDM when its beneficial to the register allocator.
llvm-svn: 291371
All but (v2f64 broadcast f64) are handled with VBROADCAST instructions. The v2f64 version can be handled with VMOVDDUP.
We may want to consider converting to BLENDM instructions in the two address instruction pass if its beneficial to register allocation.
llvm-svn: 291369
Gracefully leave code that performs function-pointer bitcasts implying
non-trivial pointer conversions alone, rather than aborting, since it's
just undefined behavior.
llvm-svn: 291326
WebAssembly requires caller and callee signatures to match exactly. In LLVM,
there are a variety of circumstances where signatures may be mismatched in
practice, and one can bitcast a function address to another type to call it
as that type. This patch adds a pass which replaces bitcasted function
addresses with wrappers to replace the bitcasts.
This doesn't catch everything, but it does match many common cases.
llvm-svn: 291315
Re-apply r288561: This time with a fix where the ADDs that are part of a
3 instruction LOH would not invalidate the "LastAdrp" state. This fixes
http://llvm.org/PR31361
Previously this pass was using up to 5% compile time in some cases which
is a bit much for what it is doing. The pass featured a full blown
data-flow analysis which in the default configuration was restricted to a
single block.
This rewrites the pass under the assumption that we only ever work on a
single block. This is done in a single pass maintaining a state machine
per general purpose register to catch LOH patterns.
Differential Revision: https://reviews.llvm.org/D27329
This reverts commit 9e6cedb0a4f14364d6511597a9160305e7d34493.
llvm-svn: 291266
Summary:
For instructions such as PSLLW/PSLLD/PSLLQ a variable shift amount may be passed in an XMM register.
The lower 64-bits of the register are evaluated to determine the shift amount.
This patch improves the construction of the vector containing the shift amount.
Reviewers: craig.topper, delena, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28353
llvm-svn: 291120
This code seems to be target dependent which may not be the same for all targets.
Passed the decision whether the given stride is complex or not to the target by sending stride information via SCEV to getAddressComputationCost instead of 'IsComplex'.
Specifically at X86 targets we dont see any significant address computation cost in case of the strided access in general.
Differential Revision: https://reviews.llvm.org/D27518
llvm-svn: 291106
This change aims to unify and correct our logic for when we need to allow for
the possibility of the linker adding a TOC restoration instruction after a
call. This comes up in two contexts:
1. When determining tail-call eligibility. If we make a tail call (i.e.
directly branch to a function) then there is no place for the linker to add
a TOC restoration.
2. When determining when we need to add a nop instruction after a call.
Likewise, if there is a possibility that the linker might need to add a
TOC restoration after a call, then we need to put a nop after the call
(the bl instruction).
First problem: We were using similar, but different, logic to decide (1) and
(2). This is just wrong. Both the resideInSameModule function (used when
determining tail-call eligibility) and the isLocalCall function (used when
deciding if the post-call nop is needed) were supposed to be determining the
same underlying fact (i.e. might a TOC restoration be needed after the call).
The same logic should be used in both places.
Second problem: The logic in both places was wrong. We only know that two
functions will share the same TOC when both functions come from the same
section of the same object. Otherwise the linker might cause the functions to
use different TOC base addresses (unless the multi-TOC linker option is
disabled, in which case only shared-library boundaries are relevant). There are
a number of factors that can cause functions to be placed in different sections
or come from different objects (-ffunction-sections, explicitly-specified
section names, COMDAT, weak linkage, etc.). All of these need to be checked.
The existing logic only checked properties of the callee, but the properties of
the caller must also be checked (for example, calling from a function in a
COMDAT section means calling between sections).
There was a conceptual error in the resideInSameModule function in that it
allowed tail calls to functions with weak linkage and protected/hidden
visibility. While protected/hidden visibility does prevent the function
implementation from being replaced at runtime (via interposition), it does not
prevent the linker from using an alternate implementation at link time (i.e.
using some strong definition to replace the provided weak one during linking).
If this happens, then we're still potentially looking at a required TOC
restoration upon return.
Otherwise, in general, the post-call nop is needed wherever ELF interposition
needs to be supported. We don't currently support ELF interposition at the IR
level (see http://lists.llvm.org/pipermail/llvm-dev/2016-November/107625.html
for more information), and I don't think we should try to make it appear to
work in the backend in spite of that fact. Unfortunately, because of the way
that the ABI works, we need to generate code as if we supported interposition
whenever the linker might insert stubs for the purpose of supporting it.
Differential Revision: https://reviews.llvm.org/D27231
llvm-svn: 291003
Summary:
In mergeSPUpdates, debug values need to be ignored when getting the
previous element, otherwise debug data could have an impact on codegen.
In eliminateCallFramePseudoInstr, debug values after the erased element
could have an impact on codegen and should be skipped.
Closes PR31319 (https://llvm.org/bugs/show_bug.cgi?id=31319)
Reviewers: aprantl, MatzeB, mkuper
Subscribers: gbedwell, llvm-commits
Differential Revision: https://reviews.llvm.org/D27688
llvm-svn: 290955
Replacing the memory operand in the intrinsic versions of the comis/ucomis instrucions from f128mem to ssmem/sdmem accordingly.
Differential Revision: https://reviews.llvm.org/D28138
llvm-svn: 290948
In some cases its more efficient to combine TRUNC( BINOP( X, Y ) ) --> BINOP( TRUNC( X ), TRUNC( Y ) ) if the binop is legal for the truncated types.
This is true for vector integer multiplication (especially vXi64), as well as ADD/AND/XOR/OR in cases where we only need to truncate one of the inputs at runtime (e.g. a duplicated input or an one use constant we can fold).
Further work could be done here - scalar cases (especially i64) could often benefit (if we avoid partial registers etc.), other opcodes, and better analysis of when truncating the inputs reduces costs.
I have considered implementing this for all targets within the DAGCombiner but wasn't sure we could devise a suitable cost model system that would give us the range we need.
Differential Revision: https://reviews.llvm.org/D28219
llvm-svn: 290947
Summary:
No need to have this per-architecture. While there, unify 32-bit ARM's
behaviour with what changed elsewhere and start function names lowercase
as per the coding standards. Individual entry emission code goes to the
entry's own class.
Fully tested on amd64, cross-builds on both ARMs and PowerPC.
Reviewers: dberris
Subscribers: aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D28209
llvm-svn: 290858
X86 target does not provide any target specific cost calculation for interleave patterns.It uses the common target-independent calculation, which gives very high numbers. As a result, the scalar version is chosen in many cases. The situation on AVX-512 is even worse, since we have 3-src shuffles that significantly reduce the cost.
In this patch I calculate the cost on AVX-512. It will allow to compare interleave pattern with gather/scatter and choose a better solution (PR31426).
* Shiffle-broadcast cost will be changed in Simon's upcoming patch.
Differential Revision: https://reviews.llvm.org/D28118
llvm-svn: 290810
This reverts commit r290694. It broke sanitizer tests on Win64. I'll
probably bring this back, but the jump tables will just live in .text
like they do for MSVC.
llvm-svn: 290714
Among other stuff, this allows to use predefined .option.machine_version_major
/minor/stepping symbols in the directive.
Relevant test expanded at once (also file renamed for clarity).
Differential Revision: https://reviews.llvm.org/D28140
llvm-svn: 290710
Summary:
We were already using 32-bit jump table entries, but this was a
consequence of the default PIC model on Win64, and not an intentional
design decision. This patch ensures that we always use 32-bit label
difference jump table entries on Win64 regardless of the PIC model. This
is a good idea because it saves executable size and object file size.
Moving the jump tables to .rdata cleans up the disassembled object code
and reduces the available ROP targets, but it requires adding one more
RIP-relative lea to the code. COFF doesn't have relocations to express
the difference between two arbitrary symbols, so we can't use the jump
table label in the label difference like we do elsewhere.
Fixes PR31488
Reviewers: majnemer, compnerd
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28141
llvm-svn: 290694
There are cases of AVX-512 instructions that have two possible encodings. This is the case with instructions that use vector registers with low indexes of 0 - 15 and do not use the zmm registers or the mask k registers.
The EVEX encoding prefix requires 4 bytes whereas the VEX prefix can take only up to 3 bytes. Consequently, using the VEX encoding for these instructions results in a code size reduction of ~2 bytes even though it is compiled with the AVX-512 features enabled.
Reviewers: Craig Topper, Zvi Rackoover, Elena Demikhovsky
Differential Revision: https://reviews.llvm.org/D27901
llvm-svn: 290663
The feature allows for conditional assembly, filling the entries
of .amd_kernel_code_t etc.
Symbols are defined with value 0 at the beginning of each kernel scope.
After each register usage, the respective symbol is set to:
value = max( value, ( register index + 1 ) )
Thus, at the end of scope the value represents a count of used registers.
Kernel scopes begin at .amdgpu_hsa_kernel directive, end at the
next .amdgpu_hsa_kernel (or EOF, whichever comes first). There is also
dummy scope that lies from the beginning of source file til the
first .amdgpu_hsa_kernel.
Test added.
Differential Revision: https://reviews.llvm.org/D27859
llvm-svn: 290608